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Abstract

Let G be a simple graph of order n. A dominating set of G is
a set S of vertices of G so that every vertex of G is either in S or
adjacent to a vertex in S. The domination polynomial of G is the
polynomial D(G,z) = Y7, d(G,i)z*, where d(G,4) is the number
of dominating sets of G of size 7. In this paper we show that cycles
are determined by their domination polynomials.
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1 Introduction

Throughout this paper we will consider only simple graphs. Let G = (V, E)
be a simple graph. The order of G denotes the number of vertices of G.
For every vertex v € V, the closed neighborhood of v is the set N[v] =
{v € Vluww € E} U {v}. For a set S C V, the closed neighborhood of §
is N[S] = U,es N[v]. Aset S CV isa dominating setif N[S] =V, or
equivalently, every vertex in V\S is adjacent to at least one vertex in S.
The domination number 4(G) is the minimum cardinality of a dominating
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set in G. A dominating set with cardinality 4(G) is called a v-set. For
a detailed treatment of this parameter, the reader is referred to [4]. Let
D(G, i) be the family of dominating sets of a graph G with cardinality ¢
and let d(G,i) = |D(G,i)|. The domination polynomial D(G,z) of G is
defined as D(G,z) = TN d(G,i)a*, ( see [1]). Two graphs G and H
are said to be D-equivalent, written G ~ H, if D(G,z) = D(H,z). The
D-equivalence class of G is defined as (G] = {H : H ~ G}. A graph G
is said to be D-unigue, if [G] = {G}. For two graphs G; = (W1, E;) and
Gy = (Vs, E), join of G, and G2 denoted by G, V G is a graph with
vertex set V(G;) U V(G2) and edge set E(G:) U E(G2) U {wvju € V(Gy)
and v € V(G2)}. We denote the complete graph of order n, the cycle of
order n, and the path of order n, by K, Cp, and P,, respectively. Also we
denote K; V C,_1 by W, and call it wheel of order n. '

Let n € Z and p be a prime number. Then if n is not zero, there is a
nonnegative integer a such that p® | n but p2*1 { n, we let ord,n = a.

In [2], this question was posed: for every natural number n, C, is D-unique.

Also in [2] it was proved that P, for n =0 (mod 3) has D-equivalence
class of size two and it contains P, and the graph obtained by adding two
new vertices joined to two adjacent vertices of Cr,—2. In this paper we show
that for every positive integer n, C, is D-unique.

2 D-uniqueness of cycles

In this section we will prove that C, is D-unique. This answers in affirma-
tive a problem proposed in [2] on D-equivalence class of C,. As a conse-
quence we obtain that W, is D-unique. We let C) = K; and C; = K,. We
begin by the following lemmas.

Lemma 1. [2] Let H be a k-reguler graph with N[u] # N(v], for every
w,v € V(H). If D(G,z) = D(H, z), then G is also a k-regular graph.

Lemma 2. [1, Theorem 2.2.3] If G has m connected components Gy, ...,Gm.
Then D(G,z) =[], D(Gq,,z).

The next lemma gives a recursive formula for the determination of the
domination polynomial of cycles.
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Lemma 3. {1, Theorem 4.3.6] For everyn > 4,

D(Cy,z) = 2(D(Cp-1,z) + D(Ch-2,z) + D(Cr-3,z))-
Lemma 4. [3, Theorem 1] For every n > 1, 4(Cy) = [§].

Lemma 5. If n is a positive integer and o, := D(C,,—1), then the fol-

lowing holds:
_[3 i n=0 (mod4);
=1 -1, otherwise.

Proof. By Lemma 3, for every n 2> 4, a, = —(an—1 + 0n—2 + an_3).
Now, by induction on n the proof is complete. a

Lemma 6. For every positive integer n,

[31+1, if n=0 (mod 3);
ordz D(Cp, —-3) = { [3]or[3]1+1, f n=1 (mod3);
[21, if n=2 (mod 3).

Proof. Let a, := D(C,,—3). By Lemma 3, for any n > 4, a, =
—3(@n-1 + @n-2 + an—3). Since D(Ci,z) = z, D(Cy,z) = 2 + 2z, and
D(C3,z) = 2% + 322 + 3z, one has a; = -3, a2 = 3, a3 = —9. Now,
by induction on n one can easily see that ordsa, > [§]. Suppose that
an, = (—1)"331p,. By Lemma 3 it follows that for every n, n > 4 the
following hold,

3bn—1 - 3bn.—2 + bn—3’ if n=0 (mOd 3);
bn = bn—l - bn—2 + bn—S: if n=1 (mOd 3)) (1)
3bp—1 —bp—o+bp_3, if n=2 (mod 3)

It turns out that b;, for every 7, 1 < ¢ < 30 modulo 9, are as follows:
1,1,3,3,7,6,2,7,3,7,7,3,3,4,6,5,4,3,4,4,3,3,1,6,8,1, 3,1, 1, 3.

So for every n, 1 < n < 30, 91 b,. By (1) and induction on ¢, it is easily
seen that for every t, t > 1, byyo7 = by (mod 9). Hence for any positive
integer n, 9 { b, or equivalently ords b, < 1. By induction on =, and using
(1), we find that if » = 0 (mod 3), ordz b, = 1, and ords b, € {0,1} for
n = 1 (mod 3), and ordg b, = 0 for n = 2 (mod 3). This completes the
proof. 0O
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Remark 1. Since for every t, t > 1, bypo7 = by (mod 9), by considering
b, for 1 < n < 30, we conclude that in the case n =1 (mod 3),

n : o7)-
ordgay = { 13141 1 n€{413,22} (mod27);
[31 ’ otherwise.

Now, we prove our main result.
Theorem 1. For every positive integer n, cycle Cp, is D-unigque.

Proof. The assertion is trivial for n = 1,2,3. Now, let n > 4. Let G
be a simple graph with D(G,z) = D(C,,z). By Lemma 1, G is 2-regular

and so it is a disjoint union of cycles Cy,,...,Cyp,. Hence, by Lemma 2,
D(G,z) = [I%., D(Cy,,z). Thus n = ny + -+ + ns and by Lemma 4,
[3] = [3]+ - + [3£]. Therefore at least k£ — 2 numbers of n,...,n,

are divisible by 3. On the other hand,

k
ords D(C,,—-3) = Z ordsz D(Cy,;, —3).

=1
Now, by Lemma 6 it is easily seen that k& < 3.

Now, let ay, := D(Cj,, —1), for every positive integer n. Since D(Cy,z) =
H:;l D(Ch,, z), therefore oy, = I'[f___l Qn,. By Lemma 5, o, € {-1,3}. If
on, = 3, then only one of the numbers n;,...,n, is divisible by 4, and
therefore k is an odd number. If a, = —1, then for every i, 1 < i < k,

an, = —1, and thus k is an odd number. Since k < 3, then k € {1,3}.

It remains to show that k # 3. Let 8, := D'(Cp,-1), for every n > 1,
where D’(Cp,z) is the derivative of D(Cy,,z) with respect to z. Then
by the recursive formula given in Lemma 3 we conclude that for every n,
n >4, B, = —(an + Bn-1 + Bn—2 + Bn-3). Now, by induction on n and
using Lemma 5, we have:

n, ifn=1 (mod 4); (2)
0, otherwise.

—n, ifn=0 (mod 4);
ﬁn =

Let 8, := D"”(Cy,—1), for every n, n > 1. By Lemma 3, we conclude
that for every n > 4, 6, = —2a, — 26, — (@n—1 + 6pn—2 + 6,-3). Now, by
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induction on n, using Lemma 5 and relation (2), we obtain the following:

n(n—4)/2, ifn=0 (mod4);

0. — -n(n-1)/2, fn=1 (mod 4); 3)
") n(n+2)/4, ifn=2 (mod4);
0, ifn=3 (mod 4).

Now, let ¥ = 3. Thus

3
D(Cn,3) = [[ D(Chn,,2). (4)

i=1

By putting z = —1 in relation (4), we find that a, = ap,on,0n,. Since
n = ny + ng + n3, by Lemma 5, ten cases can be considered:

1)
2)

9)
10)

n=0 (mod 4), n; =0 (mod 4), n2 =1 (mod 4), n3 =3 (mod 4);
n=0 (mod 4), n; =0 (mod 4), ny =2 (mod 4), ng =2 (mod 4);
n=1 (mod 4), n; =1 (mod 4), nz =1 (mod 4), nz =3 (mod 4);
n=1 (mod 4), n; =1 (mod 4), no =2 (mod 4), ng =2 (mod 4);
n=1 (mod 4), n; =3 (mod 4), n; =3 (mod 4), n3 = 3 (mod 4);
n=2 (mod 4), n; =1 (mod 4), n2 =2 (mod 4), n3 =3 (mod 4);
n=2 (mod 4), n; =2 (mod 4), no =2 (mod 4), ng =2 (mod 4);
n=3 (mod 4), n) =1 (mod 4), ng =1 (mod 4), n3 =1 (mod 4);
n=3 (mod 4), n; =1 (mod 4), na =3 (mod 4), ng =3 (mod 4);
n=3 (mod 4), n; =2 (mod 4), ny =2 (mod 4), ng =3 (mod 4).

For instance, if Case 1 occurs, by derivative of two sides of the equality
(4) and putting z = —1, we find that 8, = B,an,0n; + @n,Bn,0n, +
O,y On, Bny. Now, by Lemma 5 and relation (2) we obtain that ng = 2n,
which is impossible. Similarly, in cases 2, 3, 4, 5, 6, 8, and 9 we obtain a
contradiction.

If the Case 7 occurs then, by the second derivative of two sides of
equality (4) and putting z = —1, we conclude that:

0 = on, OnyOng+0n, Onyan,+0n, 0,y Onsy +26n, ﬂng Ong +2ﬂn1 ﬂna Qn, +2ﬂnz ﬂns Qn
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Now, by Lemma 5, and using relations (2) and (3) we find that, nyns +
ning + ngng = 0 which is impossible. Similarly, for case 10 we get a
contradiction. Thus k = 1 and the proof is complete. O

By the following lemma and Theorem 1, the next corollary follows im-
mediately.

Lemma 7. [2, Corollary 2] If G is D-unique, then for every m, m > 1,
GV K,, is D-unique.

Corollary 1. For every two positive integers m and n, K., V C, is D-
unique. In particular W, is D-unique.
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