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Abstract

The third order Randié¢ index of a graph G is defined as R3(G) =
uwzzuau‘ \/.Fu,)d(u:)d(u;,)d(u.) , where the summation is taken over all pos-
sible paths of length three of G. In this paper, we first give a recursive
formula for computing the third order Randi¢ index of a double hexagonal
chain. And then we determine the upper and lower bounds of the third
order Randié index and characterize the double hexagonal chains with the

extremal third order Randié index.

1 Introduction

The connectivity index (or Randié index) of a graph G, denoted by R(G), was
introduced by Randié [1] in the study of branching properties of alkanes. It is
defined as

1
RO =X Ty

where d(u) denotes the degree of the vertex » and the summation is taken over
all pairs of adjacent vertices of the graph G. Some publications related to the
connectivity index can be found in the literature([5,8-14,21-23]).

With the intention of extending the applicability of the connectivity index,
Randié, Kier, Hall and co-workers([2] and (3]) considered the higher-order con-
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nectivity index of a graph G as

1
Ri(G) =

k( ) uy ug-Zuh.H \/d(ul)d(u’z) Tt d(uk-l-l)
where the summation is taken over all possible paths of length k of G (we do
not distinguish between the paths wjus - -ux4) and ugyiup -« uy). This new
approach has been applied successfully to an impressive variety of physical,
chemical and biological properties (boiling points, solubilities, densities, anes-
thetic, toxicities etc.) which have appeared in many scientific publications and
in two books ([2] and [4]). Results related to the mathematical properties of
these indices have been reported in the literature([5] and [6]). Specifically, Rada
{15] gave an expression of the second order Randi¢ index of benzenoid systems
and found the minimal and maximal value over the set of catacondensed sys-
tems. The Randié index of phenylenes has been discussed in (7], the second and
the third order Randi¢ indices of phenylenes have been discussed in [16,17]. A
recursive formula for computing the third order Randi¢ index of a hexagonal
chain is given and the hexagonal chains with the extremal third order Randié
index are characterized in [18]. In this paper, we will consider a type of the peri-
condensed hexagonal system. The double hexagonal chains with the extremal
third order Randié index are determined.

a-type

?‘b sr /
-0
© Y B-type

Figure 1. a-type fusing, S-type fusing.

A hexagonal system is a 2-connected plane graph whose every interior face
is bounded by a regular hexagon of unit length 1. Hexagonal systems are of
considerable importance in theoretical chemistry because they are the natural
graph representation of benzenoid hydrocarbons [19]. A vertex of a hexagonal
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system belongs to, at most, three hexagons. A vertex shared by three hexagons
is called an internal vertex of the respective hexagonal system. A hexagonal
system H is said to be catacondensed if it does not possess internal vertices,
otherwise H is said to be pericondensed. A hexagonal chain is a catacondensed
hexagonal system which has no hexagon adjacent to more than two hexagons.
An n-tuple hexagonal chain consists of n condensed identical hexagonal chains.
When n = 2, we call it a double hexagonal chain [19-20].

A double hexagonal chain can be constructed inductively. Let us orient the
naphthalene so that its interior edges is horizontal. There are two types of fusion
of two naphthalenes: (iyb=r,c=s,d=t,e=uy;(lila=s,b=t,c=u,d=v
as shown in Figure 1. We call them a-type and 3-type fusing, respectively. Any
double hexagonal chain can be obtained from a naphthalene B by a stepwise
fusion of new naphthalene, and at each step a #-type fusion is selected, where
0 € {o, B}.

Let B(6,602,:--,0,) be the double hexagonal chain with 2(n + 1) hexagons
obtained from a naphthalene B by #,-type, 8;-type, - - -, O,-type fusing, succes-
sively. B(a,a,---,a) or B(8,8,---,0), i.e., 6; = 0;4, for each %, is called the
double linear hexagonal chain and denoted by DL,; if 6; # 84, for each i, then
B(61,0a,---,8,) is called the double zig-zag hexagonal chain and denoted by
D2Z, (see Figure 2).

Let
5= B, if0=aq;
"1l a iifé=p8.
Then B(6y,03,--+,60,) = B(#1,8z,++,8,). If n > 1, the double hexagonal chain
B(641,602,---,6y) is a pericondensed hexagonal system.
(a) (b)

Figure 2. (a) The double linear hexagonal chain DLy = B(a, o, a, a);
(b) The double zig-zag hexagonal chain DZs = B(8, ¢, 3, ¢, 8).
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2 A recursive formula for computing the third
order Randic¢ index of a double hexagonal chain

In this section, we give a recursive formula for computing the third order Randié

index of a double hexagonal chain B(8,,62,---,6,).
Let B, = B(6y,02, --,0,) be a double hexagonal chain with 2(n + 1)

hexagons, as in Figure 3.
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(1) B(”':aaa) (2) B("'vﬂ,a)
Figure 3.

Case I. 0, = 0,1 = . Then B, is obtained from B,_; by a a-type fusing
(see Figure 3 (1)). The following paths of length 3 are added:

abed, abedy, abyayby, abicids, abicidy, bede, bedycy, bedyey, babiay, babcy,
cdef, cdie) f, cdies f1, cdicidy, cdicyby, cbaby, defey, dedici, dedye, efe fi,
efeidy, ededy, fey frez, ferdicy.

Table 1. The weights of some paths of length 3 in B,,.

abed abed, | abjaibs | abieyds | abicidy bede
1 1 I T T —T

2./6 6 3 3./6 3/6 2./6
bcd1 (53 de161 bab1a.1 bab1 C1 Cdef Cd181f
1 T Y 1

P! I
3.6 3.6 2./8

d 6 2.6 3.6
cd1e1 f1 cd1 (5] dz cd1 (5] b1 cbab1 defe1 dcd101
1 L s i X T

3.6 9 9 6 26 38
dediey | eferfi | eferdy | ededy | feirfrea | ferdic
1 1 ) ) § 1 L
3.8 2:/8 3 [ 6 376

Table 2. The weights of some paths of length 3 in B, and B,,_;.
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agbaay by baarbicy cabaayby | cadaciby | cadacidy
1
.| 3 s s 5 =
dyc1biag dycidye; dpeg frey | epdaciby | epdycidy
W, T T - T T
1 3.6 9 3./6 9 9
W, = P s T T
2 6 6 6 38 3.8
ez fieids feea frer aibicidy | bhierdier | erdier fi
w. 1 %; if d(f2) = 2; 1 1 1
1| v e, ifd(f)=8 | B 5 e
ys'
1 , ifd(f2) = 1 1 1
W 33 {275 if d(f,) = 3 e Ve e

Except for the paths:

azboayby, baarbicy, cobaar by, cadacy by, cadacidy, dacibray, dacidier, daez fie,
eadac1by, eadacidy, ez fierdy, faeafrer, arbicidy, bicydiey, crdiey fi,
the other paths of length 3 in B,, are the same in B,_;.

. 1 —
Let W1(P) and W5(P) be the weight /TR T TR FTOR T of the path P =

v1vou3vy in B, and B,_;, respectively.

Note that d(f2) = 2if 6,2 = a and d(f2) = 3 if 0,2 = B. By the definition
of the third order Randi¢, we have

Linei~
S5

if 011-2 =01 =0 =q
if0, =P and 8,1 =0, =«

ol

Ra(Br) = Bo(Boor) +{ 312

And

if 0"_2 = On-l = 9,, = ﬁ;

RS(Bn) = R3(Bn—l) + { ?1 if en-2 = o and 01;...1 - 0" - ﬂ

<|

since 3(011921 s 1gn) = B(E;?;, v 1.9_7:)'

Case I1. 0,,_; = a and §,, = 8. Then B, is obtained from B,_; by a S-type
fusing (see Figure 3 (2)). The following paths of length 3 are added:

abcd, abcbl, adlelfl, adlclbg, adlclbl, badlel, badlcl, bcd;cl, bcblal, bcde,
cbadl, cblcldl, cblclbg, Cblaldg, cblalf, Cdéf, dcblcl, dcblal, defal, edcbl,
efa1by, efards, faibier, fairdaca, fardaer.

Table 3. The weights of some paths of length 3 in B,,.
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abed abcb1 adlelf 1 ad1 clbz ad1 Cy b1 bad161 bad1 C1
2 5 w2 | 3% | 55 | 3 3
bcd1 (] bcblal bede cbad1 cb1c1d1 Cbl Ci b2 cblaldg
8 | 3£ | 3 s 5 3 3
Cb1 al f cdef dcb1 C1 dcb1 al defa1 edc61 [] f ay bl
36 | 3% | 35 | 35 | 3 5 5
efaidy | faibicy | faidaep | faidaen
T T T
& 3.8 3.8 8

Table 4. The weights of some paths of length 3 in B,, and B, _;.

faezdaay eadaarby | deaibicy | cadaarby | cabaciay
w, | { 5 idlR)=2 1 ; " -
o | 9
i 2) = 2;

i {26 fd(f)=3 | 5 L .
cabacrds bacibiay | bacadea; | bacidie; | agbacib;

1 T I A

W 3 : I e ]
i 2/ 8 3,6 6 Ve
azbyc1d) azfieid; | abicidy | bicidie; | cidier fi

W § 2 T T T
: A I am

W, ) o = - = -

Except for the paths:

faezdzay, e2d2a) by, d2aybicy, codzar by, cabacian, cabecrdy, bocibray, bacadaay,
bacidey, azbaciby, azbacid, azfreidy, arbicydy, bycidiey, cyde fy,
the other paths of length 3 in B,, are the same in B,_;.

The weight of these paths are given in Tables 3 and 4, where W;(P) and
W, (P) are the weight of the path P in B, and B,_,, respectively.

Note that d(f2) =2 if 8,_2 = 8 and d(f2) = 3 if §,_2 = a. By the definition
of the third order Randié, we have

+_7' 61 ifon—2=ﬁs an—l.:ay 0n=ﬁ;
R3(Bn) R3(B —1) +{ \/— if0pp=0n_1=a,b,= ﬂ

And

I+ EVE, ifbha=0,0n1=0,0 =0
_ 3 8 y n y Vn » v )
RS(Bn)—R3(Bn—1)+{ 2+3 ‘/é, iflho=0,1=28,0,=a.
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since 3(91,92, T ,en) = 3(9—1',52-, ct )gf-l)'
So, we have the following recursive formula

Theorem 1. Let B, = B(6,,62,---,0,) and B,_, = B(6;,0s,---,0,_1) be
double hexagonal chains, n > 3. Then

1+ %‘% 6, Op2=00nh-1=0ph =
or Opp=0a,bp_1=0,=0;

Ra(Bn) = Rs(Ba-1) +

§+1—8- 6, 0n—2=ﬁ,0n—l=a’6ﬂ=ﬂ
or 9n—2 = a, 0n—1 = ﬂ) gn =0
2+%%\/’6-, 911—2 =9n—l =aq, 01’! =ﬁ

\ or Opo=0n_1=0,0h=a.

3 The extremal double hexagonal chains with
respect to the third order Randié index

In this section, we will give the upper and lower bounds on the third order
Randi¢ indices of double hexagonal chains and characterize the extremal graphs.

Theorem 2. Let B, = B(#,,03,:-,0,) be a double hexagonal chain with
2(n + 1) hexagons. Then
() Rs(Bn) > 2547 + 12410 /5
with equality if and only if (61,62, -,6,) = (¢, ,-- -, ), or (B,8,---,8), i.e.,
B,, is the double linear hexagonal cham DL,;
(ii)) Rs(Br) < 21"'2 + lli\/_
with equality if and only if (91,92, “,0n) = (B, &, B,a, ) or (a,8,2,8,: ),
i.e., B, is the double zig-zag hexagonal chain DZ,,.
Proof. It can be computed out directly that
R3(B) = 4 + 2V6;
R3(By) = Ra(B(a)) = Rs(B(B)) = ¥ + 19—7\/-
R3(32)= { R3(B(a1a)) _RS(B(ﬁ)ﬁ)) = g’\/-
p R3(B(a, B)) = R3(B(B, @) = “° + V6
an

31 8 40 41
-§—+§\/g<—9—+I§\/€,
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R3(B(a,a, a)) = RS(B(ﬂ)ﬂnB)) = é9g + %1-\/-6-
Ro(Bs) = { Fa(B(,.8)) = Ry(B(5,,)) = 5+ 5§ VB
3123 R3(B(a, 8,a)) = Rs(B(8,e,8)) = 2 + %‘/_
Ry(B(a,8,8)) = Ra(B(B,0,0)) = £ + H2 V6
and
43 31 49 115
? + 3\/6 < = \/- < 3\/6

From Theorem 1 and R3(B;) = ;92 + -191\/_ , it can be computed out easily
that

RS(DLn) = L’;‘i‘l + 7—"3‘1—0\/6

Ra(DZ,) = H3=2 4 13321 /G,

In the following, using the inductive method on n, we prove that R3(DL,) <
R3(B,) < R3(DZ,) with the left (or right) equality if and only if B, is DL,
(or DZ,).

The result is true for n = 1, 2 from above.

We suppose that the result is true for n and n -1 (n > 2), i.e.,

R3(DLn-1) < R3(Bn-1) € R3(DZ,-,) with the left (or right) equality if
and only if By_y is DLn_; (or DZ,_;) and R3(DL,) < Rs(B,) < R3(D2Z,)
with the left (or right) equality if and only if By, is DL, (or DZy,).

Let Bny1 = B(61,02, -+ ,0n,0n+1) be a double hexagonal chain with 2(n+4-2)
hexagons. Note that

4 7 11 7 7 19
§+§\/€<1+ﬁ\/§<§+ﬁ\/§<2+§\/§.
By Theorem 1, we have

(i) Ra(Bns1) = R3(Bn)+ % + IV6 with equality if and only if 6, = 8, =
On41 = a or 0,1 = 6, = Op4; = B. By the inductive hypothesis, R3(B,) >
R3(DL,) with equality if and only if By, is DLy. So, R3(Bn+1) = R3(DLyp4y)
with equality if and only if B, is DLp41.

(i)

Ry(Bn)+(2+ £V6), ifbr1=6n=0,0n1 =0
OrOp_y =60n =0, 0n41 =0
Ra(But) S 4 Ry(Ba) + (T 4+ LVB), if bnoy = afn = Bfny1 =
or gn 1= Baon = a,0n+l = ﬁ
RS(Bn 1)+(1+ \/—)+(2+ \/_) if 01 =6, =q, 0n+l =ﬁ
orf,_;1=6,=0,0p41 =a;
R3(B,-1) + 2(% + %\/3), ifOh-1 =,0n =B0nt1 =
or On-1 = f,6n = a,0n41 = 6.

Since (1 + ¥v6) + (2+ £v6) < 2( + 5V6), we have
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Rs(Bni1) < Ra(Ba-1) +2(3 + 1v6)

with the equality if and only if (6n—2,0n-1,0n,0n+1) = (8,2, B, 0) or (o, B, @, B).
By the inductive hypothesis, Rs(Bn-1) < R3(DZ,-1) with equality if and
only if B, is DZ,_1. So, Rs(Bn41) < Ra(DZny1) with equality if and only
if Bpyy i8 DZny1.
Therefore, the result is true for n > 1 by the inductive method and the proof
of Theorem 2 is completed.
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