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Abstract

The decycling index of a digraph D is defined to be the minimum number of arcs
in a set whose removal from D leaves an acyclic digraph. In this paper, we
obtain some results on the decycling index of bipartite tournaments. keywords :

cycle, digraph, tournament

1 Introduction

One of the nicest theorems in graph theory is the formula for the cycle rank of a
graph - the dimension of the cycle space in terms of the numbers of vertices,
edges, and components. It is a simple formula for the minimum number of edges
that must be removed from a graph to render it cycle-free. In this paper, we
investigate the corresponding parameter for directed graphs, for which, unlike
the undirected case, there is no simple formula.

Formally, the decycling index of a digraph D, denoted V'(D), is the minimum
number of arcs in a set whose removal from D leaves a digraph with no directed

cycles.

The notation we use is a natural extension of V(G) for the (vertex) decycling
number of a graph G [3]. In the study of systems of equations, this parameter
has also been called the "arc-feedback number," the name coming from the fact
that feedback in sound systems results from the existence of cycles.

To illustrate the concept, we use the two digraphs in Figure 1 (these examples
will be considered again later). Clearly, since D, is strongly connected, its
decycling index is positive, and, since the arc gr is on all cycles, V'(D,) = 1.
Similarly, it can be seen that V' (D,) = 3 since D, has three arc-disjoint cycles
(for example, wyvw, vxzv, and wxyzw) and the deletion of three arcs (such as, yv,
zv, and zw) leaves an acyclic digraph.
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Figure 1

Since every acyclic digraph has at least one vertex of in-degree 0 and at least
one of out-degree 0, we have the following elementary result will be useful to us
later. (The in-degree and out-degree of a vertex v are denoted id v and od v.)

Lemma 1.1. The decycling index of a digraph D is

V' (D)= Teig{id v+ V(D-v)} =Te§3{od v+V(D-v)}. Q

This lemma gives another proof that the decycling index of digraph D, in Figure
1 is 3. Note that D, is vertex-symmetric with all in-degrees 2, and for each
vertex v, D - v is isomorphic to D,.

In light of Lemma 1.1, it will be useful to have, for a vertex v in a digraph D,
notation for id v + V'(D - v). If we denote it ¢(v) , then V'(D) =|;n€13 o).

We also observe that the decycling index of a digraph is the sum of the
decycling indices of its strong components, so we restrict our attention to
strongly connected digraphs.

The decycling index was studied for tournaments in the guise of its
complementary parameter, the maximum number of arcs in a cycle-free subdi-
graph [5]. Stated in terms of decycling, it has been shown that the maximum arc

decycling number among all tournaments of order n (denoted V' (n) ) is givenin
Table 1 (the tournaments in Figure 1 illustrate the entries for n =4 and 5).

8 9 10 11 12 13
8

6 7
4 7 12 15 20 22 28

Table 1
Beyond this, little is known except for bounds.
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In this paper we focus on bipartite tournaments, which are to complete bipartite
graphs as ordinary tournaments are to complete graphs: An m-by-n bipartite
tournament is the result of orienting the edges of an m-by-n complete bipartite

graph.

We shall use the following notation: The two partite sets of vertices of an
m-by-n bipartite tournament T will be denoted by X = {x;, x5, ... , x,} and ¥ =

{yl’ Y2y ey yn}

To be consistent with other usage (for example, [4]), we denote by v (G) the
maximum decycling indei among all orientatig_t_ls of a graph G; however, for

simplicity we will write V' (m, n ) instead of V' (K,, ,), is consistent with the
notation of Table 1.

As with ordinary tournaments, general results on the decycling index of bipartite
tournaments are hard to come by. We have exact values only in the 2-by-n,
3-by-n, 4-by-n, their inverses, and the 5-by-5 case.

The following recursive bound will be useful in our work.
Lemma 1.2. For all positive integers m, s,and t,
V' (ms+z V (m,s)+ V (m,1).

Proof: Let T, and T, be m-by-s and m-by-t bipartite tournaments that realize the
maximum decycling index for these sizes. Then the bipartite tournament
obtained by identifying their partite sets of cardinality m cannot be decycled

without the removal of at least v (m, s) + v (m,t)arcs. Q

2 The Cases 2-by-n and 3-by-n.

In this section, we determine V'(D) when D is a strong m-by-n bipartite tour-
nament for m = 2, 3. (Recall our convention that in these cases, one partite set
willbe X = {x;, x,} or X = { x;, x,, x; } and the other Y= { y,, y5, ... , y, }.)

Theorem 2.1. The decycling index of a strongly connected 2-by-n bipartite
tournament T is V' (T) = min{id x,, id x,}.

Proof. Let T be a strong 2-by-n bipartite tournament. Since T is strong, every
vertex in ¥ must have both in-degree and out-degree equal to 1. Consequently,
od x; = id x,, so there are id x, vertices y, for which x, = y;, — x, and id x,
vertices y; for which x, — y; — x,. Thus, there are min{id x,, id x,} arc-disjoint
4-cycles x,yx,y.x,. Hence, V'(T) = min{id x,, id x,}. Since the result of deleting
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all of the arcs either into or out of x, is acyclic, we have V'(T) < min{id x,, id
x,}, and the result follows. Q

The strong 2-by-n bipartite tournament in which the in-degrees of x, and x,
differ by at most 1 yields the following result.

Corollary 2.2. v 2,n)= [%j . Q

In order to treat the 3-by-n case efficiently, we introduce some additional
notation and terminology. Note that in a strong 3-by-n bipartite tournament,
each vertex y in Y will either have in-degree 1 and out-degree 2 or vice versa.
We call the arc at y that has the opposite direction to the other two the
exceptional arc at y. This gives a natural partition of Y into six subsets (some of
which may be empty) according to the X-vertices of the exceptional arcs.

Formally, for i = 1,2,3, we let ¥* (resp. ¥”) be the set of vertices y in ¥ for

which the exceptional arc is directed from (resp., directed to) the vertex x,. This
decomposition is shown in Figure 2, where the heavy lines represent the sets of
exceptional arcs.

===
S

Further, for i = 1,2,3, we let « = 1Y*], and, for i = j, we define the six
exceptionality numbers B; =aj +a;. For example, in the 3-by-5 bipartite
tournament 7 indicated in Figure 3 (only the X-to-Y arcs are shown), we see that
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the exceptional arcs are x,y;, X2)3, X3¥s, Ya2X2, Y4X3. Hence, o = 0 while all
other a;'and aj are 1,ands0 B,; =5 =1 and B, = 3= fo; = 2= 2.

We observe that deleting the three arcs x,)3, x3ys, and y,x, leaves an acyclic
digraph. On the other hand, we can find two arc-disjoint cycles, namely,
XaYaX3Y2Xa2, and X,y x,yax; . Notice that no matter which arc we remove from
the second 4-cycle, the first 4-cycle and either x;y3x3ysx; Or Xy X3y5x
remains intact, and so V'(T) = 3. Since n = 5 and max B, = 2, this is an
illustration of the following theorem.

X X2 X3

Figure 3

Theorem 2.3. Let T be a strongly connected 3-by-n bipartite tournament having
exceptionality numbers ;. Then the decycling index of T is

V(D) =n- max By
L¥)

Proof: We first show that V'(T) < n - max §;. To this end, we let E be the set of
exceptional arcs and let E; be the subset of those that go neither out of x; nor into
x;. Without loss of generality, we assume that §, = max §;. Let D =T - E, ,; that
is D is the result of removing the exceptional arcs that go into x;, out of x,, and
those incident with x, (see Figure 2). Then in D, ¥ and Y¥; have only
in-coming arcs and Y, and Y5 have only out-going arcs. Hence, every cycle in

D must have its Y-vertices in ¥*U Y, . However, x, has arcs going to all of
these vertices and x, has arcs from all of them, so (since a cycle must have at
least two X-vertices) D must be cycle-free. Because there are n exceptional arcs
in E and D contains only B, , of them, V'(T) <n - §,, = n - max §;

Now let S be any decycling set of arcs in T, and let $* be the set of exceptional
arcs whose Y-vertices are incident with an arc in S. Then | S* | <| S (since each
Y-vertex has only one exceptional arc). Furthermore, S* is a decycling set since
no non-exceptional arc in S can be on a cycle in T - S* because its Y-vertex can't
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be. It is easy to see that if T - $* contains arcs from two of the sets ¥;™, or from

two of the ¥;*, or from some ¥;* and Y;, then it has a cycle. Hence, S* must
contain some Ej;, and so | $* | 2 n - max g;. This suffices to complete the proof.
Q

Corollary 2.4. v @B.n)= [-23—"]

Proof: Let T be a strong 3-by-n bipartite tournament with exceptionality
numbers B;. Then I B; = 2n (since each a; and a; is counted twice), and so
n

— 2
the maximum g, is at least [3] Hence V' (3,n)<n - [ng] = I?n] .

To demonstrate the reverse inequality, we look to the digraph for which any two
of the six a; values differ by at most 1, and their sum is n. Specifically the
following should be true.
Q sa; sa3 S0 S0 Sa3
a; saj +1
Q) +Q; +0Q;3 +af +a3+03 =n

It is routine to verify (by cases modulo 6) that max §; = [%l, so the 3-by-n

bipartite tournament with these exceptional values has decycling index [%J .
Q

3 The 4-by-n Case.

In this section, we determine the maximum value of the decycling index of a
4-by-n bipartite tournament. We begin with an upper bound.

Lemma 3.1. The maximum decycling index of a 4-by-n bipartite tournament
satisfies this inequality:

L if n = I(mod 6)

V'(4,n) s [ 6
Tn .
[?J otherwise
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Proof: Let T be a 4-by-n bipartite tournament. By Lemma 1.1, v =
min {idv + v (T -v)}. If veE X, then id v or od v is at most [-;-J and V' (T-
v

V) < v (3,n= I%J (by Corollary 2.4). Hence, v (4,n) < [% J-{- l%] Ltis

straightforward to show, by considering congruence classes modulo 6, that this
bound equals those in the statement of the lemma. O

We now proceed to show that equality holds except in the n = 3(mod6) case.
This is done by determining V' (4, n) for some small values and then using
induction.

Lemma 3.2, Let T be a 4-by-4 bipartite tournament. Then V'(T) < 4, with
equality holding if and only if T is regular.

Proof: Let T be a 4-by-4 bipartite tournament. We observe first that if d is the
minimum in-degree in 7, then by Lemma 1.1 and Corollary 2.4, V' (T) sd + 2.
Hence, if T is regular, V' (T) <4, while if it is not, V' (T) <3.

What remains to be shown is that if T is regular, V' (7) = 4. To this end, we note
that the underlying graph of the eight X-to-Y arcs must be 2-regular and so must
be either an 8-cycle or two 4-cycles. Consequently, up to isomorphism, there are
only two possibilities for T ; these are indicated as T, and 7, in Figure 4 (as in
Figure 3, only the X-to-Y arcs are shown). It is not difficult to find sets of four
arc-disjoint cycles in each :

T, T,
X V1% Y3 X X X% Y3 X
Xy YaXa Ya Xy X1 Y2 X4 Ya Xy
X2 Yy X4 Y3 X2 Xa N1 X3 Y3 X2
X3 Y2 X4 Ya X3 X2 Y2 X3 Y4 X3

Hence, if T is regular, V' (7) 2 4, which completes the proof. O

X, X, X3 X, X, X, X3 X,
[; o ® : ® o o ® o
N Y2 Ys Ya N Y2 Y3 Ya

T, T,
Figure 4

337



Lemma3.3. V' (4,5)25.

Proof: The orientation T described by Directed Adjacency Matrix 1 below (
“+” indicates the orientation x,y; and “~* indicates the orientation y; ) attains the
upper bound, as we now show.

x| + - + - +

Xy | + - - + -
X3 — + + - -
X3 - + - + +

Directed Adjacency Matrix 1

EachX U {y,y: 1 si<j=<35} contains at least one 4-cycle, in fact both X U
{y»y }and X U { y;, y, } contain two arc-disjoint 4-cycles. Therefore to
decycle this graph using exactly 4 arcs, we would have to remove one arc
incident with each y; for j = 1, 2, 3, 4 or a cycle containing y; would remain.
Once an arc incident with y, is chosen we are forced to remove a specific arc
incident with y,, since otherwise a 4-cycle containing y, and either y, or y;
remains. Now the remaining arcs incident with y, and y, along with either the
arcs incident with y, or the arcs incident with y, contain two arc-disjoint 4-
cycles. A third arc-disjoint cycle can be found in the arcs incident with y, and
the arcs incident with either y, or ys (whichever was not used before). Hence we

must remove at least 5 arcs,and V' (1) = 5. O
Lemma34. 7< V' (4,6)s V' 4,7).

Proof: We show that the bipartite tournament T described in Directed
Adjacency Matrix 2 has decycling index 7 (the arcs in parentheses are an
example of a decycling set). In order to make certain properties of the digraph T
easier to see, we will, for this example, use double subscripts to label the
vertices in Y (y; 1 i sj < 4). We create T by orienting the edges of a K, from
X to y; if and only if k£ = i or j. Using Theorem 2.3, it can be shown that V' (T -
x) = 4, so @(x,) = 7. On the other hand, T — y,; is isomorphic to the bipartite
tournament in Table 2, whose decycling index is 5, so @( y,3) = 7 as well. It is
easy to see that the orbits of the vertices under the automorphism group of T are
X and Y, hence the lemma follows. O
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Mz Ysa Vi3 Yaa Vs Yaa

nf&# -+ - # -
nl+ = G+ - o+
x3| - + + - - +
Xl- < - # -

Directed Adjacency Matrix 2

Note that for each pair of vertices y and y* in ¥, X U {y, y*} contains at least
one 4-cycle and in fact X U {y,3, ¥34}, X U {313, 24}, and X U {y,4, y23} €ach
contain 2 arc-disjoint 4-cycles. We will call the pairs {y,2, ¥34}, {¥13) Y24}, and
{Y1.4 Y23} complementary pairs.

Lemma 3.5. Fornz2,

2]_1 ifn = 1(mod6)
Vi(anm={' 8
I-E-J ifn = 0,2, 4,5 (mod 6)

Proof: The values for n =2, 4, 5, 6, and 7 follow from Corollaries 2.2 and 2.4,
and Lemmas 3.1, 3.2, 3.3, and 3.4.

For the remaining values of n, the upper bound is given in Lemma 3.1. The
lower bound follows from applying Lemma 1.2 to the 4-by-n bipartite
tournament created by taking the appropriate number of copies of the digraph T
described by Directed Adjacency Matrix 2, the tournament which gave the lower
bound in from Corollary 2.2 or 2.4, or Lemma 3.2, 3.3, or 3.4, and then
identifying their X-sets. O

We now consider the case n = 3 (mod 6) which was not covered in Lemma 3.5.
Lemma 3.6: Fork=0, V' (4, 6k+3)=7k+2.

Proof: The lower bound follows from Lemma 3.5 since V' (4, 6k + 2) =7k +
2. In order to demonstrate the upper bound, we will need to consider 3 cases,
depending upon the minimum in- or out-degree d of the vertices in Y. Let T be a
4-by-(6k + 3) bipartite tournament. Without loss of generality, we may assume
id(y,) = d < 0d(y,).

Casel.d=0: Here V'(T)=V'(T -y) s V' (4,6k+2)= {&?'-2—)] =Tk +
2.
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Case 2. d = 1: Without loss of generality we hay assume that x, is the vertex
with an arc into y,. Either id(x,) or od(x,) is at most 3k +1, so by Lemma 1.1,
VT)sV'(T-x)+3k+1=V'(T -x5,-y)+3k+1s V' 3,6k+2)+3k+
1=4k+1+3k+1=7k+2.

Case 3. d = 2: In this case each y, must have the adjacency pattern of some y;
from Directed Adjacency Matrix 2. For 1 sisj<4letY;={y € Yly has the
same adjacency pattern as y; }and let a be the minimum value of 1 ¥; 1.

If a < k then without loss of generality assume | ¥;,1=aand| Y, ,1<|Y,; 1. We
can choose a decycling set of two arcs incident with each vertex in either Y , or
Y,, , none from Y., and one from each of the other y vertices. The order of the
set will be:

1Via 1420 Y, 141Y,5 141V, 14217, |s
'YI.Z |+2| Ya‘a |+IY|3 |+|Y2‘4 I+IYI.4 |+IY23 |=
6k+3+a<Tk+3

If a = k then some pair of ¥; associated with a complementary pair must have an
odd number of vertices. Without loss of generality, assume that | Y, 4 | +1Y,; | is
odd,l ¥4 i<l Y;5l,and 1 Yy I=a.

1Yo 142 Y, 1+l Y, 1+, 1+21Y, 1<
1Yo 142 Y34 [41Y 5 141 Yo, 141Y 4 141 Y5 | =
6k+3+a=Tk+3

In all three cases we can see that V' 4,6k+3)=Tk+2. Q

Theorem 3.9. V' (5,5) = 6.

Proof: Let T be an orientation of K. If any vertex has indegree 0, 1, 4, or 5,
then Lemma 1.1 and Theorem 3.6 give the upper bound.

We assume that T is near regular (for any two vertices « and v the difference in
their in-degrees is at most 1). We can also assume WOLOG that the sum of the
in-degrees of the y, is less than the sum of the out-degrees. In this case, the y; in-
degree sequence 0, for the y; (and hence the out-degree sequence for the x;)) must
be either (2, 2,2, 3,3); (2,2,2,2,3);0r(2,2,2,2,2). We consider these cases
individually.

In the case where the sequence is 2, 2, 2, 3, 3 either some y; with in-degree 3 has
an arc to an x; of out degree 2 or none of them do. If none do, there is a set of 4
arcs whose removal decycles T. If x; does, then one of the out arcs must be
incident with a y, of in-degree 2. If we remove the 3 X —to-Y arcs incident with
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these two vertices, then all we must do is decycle T - x; — y,, which is not
regular, and hence by Lemma 3.2 can be decycled by removing at most 3 arcs.

In the case where the sequence is 2, 2, 2, 2, 3 the y, with in-degree 3 has an arc

to an x; of out degree 2. For x;, one of the out arcs must be incident with a y, of
in-degree 2. If we remove the 3 X —to-Y arcs incident with these two vertices,
then all we must do is decycle T - x; — y,, which is not regular, and hence by
Lemma 3.2 can be decycled by removing at most 3 arcs.
In the case where the sequence is 2, 2, 2, 2, 2 each y; has an arc to an x; of out
degree 2. If we remove the 3 X —to-Y arcs incident with these two vertices, then
all we must do is decycle T - x; — y;, which is not regular, and hence by Lemma
3.2 can be decycled by removing at most 3 arcs.
In any of the 3 cases V'(7) < 6, which gives the upper bound.
The bipartite tournament T described in Directed Adjacency Matrix 2 proves the
lower bound. Clearly removing any vertex from T (by removing its 2 “+” arcs)
leaves the same bipartite tournament T* (up to isomorphism). In T* there are 4
arc independent 4-cycles. Therefore,

N Y2 Y3 Yo Ys
+

x, + - - -
- o+ o+ - -
x| - -+ 4

x4| - - -+ o+
x|+ - - -+

Directed Adjacency Matrix 3

by Lemma 1.1 V'(T) 2 6, and the theorem is proven. Q
As this is being written, there are not enough examples to make a guess at a

formula for V' (5,n).
Conjecture 3.10. V' (6,6) = 10.

4 References

[1] Barefoot, C. A., Entringer, R., and Swart, H. C.: Vulnerability in Graphs — A
Comparative Survey, Journal of Combinatorial Mathematics and Combinatorial
Computing 1, 12 - 22 (1987)

[2] Beineke, L. W., Vandell, R. C.: Decycling Graphs, Journal of Graph Theory
25,59 -77 (1997)

(3] Chartrand, G., Lesniak, L.: Graphs and Digraphs 3™ edition, Wadsworth &
Brooks/Cole, Pacific Grove, California 1990

341



[4] Vandell, R. C.:The Integrity of a Directed Graph and the Directed Integrity

of a Graph, Congressus Numerantium 155, 81 - 88 (2002)
[5] Reid, K. B.: On Sets of Arcs Containing No Cycles in a Tournament,

Canadian Mathematics Bulletin 12, 261 - 264 (1969)

342



