Adjacent vertex distinguishing edge-coloring of planar graphs with girth at least five*

Xinping Xu ^{1,†} Yiying Zhang ^{2,‡}

¹ Department of Mathematics and Computer Science,
Jiangsu Second Normal University, Nanjing, 210013, China

² Institute of Mathematics, School of Mathematical Sciences
Nanjing Normal University, Nanjing, 210046, China

Abstract

An adjacent vertex-distinguishing edge coloring, avd-coloring for short, of a graph G is a proper edge coloring of G such that no pair of adjacent vertices are incident to the same set of colors. We use $\chi'_{avd}(G)$ to denote the avd-chromatic number of G which is the smallest integer k such that G has an avd-coloring with k-colors, and use $\Delta(G)$ to denote the maximum degree of G. In this paper, we prove that $\chi'_{avd}(G) \leq \Delta(G) + 4$ for every planar graph G without isolated edges whose girth is at least five. This is nearly a sharp bound since $\chi'_{avd}(C_5) = \Delta(C_5) + 3$.

Key words: Edge-coloring, vertex-distinguishing, planar graphs AMS Subject Classifications (2000): 05C35, 05C75

1 Introduction

In this paper, we only consider simple graphs. Let G be a graph with vertex set V(G) and edge set E(G). We use $N_G(v)$ to denote the set of neighbors of a vertex v in G, let $d_G(v) = |N_G(v)|$, and let $\Delta(G) = \max\{d_G(v) : v \in V(G)\}$. A vertex of degree k (resp. at least k, at most k) is called a k-vertex (resp. k^+ -vertex, k^- -vertex).

A proper k-edge-coloring of a graph G is a mapping $\phi: E(G) \longrightarrow \{1, 2 \cdots, k\}$ such that $\phi(e) \neq \phi(e')$ for any two adjacent edges e and e'. Let

^{*}Research partially supported by NSFC projects 10931003 and 11171160 and the Doctoral Fund of Ministry of Education of China

[†]Email: xxp3268@sina.com

[‡]Corresponding author: zhangyiying825@126.com

 ϕ be an edge coloring of G. We use $C_{\phi}(v)$ to denote the set of colors assigned to the edges incident with vertex v, i. e., $C_{\phi}(v) = \{\phi(uv) : uv \in E(G)\}$. A proper k-edge-coloring ϕ of G is said to be an adjacent vertex distinguishing coloring, or a k-avd-coloring for short, if $C_{\phi}(u) \neq C_{\phi}(v)$ whenever $uv \in E(G)$. The avd-chromatic number of G, denoted by $\chi'_{avd}(G)$, is the smallest integer k such that G has a k-avd-coloring.

The concept of avd-coloring was first introduced and studied by Zhang et al [8]. In [8], the authors determined the avd-chromatic number of paths, cycles, trees, complete graphs, and complete bipartite graphs. We say a graph to be normal if it has no isolated edges. Zhang et al proposed the following conjecture.

Conjecture 1 [8] If G is a simple connected graph on at least 3 vertices, then $\Delta(G) \leq \chi'_{avd}(G) \leq \Delta(G) + 2$ unless G is the cycle of length 5.

In [1], Balister et al showed that conjecture 1 is true for bipartite graphs and graphs with maximum degree three. In [4], Hatami proved that every normal graph G with $\Delta > 10^{20}$ has $\chi'_{avd}(G) \leq \Delta(G) + 300$. Bu et al [2] confirmed conjecture 1 for planar graphs of girth at least 6, where the girth g(G) of a graph G is the length of a shortest cycle of G. Chen and Guo [3] determined completely the avd-chromatic number of hypercubes. Wang and Wang [7] studied the avd-colorings of K_4 -minor free graphs, they proved that for each connected K_4 -minor free graph G with maximum degree $\Delta \geq 4$, $\Delta \leq \chi'_{avd}(G) \leq \Delta + 1$, and $\chi'_{avd}(G) = \Delta + 1$ if and only if G contains no adjacent vertices of maximum degree whenever $\Delta \geq 5$. In [6], Wang and Wang introduced the connection between maximum average degree and avd-colorings, and proved the following results on graphs G with maximum degree $\Delta(G)$ and maximum average degree mad(G): (1) if mad(G) < 3 and $\Delta(G) \ge 3$, then $\chi'_{avd}(G) \le \Delta(G) + 2$; (2) if $mad(G) < \frac{5}{2}$ and $\Delta(G) \geq 4$, or $mad(G) < \frac{7}{3}$ and $\Delta(G) = 3$, then $\chi'_{avd}(G) \leq \Delta(G) + 1$; and (3) if $mad(G) < \frac{5}{2}$ and $\Delta(G) \ge 5$, then $\chi'_{avd}(G) = \Delta(G) + 1$ if and only if G contains adjacent vertices of maximum degree. Since for each planar graph G with girth g, $mad(G) < \frac{2g}{g-2}$, the above conclusion (1) generalizes the result of [2].

In this paper, we focus on the avd-coloring of normal plane graph with girth $g(G) \geq 5$, and prove the following result.

Theorem 1 If G is a normal plane graph with girth $g(G) \geq 5$, then $\chi'_{avd}(G) \leq \Delta(G) + 4$.

Note that C_5 (the cycle of length 5) has avd-chromatic number 5, the bound of Theorem 1 is almost sharp.

Let G be a plane graph. We use F(G) to denote the face set of G. Let f be a face of G. The boundary of f, denoted by $\partial(f)$, is the closed walk

around f. The degree of f, denoted by $d_G(f)$, is the number of edges in its boundary, where each cut edge is counted twice. If $\partial(f) = u_1u_2 \cdots u_nu_1$, we simply write $f = [u_1u_2 \cdots u_n]$. It is certain that every k-vertex is incident with at most k faces.

In Section 2, we will discuss the structural properties of a counterexample to Theorem 1. The proof of Theorem 1 is completed in Section 3 by applying Euler formula and discharging technique.

2 Some Lemmas

Let G be a counterexample to the theorem such that |E(G)| + |V(G)| is as small as possible. Let H be the graph obtained from G by removing all 1-vertices of G, i. e., $H = G \setminus \{v \in V(G), d_G(v) = 1\}$. Clearly, both G and H are connected.

Lemma 1 H has the following properties.

- (1) $\delta(H) \geq 2$.
- (2) For every $v \in V(H)$, if $2 \le d_H(v) \le 3$, then $d_G(v) = d_H(v)$.
- (3) [5] Let uvwx be a path in H such that $d_H(v) = d_H(w) = 2$, then $d_G(u) = d_H(u)$ and $d_G(x) = d_H(x)$.

Proof. The third statement is from [5], we need only to prove (1) and (2). We prove (1) first. Suppose to the contrary that $\delta(H) \leq 1$. If $\delta(H) = 0$, then it is obvious that H is K_1 and G is a star $K_{1,n-1}$, where $n = |V(G)| \geq 2$. Since G is normal, $\chi'_{avd}(G) = \Delta(G)$, a contradiction. So, we suppose that $\delta(H) = 1$. Let u be a 1-vertex in H and v be the neighbor of u in H. Clearly, $d_G(u) = k \geq 2$. Let $u_i \in N_G(u) \setminus \{v\}$ for $1 \leq i \leq k-1$, and let $G' = G \setminus \{u_{k-1}\}$. By the minimality of G, G' admits a $(\Delta(G) + 4)$ -avd-coloring ϕ using the color set $C = \{1, 2, 3, \cdots, \Delta(G) + 4\}$. Without loss of generality, we may assume that $\phi(uv) = 1$ and $\phi(uu_i) = i+1$ for $1 \leq i \leq k-2$. We color uu_{k-1} with k, either we are done, or $C_{\phi}(v) = \{1, 2, \cdots, k-1, k\}$. If $C_{\phi}(v) = \{1, 2, \cdots, k-1, k\}$, then we recolor uu_{k-1} with k+1, and get a $(\Delta(G) + 4)$ -avd-coloring of G, a contradiction.

Now, we prove (2). Suppose to the contrary that $d_G(v) \neq d_H(v)$ for every $v \in V(H)$ with $2 \leq d_H(v) \leq 3$. To complete the proof, we need to consider the following two cases.

Case 1. Let $d_G(v) \neq d_H(v)$ with $d_H(v) = 3$. Then we may assume that $d_G(v) = k \geq 4$. Let v_1 , v_2 and v_3 be three neighbors of v in H and v_4, \dots, v_k be the (k-3) 1-vertices adjacent to v in G. Consider

 $G'=G-vv_k$. By the minimality of G, G' admits a $(\Delta(G)+4)$ -avd-coloring ϕ using the color set $C=\{1,2,3,\cdots,\Delta(G)+4\}$. Without loss of generality, we may assume that $\phi(vv_i)=i$ for $1\leq i\leq k-1$. We color vv_k with k. If a neighbor of v, say v_1 , verifies $C_{\phi}(v_1)=\{1,2,\cdots,k\}$, then we recolor vv_k with k+1. Otherwise this means that the obtained coloring is still an avd-coloring, we can extend it to G. If we observe that $C_{\phi}(v_2)=\{1,2,\cdots,k-1,k+1\}$, then we color vv_k with k+2, either we are done or verifies $C_{\phi}(v_3)=\{1,2,\cdots,k-1,k+2\}$. Finally, we color vv_k with k+3, the obtained coloring is a $(\Delta(G)+4)$ -avd-coloring of G, a contradiction.

Case 2. Let $d_G(v) \neq d_H(v)$ with $d_H(v) = 2$. By repeating above procedure, we can show that if $d_H(v) = 2$, then $d_G(v) = 2$. This proves (2).

A 2-vertex is called bad if it is adjacent to a 2-vertex, otherwise we call it good. The following Lemma 2 from [6] says that in graph H every 2-vertex is adjacent to at least one 3^+ -vertex.

Lemma 2 [6] There is no path uvw in H such that $d_H(u) = d_H(v) = d_H(w) = 2$.

Lemma 3 Let uv be an edge with $d_G(u) = d_G(v) = 2$. Then, for any $(\Delta(G) + 4)$ -avd-coloring ϕ of G - uv, the edge incident with u receives the same color as the edge incident with v.

Proof. Let x be the neighbor of u different from v, and let y be the neighbor of v different from u. If $\phi(ux) \neq \phi(vy)$, then we color uv with $\alpha \in \{1, 2, \dots, \Delta(G) + 4\} \setminus \{\phi(ux), \phi(vy)\}$, and thus extend ϕ to G, contradicting the choice of G.

Next lemma shows that H contains no adjacent 3-vertex and 2-vertex.

Lemma 4 There is no 3-vertex in H adjacent to 2-vertices.

Proof. Suppose to the contrary that H contains a 3-vertex u adjacent to a 2-vertex u_1 . By Lemma 1(2), $d_H(u_1) = d_G(u_1) = 2$, and $d_G(u) = d_H(u) = 3$. Let u_2 and u_3 be the remaining neighbor of u. Let v_1 be the neighbor of u_1 different from u. We consider two possible cases as follows.

Case 1. $d_H(v_1)=2$. Let w_1 be the neighbor of v_1 different from u_1 . Clearly, by Lemma 1(2) and (3), $d_H(v_1)=d_G(v_1)=2$. Let $G'=G-u_1v_1$. Then, by the minimality of G, G' admits a $(\Delta(G)+4)$ -avd-coloring ϕ using the color set $C=\{1,2,3,\cdots,\Delta(G)+4\}$. By Lemma 3, we may suppose $\phi(uu_1)=\phi(v_1w_1)=1$ and $\phi(uu_i)=i$ for $1\leq i\leq 3$. We first erase

the color of uu_1 . Since $\Delta(G) + 4 \geq 7$ ($\Delta(G) \geq 3$), we can always find a color different from 1, say α , to recolor uu_1 such that $C_{\phi}(u) \neq C_{\phi}(u_2)$ and $C_{\phi}(u) \neq C_{\phi}(u_3)$. Now, we can color u_1v_1 with a color different from 1 and α to get a ($\Delta(G) + 4$)-avd-coloring of G, a contradiction.

Case 2. $d_H(v_1) \geq 3$. Let $G' = G - uu_1$. By the minimality of G, G' admits a $(\Delta(G) + 4)$ -avd-coloring ϕ . Without loss of generality, we may assume that $\phi(uu_i) = i$ for $2 \leq i \leq 3$ and $\phi(v_1u_1) = 1$. Since $\Delta(G) + 4 \geq 7$ $(\Delta(G) \geq 3)$, we can always find a color different from 1, 2, and 3, say α , to color uu_1 such that $C_{\phi}(u) \neq C_{\phi}(u_2)$ and $C_{\phi}(u) \neq C_{\phi}(u_3)$. This result in a $(\Delta(G) + 4)$ -avd-coloring of G, a contradiction.

Below Lemma 5 from [1] shows that we can suppose that $\Delta(G) \geq 4$.

Lemma 5 [1] If G is a normal graph with $\Delta(G) = 3$, then $\chi'_{avd}(G) \leq 5$.

Now we show for a 3-vertex v of H, $N_H(v)$ contains at most one 3-vertex.

Lemma 6 There is no 3-vertex in H adjacent to two 3-vertices.

Proof. By contradiction, suppose that H contains a 3-vertex x adjacent to two 3-vertices x_1 and x_2 . By Lemma 1(2), $d_G(x) = d_H(x) = 3$ and $d_G(x_i) = d_H(x_i) = 3$ for $1 \le i \le 2$. Let x_3 be the remaining neighbor of x. If $d_H(x_3) \ge 4$, then any changes of the color on the edges incident with x does not destroy the fact that $C_\phi(x) \ne C_\phi(x_3)$. So we suppose $d_H(x_3) = 3$. Let y_i and z_i be the remaining neighbors of x_i for $1 \le i \le 3$. By Lemma 5, we have nothing to do if $\Delta(H) = 3$. Thus we may assume that $\Delta(H) \ge 4$. Let $G' = G - xx_1$, By the minimality of G, G' has a $(\Delta(G) + 4)$ -avd-coloring ϕ using the color set $C = \{1, 2, 3, \cdots, \Delta(G) + 4\}$. Without loss of generality, we may assume that $\phi(xx_i) = i$ for $2 \le i \le 3$. Now, we consider several possible cases as follows.

Case 1. $\{\phi(x_1y_1), \phi(x_1z_1)\} \cap \{\phi(xx_2), \phi(xx_3)\} = \emptyset$. Without loss of generality, we may assume that $\phi(x_1y_1) = 4$ and $\phi(x_1z_1) = 5$. Since $\Delta(G) + 4 \geq 8$, we can always choose a color, say 8, to color xx_1 to extend ϕ to G such that $C_{\phi}(x) \neq C_{\phi}(x_1)$, $C_{\phi}(x) \neq C_{\phi}(x_2)$, $C_{\phi}(x_1) \neq C_{\phi}(y_1)$ and $C_{\phi}(x_1) \neq C_{\phi}(z_1)$. If $C_{\phi}(x) \neq C_{\phi}(x_3)$, we are done. Otherwise, we have $C_{\phi}(x) = C_{\phi}(x_3) = \{2,3,8\}$. In this case, we erase the color of xx_2 and recolor it with 1. If a neighbor of x_2 , say x_2 , verifies $x_2 = \{2,3,3\}$, then we color $x_3 = \{3,4,7\}$, then we color $x_3 = \{3,4,7\}$, then we color $x_3 = \{3,4,5\}$. Now, we observe that $x_3 = \{3,4,5\}$, $x_4 = \{3,2,3\}$, $x_4 = \{3,5,7\}$ and $x_4 = \{3,5,5\}$. So the resulted coloring is an $x_4 = \{3,5,5\}$. So the resulted coloring is an $x_4 = \{3,5,5\}$.

Case 2. $|\{\phi(x_1y_1),\phi(x_1z_1)\}\cap \{\phi(xx_2),\phi(xx_3)\}|=1$. Without loss of generality, we may assume that $\phi(x_1y_1)=2$ and $\phi(x_1z_1)=4$. Since $\Delta(G)+4\geq 8$ ($\Delta(G)\geq \Delta(H)\geq 4$), we can always choose a color, say 8, to color xx_1 to extend ϕ to G such that $C_{\phi}(x)\neq C_{\phi}(x_1)$, $C_{\phi}(x)\neq C_{\phi}(x_2)$, $C_{\phi}(x)\neq C_{\phi}(x_3)$, $C_{\phi}(x_1)\neq C_{\phi}(y_1)$ and $C_{\phi}(x_1)\neq C_{\phi}(z_1)$. The extended coloring is an $(\Delta(G)+4)$ -avd-coloring of G, a contradiction.

Case 3. $|\{\phi(x_1y_1),\phi(x_1z_1)\}\bigcap\{\phi(xx_2),\phi(xx_3)\}|=2$. Without loss of generality, we may assume that $\phi(x_1y_1)=2$ and $\phi(x_1z_1)=3$. Then we first erase the color of xx_2 . If $\{\phi(x_2y_2),\phi(x_2z_2)\}\bigcap\{3\}=\emptyset$, then we may assume that $\phi(x_2y_2)=4$ and $\phi(x_2z_2)=5$. We recolor xx_2 with 1. However, it is possible that $C_{\phi}(y_2)=\{1,4,5\}$. Then we color xx_2 with 6. Similarly, it is also possible that $C_{\phi}(z_2)=\{4,5,6\}$. Thus we color xx_2 with 7, and hence $|\{\phi(xx_2),\phi(xx_3)\}\bigcap\{\phi(x_1y_1),\phi(x_1z_1)\}|=1$, we get back to case 2. If $|\{\phi(x_2y_2),\phi(x_2z_2)\}\bigcap\{3\}|=1$, then we may assume that $\phi(x_2y_2)=3$ and $\phi(x_2z_2)=4$, the following discussion is similar to the above procedure. Finally, we can conclude that ϕ can be extended to a $(\Delta(G)+4)$ -avd-coloring of G, a contradiction. This proves Lemma 6.

With almost the same arguments as used in the proof of Lemma 4, one can verify the following conclusion. We omit its proof.

Lemma 7 Each 4-vertex is not adjacent to any 2-vertex, and each 5-vertex is adjacent to at most one 2-vertex. Moreover, if a 5-vertex u is adjacent to a 2-vertex, then u is not adjacent to any 3-vertex.

Intuitively from the definition of avd-coloring, adjacent vertices of distinct degree make little influence on the avd-chromatic number. We show that if a vertex is adjacent to two 2-vertices, then most neighbors of it would have the same degree as itself.

Lemma 8 Let d, k, l be positive integers, and let D be a graph of maximum degree d such that D is not (d+l)-avd-colorable with minimum |V(D)| + |E(D)|. Let H is the graph obtained from D by removing all vertices of degree 1 in D. If a k-vertex u of H is adjacent to two 2-vertices, then $N_H(u)$ contains at most (k-l-1) vertices of degree not equal to k.

Proof. By contradiction, suppose that $N_H(u)$ contains at least k-l vertices of degree not equal to k, and hence $N_H(u)$ contains at most l vertices of the same degree as u. Let $N_H(u) = \{u_1, u_2, \cdots, u_k\}$ with $d_H(u_1) = d_H(u_2) = 2$ and $d_H(u_i) = k$ for $k - l + 1 \le i \le k$, and let v_1 be the neighbor of u_1 different from u. We consider two cases.

Case 1. $d_H(v_1) = 2$.

Let w_1 be the neighbor of v_1 different from u_1 . Clearly, by Lemma 1(2) and (3), $d_G(u) = d_H(u)$ and $d_H(v_1) = d_G(v_1) = 2$. Let $G' = G - u_1v_1$. By the minimality of G, G' admits a (d+l)-avd-coloring ϕ with the color set $C = \{1, 2, 3, \cdots, d+l\}$. By Lemma 3, we may suppose $\phi(uu_1) = \phi(v_1w_1) = 1$ and $\phi(uu_i) = i$ for $1 \le i \le k$. Without loss of generality, we may assume that $C_{\phi}(u_{k-l+i}) = \{2, 3, \cdots, k, k+i\}$ for $1 \le i \le k$. Let $1 \le i \le k$ be the neighbor of $1 \le i \le k$ and $1 \le i \le k$. Then we recolor $1 \le i \le k$ and $1 \le k$ and

Case 2. $d_H(v_1) \ge 3$.

Suppose that $d_G(v)=d_H(v)$. We may assume by symmetry that u_2 has no neighbor of degree 2. Let $G'=G-uu_1$. By the minimality of G, G' admits a (d+l)-avd-coloring ϕ . Without loss of generality, assume that $\phi(uu_i)=i$ for $2\leq i\leq k$ and $\phi(u_1v_1)=1$. If $C_\phi(u_{k-l+i})=\{2,3,\cdots,k,k+i\}$ for $1\leq i\leq l$, then we erase the color of uu_2 . Since u_2 has no neighbor of degree 2, we can recolor uu_2 with $\alpha\in C\setminus\{2,3,\cdots,k,k+l\}\bigcup\{\phi(u_2v_2)\}$. Now, we can color uu_1 with $\beta\in C\setminus\{1,2,3,\cdots,k,\alpha\}$ such that $C_\phi(u)\neq C_\phi(u_i)$ for $k-l+1\leq i\leq k$ and $\phi(uu_1)=\beta\neq\phi(u_1v_1)$, and get a (d+l)-avd-coloring of G, a contradiction.

Now we suppose $d_G(u)=m>k$. Let v_{k+1},\cdots,v_l be the (m-k) 1-vertices adjacent to u in G. Let $G'=G-vv_m$. Then, G' admits a (d+l)-avd-coloring ϕ . Without loss of generality, we assume that $\phi(uu_i)=i$ for $1\leq i\leq m-1$. We color uu_m with m+i-1, either we are done or verifies $C_\phi(u_{k-l+i})=\{1,2,\cdots,m-1,m+i-1\}$, where $1\leq i\leq l$. In this case, we recolor uu_m with m+l, and get a (d+l)-avd-coloring of G, a contradiction.

Applying Lemma 8 with l=4 to G, we have the following two conclusions.

Corollary 1 Let v be a k-vertex of H. If v of H is adjacent to two 2-vertices, then $N_H(v)$ contains at most k-5 vertices of degree not equal to k.

Corollary 2 There is no k-vertex in H adjacent to (k-4) 2-vertices for $k \geq 6$.

Let f be a 5-face of G. By Lemma 2, a 2-vertex incident with f is adjacent to at most one 2-vertex. We will show that $\partial(f)$ has at most two 2-vertices.

Lemma 9 H does not contains a face $f = [x_1x_2 \cdots x_5]$ such that $d_H(x_i) = 2$ for all x_i except x_1 and x_3 .

Proof. Suppose to the contrary that H contains a face $f = [x_1x_2 \cdots x_5]$ such that $d_H(x_i) = 2$ for all x_i except x_1 and x_3 . By Lemma 1(2) and (3), we know that $d_G(x_i) = d_H(x_i)$ for $1 \le i \le 5$. Let $G' = G - x_4x_5$. By the minimality of G, G' admits a $(\Delta(G) + 4)$ -avd-coloring ϕ using the color set $C = \{1, 2, 3, \cdots, \Delta(G) + 4\}$. If $\phi(x_1x_5) \neq \phi(x_3x_4)$, then we can color x_4x_5 with $c \in C \setminus \{\phi(x_1x_5), \phi(x_3x_4)\}$, and get an avd-coloring of G. If $\phi(x_1x_5) = \phi(x_3x_4)$, without loss of generality, we assume that $\phi(x_1x_5) = \phi(x_3x_4) = 1$, $\phi(x_1x_2) = 2$ and $\phi(x_2x_3) = 3$. Now, we exchange the color between x_3x_4 and x_2x_3 such that $\phi(x_4x_3) = 3$ and $\phi(x_2x_3) = 1$, and get a new $(\Delta(G) + 4)$ -avd-coloring of G'. Then we can color x_4x_5 with a color $\alpha \in C \setminus \{1,3\}$, and get a $(\Delta(G) + 4)$ -avd-coloring of G, a contradiction.

We still need a lemma from [2]. It describes the distribution of 2-vertices around a 6-face.

Lemma 10 [2] H does not contain a face $f = [x_1x_2 \cdots x_6]$ such that $d_H(x_i) = 2$ for all x_i except x_1 and x_4 .

3 Proof of Theorem 1

Now, we are ready to prove Theorem 1.

First, we define a weight function w as follow. For each $v \in V(H)$, let $w(v) = \frac{6}{5}d_H(v) - 4$. For each $f \in F(H)$, let $w(f) = \frac{4}{5}d_H(f) - 4$. Then, $\sum_{v \in V(H)} (\frac{6}{5}d_H(v) - 4) + \sum_{f \in F(H)} (\frac{4}{5}d_H(f) - 4) = -8$, which follows from

the Euler's formula |V(H)| - |E(H)| + |F(H)| = 2 and the Degree Sum Formula $\sum_{v \in V(H)} d_H(v) = \sum_{f \in F(H)} d_H(f) = 2|E(H)|$. Next, we will design a

discharging rule and redistribute weights between elements of $V(H) \cup F(H)$. Once the discharging procedure is completed, we get a new weight function w'. However, the sum of all weights is kept fixed during the discharging process. We will show that $w'(x) \geq 0$ for all $x \in V(H) \cup F(H)$. This leads to the contradiction $0 \leq -8$, and hence proves the nonexistence of the counterexample.

A face $f = [u_1u_2u_3\cdots]$ of G is called a weak face belonging to u_2 if $d_H(u_2) \geq 5$ and either $d_H(u_1) = 2$ or $d_H(u_3) = 2$. The discharging rule are defined as follows.

- (R_1) If v is a 2-vertex incident with a face f, then f gives $\frac{4}{5}$ to v for each occurrence of v in $\partial(f)$.
- (R_2) If v is a 4⁺-vertex, then v gives $\frac{1}{5}$ to each adjacent 3-vertex.
- (R_3) If v is a 5⁺-vertex, then v gives $\frac{4}{5}$ to each weak face belonging to v.

Now, we calculate ω' . Let v be a d-vertex of H. Then $d \geq 2$.

If d=2, then $w'(v) = \frac{6}{5} \times 2 - 4 + \frac{4}{5} \times 2 = 0$ by (R_1) and Lemma 2.

If d = 3, then $w'(v) \ge \frac{6}{5} \times 3 - 4 + \frac{1}{5} \times 2 = 0$ by (R_2) and Lemmas 4 and 6.

If d = 4, then $w'(v) \ge \frac{6}{5} \times 4 - 4 - \frac{1}{5} \times 4 = 0$ by (R_2) and Lemma 7.

If d=5, then by Lemma 7, v is adjacent to at most one 2-vertex, and is not adjacent to any 3-vertex if it is adjacent to a 2-vertex. So, there are at most two weak faces belonging to v, and thus $w'(v) > \frac{6}{5} \times 5 - 4 - \frac{4}{5} \times 2 > 0$ by (R_3) .

Suppose that $d \ge 6$. For $i \in \{2,3\}$, let n_i be the number of *i*-vertices adjacent to v. By Corollaries 1 and 2, $n_2 + n_3 \le d - 5$.

If d=6, then $n_2+n_3\leq 1$, and hence there are at most two weak faces belonging to v. So, $w'(v)\geq \frac{6}{5}\times 6-4-\frac{4}{5}\times 2-\frac{1}{5}\times 5>0$ by (R_2) and (R_3) .

If d=7, then $n_2+n_3\leq 2$, and there are at most four weak faces belonging to v. Therefore, $w'(v)\geq \frac{6}{5}\times 7-4-\frac{4}{5}\times 4>0$ by (R_3) .

If d=8, then $n_2+n_3\leq 3$, and there are at most six weak faces belonging to v. Hence, $w'(v)\geq \frac{6}{5}\times 8-4-\frac{4}{5}\times 6>0$ by (R_3) .

If d=9, then $n_2+n_3 \le 4$, there are at most eight weak faces belonging to v. Hence, $w'(v) \ge \frac{6}{5} \times 9 - 4 - \frac{4}{5} \times 8 > 0$ by (R_3) .

If d=10, then the number of faces incident with v is at most 10. If v has to give $\frac{4}{5}$ to each face incident with it, then $n_2=5$. Since $n_3=0$ whenever $n_2=5$, $w'(v)\geq \frac{6}{5}\times 10-4-\frac{4}{5}\times 10=0$.

Let v be an 11-vertex. Similarly, if the number of weak faces incident with v is 11, then $n_2=6$, and $n_2=6$ implies that $n_3=0$. So, $w'(v) \ge \frac{6}{5} \times 11 - 4 - \frac{4}{5} \times 11 > 0$.

If d=12, then v is incident with at most 12 faces. If v has to give $\frac{4}{5}$ to each face incident with it, then $n_2=6$. Note that $n_2+n_3\leq 6$. We have $w'(v)\geq \frac{6}{5}\times 12-4-\frac{4}{5}\times 12-\frac{1}{5}>0$ by (R_2) and (R_3) .

If $d \ge 13$, and v has to give $\frac{4}{5}$ to each face incident with it, then $n_2 \ge \left\lceil \frac{k}{2} \right\rceil$. Now, $n_3 \le \left\lfloor \frac{d}{2} \right\rfloor$, and thus $w'(v) \ge \frac{6}{5} \times d - 4 - \frac{4}{5} \times d - \frac{1}{5} \times \left\lfloor \frac{d}{2} \right\rfloor \ge 0$ for $d \ge 13$ by (R_2) and (R_3) .

To complete the proof of Theorem 2, it is enough to show that the value w'(f) of each face f is nonnegative. Let f be a k-face, and let $\xi(f)$ denote the number of occurrences of 2-vertices in $\partial(f)$. Clearly, $k \geq 5$ since G has girth at least 5. If $k \geq 7$, then by Lemma 2, we have

$$\begin{cases}
2m, & \text{for } k = 3m \\
2m, & \text{for } k = 3m
\end{cases} \tag{3.1}$$

$$\xi(f) \le \begin{cases} 2m, & \text{for } k = 3m \\ 2m, & \text{for } k = 3m + 1 \\ 2m + 1, & \text{for } k = 3m + 2 \end{cases}$$
 (3.1)

For every vertex $v \in \partial(f)$, we use $\beta(f)$ to denote the number of vertices in $\partial(f)$ which have to give $\frac{4}{5}$ to f. By lemmas 2, 4 and 7, $\beta(f) \geq \lceil \frac{k}{3} \rceil$. Therefore, according to the discharging rules we know that $w'(f) \geq \frac{4}{5} \times$ $k-4-(\lfloor \frac{k}{3} \rfloor \times 2+1) \times \frac{4}{5}+\lceil \frac{k}{3} \rceil \times \frac{4}{5} \geq 0$ for $k \geq 9$. So, we suppose that $k \leq 8$

If k = 5, then there are at most two 2-vertices in $\partial(f)$ by Lemma 9. Moreover if $\xi(f) = 2$, then $\beta(f) \ge 2$. Hence $w'(f) \ge \frac{4}{5} \times 5 - 4 - \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 5 - 4 - \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 5 - 4 - \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 5 - 4 - \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 5 - 4 - \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 5 - 4 - \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 5 - 4 - \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 5 - 4 - \frac{4}{5} \times 5 - 4 - \frac{4}{5} \times 2 = \frac{4}{5} \times 5 - 4 - \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 5 - 4 - \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 5 - 4 - \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 2 + \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 2 + \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 2 + \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 2 + \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 2 + \frac{4}{5} \times 2 + \frac{4}{5} \times 2 = \frac{4}{5} \times 2 + \frac{4}{5} \times$ 0.

If k = 6, then there are at most three 2-vertices in $\partial(f)$ by Lemma 10. Moreover if $\xi(f) = 3$, then $\beta(f) = 3$. Hence $w'(f) \ge \frac{4}{5} \times 6 - 4 - \frac{4}{5} \times 3 + \frac{4}{5} \times 3 > 1$

If k = 7, then there are at most four 2-vertices in $\partial(f)$ by (3.2). Moreover if $\xi(f) = 4$, then $\beta(f) = 3$. Hence $w'(f) \ge \frac{4}{5} \times 7 - 4 - \frac{4}{5} \times 4 + \frac{4}{5} \times 3 = 0$ $\frac{4}{5} > 0$.

If k = 8, then we know that there are at most five 2-vertices in $\partial(f)$ by (3.3). Moreover if $\xi(f) = 5$, then $\beta(f) = 3$. Hence $w'(f) \geq \frac{4}{5} \times 8 - 4 - \frac{4}{5} \times 8$ $5 + \frac{4}{5} \times 3 = \frac{4}{5} > 0.$

This completes the proof.

Acknowledgements 4

The authors would like to thank the referee for his/her thorough reviewing with useful suggestions and comments to the paper.

References

- [1] P. N. Balister, E. Győri, J. Lehel, R. H. Schelp, Aajacent vertexdistinguishing edge-colorings, SIAM. Discrete Math. 21 (2007) 237-250.
- [2] Y. Bu, K.-W. Lih, W. Wang, Adjacent vertex-distinguishing edge -colorings of planar graphs with girth at least six, Discuss. Math. Graph Theory 31 (2011).

- [3] M. Chen, X. Guo, Adjacent vertex-distinguishing edge and total chromatic nembers of hypercubes, Inform. Process. Lett. 109 (2009) 599-602.
- [4] H. Hatami, $\Delta + 300$ is a bound on the adjacent vertex-distinguishing edge chromatic number, J. Combin. Theory Ser. B 95 (2005) 246-256.
- [5] H. Hocquard, M. Montassier, Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ , J. Comb. Optim. 26 (2013) 152-160.
- [6] W. Wang, Y. Wang, Adjacent vertex-distinguishing edge-colorings of graphs with smaller maximum average degree, J. Comb. Optim. 19 (2010) 471-485.
- [7] W. Wang, Y. Wang, Adjacent vertex-distinguishing edge colorings of K_4 -minor free graphs, Appl. Math. Lett. 24 (2011) 2034-2037.
- [8] Z. Zhang, L. Liu, J. Wang, Aajacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626.