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Abstract

An adjacent vertex-distinguishing edge coloring, avd-coloring for
short, of a graph G is a proper edge coloring of G such that no
pair of adjacent vertices are incident to the same set of colors. We
use X4u,a(G) to denote the avd-chromatic number of G which is the
smallest integer k such that G has an avd-coloring with k-colors, and
use A(G) to denote the maximum degree of G. In this paper, we
prove that x5,4(G) < A(G) + 4 for every planar graph G without
isolated edges whose girth is at least five. This is nearly a sharp
bound since x5,4(Cs) = A(Cs) + 3.
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1 Introduction

In this paper, we only consider simple graphs. Let G be a graph with vertex
set V(G) and edge set E(G). We use Ng(v) to denote the set of neighbors
of a vertex v in G, let dg(v) = |Ng(v)|, and let A(G) = max{dg(v)
v € V(G)}. A vertex of degree k (resp. at least k, at most k) is called a
k-vertex (resp. k*-vertex, k~-vertex).

A proper k-edge-coloring of a graph G is a mapping ¢ : E(G) —
{1,2---,k} such that ¢(e) # ¢(¢’) for any two adjacent edges e and e’. Let
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¢ be an edge coloring of G. We use Cy4(v) to denote the set of colors assigned
to the edges incident with vertex v, i. e., C4(v) = {¢(uv) : uv € E(G)}. A
proper k-edge-coloring ¢ of G is said to be an adjacent vertex distinguishing
coloring, or a k-avd-coloring for short, if Cy(u) # Cy(v) whenever uv €
E(G). The avd-chromatic number of G, denoted by x/,,,(G), is the smallest
integer k such that G has a k-avd-coloring.

The concept of avd-coloring was first introduced and studied by Zhang
et al [8]. In (8], the authors determined the avd-chromatic number of paths,
cycles, trees, complete graphs, and complete bipartite graphs. We say a
graph to be normal if it has no isolated edges. Zhang et al proposed the
following conjecture.

Conjecture 1 (8] If G is a simple connected graph on at least 3 vertices,
then A(G) < x5,q(G) < A(G) + 2 unless G is the cycle of length 5.

In (1], Balister et al showed that conjecture 1 is true for bipartite graphs
and graphs with maximum degree three. In (4], Hatami proved that every
normal graph G with A > 10% has x/,,(G) < A(G) + 300. Bu et al [2]
confirmed conjecture 1 for planar graphs of girth at least 6, where the
girth g(G) of a graph G is the length of a shortest cycle of G. Chen and
Guo [3] determined completely the avd-chromatic number of hypercubes.
Wang and Wang [7] studied the avd-colorings of K,-minor free graphs,
they proved that for each connected K4-minor free graph G with maximum
degree A > 4, A < x.,,4(G) £ A+1, and x/,4(G) = A+1if and only if G
contains no adjacent vertices of maximum degree whenever A > 5. In 6],
Wang and Wang introduced the connection between maximum average
degree and avd-colorings, and proved the following results on graphs G
with maximum degree A(G) and maximum average degree mad(G): (1) if
mad(G) < 3 and A(G) 2 3, then x;,4(G) < A(G) +2; (2) if mad(G) < 3
and A(G) > 4, or mad(G) < § and A(G) = 3, then x’,,,(G) < A(G) + 1;
and (3) if mad(G) < 3 and A(G) > 5, then X/, 4(G) = A(G)+1 if and only
if G contains adjacent vertices of maximum degree. Since for each planar
graph G with girth g, mad(G) < g—2_9-2-, the above conclusion (1) generalizes
the result of [2].

In this paper, we focus on the avd-coloring of normal plane graph with
girth g(G) > 5, and prove the following result.

Theorem 1 If G is a normal plane graph with girth g(G) > 5, then
Xova(G) < A(G) + 4.

Note that Cs5 (the cycle of length 5) has avd-chromatic number 5, the

bound of Theorem 1 is almost sharp.
Let G be a plane graph. We use F(G) to denote the face set of G. Let
f be a face of G. The boundary of f, denoted by 8(f), is the closed walk
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around f. The degree of f, denoted by d¢(f), is the number of edges in its
boundary, where each cut edge is counted twice. If 9(f) = ujuz - - - upuy, we
simply write f = [ujug---uy,). It is certain that every k-vertex is incident
with at most k faces.

In Section 2, we will discuss the structural properties of a counterex-
ample to Theorem 1. The proof of Theorem 1 is completed in Section 3 by
applying Euler formula and discharging technique.

2 Some Lemmas

Let G be a counterexample to the theorem such that |E(G)| + |V(G)| is
as small as possible. Let H be the graph obtained from G by removing all
1-vertices of G, i. e., H = G\{v € V(G),dg(v) = 1}. Clearly, both G and

H are connected.
Lemma 1 H has the following properties.
(1) 6(H) 2 2.
(2) For everyv € V(H), if 2 <dp(v) £3, then dg(v) =dg(v).

(3) [5] Let uvwz be a path in H such that dg(v) = dy(w) = 2, then
de(u) = dy(u) and dg(z) = du(z).

Proof. The third statement is from [5], we need only to prove (1) and (2).

We prove (1) first. Suppose to the contrary that 6(H) < 1. If §(H) =0,
then it is obvious that H is K and G is a star K; »,_j, where n = |V(G)| >
2. Since G is normal, x/,,(G) = A(G), a contradiction. So, we suppose
that §(H) = 1. Let u be a 1-vertex in H and v be the neighbor of v in H.
Clearly, dg(u) = k > 2. Let u; € Ng(u)\{v}for1 <i< k-1,andlet G’ =
G\{uk-1}. By the minimality of G, G’ admits a (A(G) + 4)-avd-coloring ¢
using the color set C = {1,2,3, - ,A(G) +4}. Without loss of generality,
we may assume that ¢(uv) =1 and ¢(uu;) =i+ 1for 1 <i< k-2 We
color uug_; with k, either we are done, or Cy(v) = {1,2,--- ,k — 1,k}. If
Ce(v) = {1,2,---,k — 1,k}, then we recolor uur_; with k£ + 1, and get a
(A(G) + 4)-avd-coloring of G, a contradiction.

Now, we prove (2). Suppose to the contrary that de(v) # dg(v) for

every v € V(H) with 2 < dy(v) < 3. To complete the proof, we need to
consider the following two cases.

Case 1. Let dg(v) # dy(v) with dy(v) = 3. Then we may assume
that dg(v) = k > 4. Let v, vy and v3 be three neighbors of v in H
and vy, ---, vr be the (k — 3) l-vertices adjacent to v in G. Consider
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G' = G — vv,. By the minimality of G, G’ admits a (A(G) + 4)-avd-
coloring ¢ using the color set C = {1,2,3,--- ,A(G) + 4}. Without loss
of generality, we may assume that ¢(vv;) =i for 1 <i < k—1. We color
vy, with k. If a neighbor of v, say v,, verifies Cy(v;) = {1,2,--- ,k},
then we recolor vv; with k + 1. Otherwise this means that the obtained
coloring is still an avd-coloring, we can extend it to G. If we observe that
Cy(v2) = {1,2,--- ,k — 1,k + 1}, then we color vv, with k + 2, either we
are done or verifies Cy(v3z) = {1,2,---,k — 1,k + 2}. Finally, we color
vy, with &k + 3, the obtained coloring is a (A(G) + 4)-avd-coloring of G, a
contradiction.

Case 2. Let dg(v) # dg(v) with dy(v) = 2. By repeating above
procedure, we can show that if dg(v) = 2, then dg(v) = 2. This proves
(2). 1

A 2-vertex is called bad if it is adjacent to a 2-vertex, otherwise we call it
good. The following Lemma 2 from [6] says that in graph H every 2-vertex
is adjacent to at least one 3%-vertex.

Lemma 2 (6] There is no path wvw in H such that dy(u) = dy(v) =
dp(w) = 2.

Lemma 3 Let uv be an edge with dg(u) = dg(v) = 2. Then, for any
(A(G) + 4)-avd-coloring ¢ of G — uv, the edge incident with u receives the
same color as the edge incident with v.

Proof. Let = be the neighbor of u different from v, and let y be the
neighbor of v different from u. If ¢(uz) # ¢(vy), then we color uv with o €
{1,2,---, A(G)+4}\{#(uzx), ¢(vy)}, and thus extend ¢ to G, contradicting
the choice of G. i

Next lemma shows that H contains no adjacent 3-vertex and 2-vertex.

Lemma 4 There is no 3-verter in H adjacent to 2-vertices.

Proof. Suppose to the contrary that H contains a 3-vertex u adjacent to a
2-vertex u;. By Lemma 1(2), dy(u1) = dg(v1) =2, and de(u) = dy(u) =
3. Let uy and uz be the remaining neighbor of u. Let v; be the neighbor
of u; different from u. We consider two possible cases as follows.

Case 1. dy(v1) = 2. Let w; be the neighbor of v; different from u;.
Clearly, by Lemma 1(2) and (3), dy(v1) = dg(v1) = 2. Let G’ = G — uyv;.
Then, by the minimality of G, G’ admits a (A(G) +4)-avd-coloring ¢ using
the color set C = {1,2,3,---,A(G) + 4}. By Lemma 3, we may suppose
d(uny) = d(viwy) = 1 and @(uu;) = 7 for 2 < i < 3. We first erase
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the color of uu;. Since A(G) +4 > 7 (A(G) > 3), we can always find a
color different from 1, say ¢, to recolor uu; such that Cy(u) # Cy(u2) and
Cy(u) # Cp(us). Now, we can color ujvy with a color different from 1 and
a to get a (A(G) + 4)-avd-coloring of G, a contradiction.

Case 2. dy(v1) = 3. Let G’ = G — uuy. By the minimality of G, G’
admits a (A(G) + 4)-avd-coloring ¢. Without loss of generality, we may
assume that ¢(uu;) =i for 2 < i < 3 and ¢(viu;) = 1. Since A(G)+4 > 7
(A(G) > 3), we can always find a color different from 1, 2, and 3, say ¢, to
color uu, such that Cy(u) # Cy(uz) and Cy(u) # Cy(us). This result in a
(A(G) + 4)-avd-coloring of G, a contradiction. 1

Below Lemma 5 from [1] shows that we can suppose that A(G) > 4.

Lemma 5 (1] If G is a normal graph with A(G) = 3, then x,,4(G) < 5.

Now we show for a 3-vertex v of H, Ny(v) contains at most one 3-
vertex.

Lemma 6 There is no 3-vertex in H adjacent to two 3-vertices.

Proof. By contradiction, suppose that H contains a 3-vertex z adjacent
to two 3-vertices z; and zp. By Lemma 1(2), dg(z) = dy(z) = 3 and
do(z;) = dy(zi) = 3 for 1 < ¢ < 2. Let z3 be the remaining neighbor
of . If dy(x3) > 4, then any changes of the color on the edges incident
with z does not destroy the fact that Cy(z) # Cp(xs). So we suppose
dy(z3) = 3. Let y; and 2; be the remaining neighbors of z; for 1 < < 3.
By Lemma 5, we have nothing to do if A(H) = 3. Thus we may assume
that A(H) > 4. Let G’ = G — zz;, By the minimality of G, G’ has a
(A(G) + 4)-avd-coloring ¢ using the color set C = {1,2,3,.-- ,A(G) + 4}.
Without loss of generality, we may assume that ¢(zz;) =i for 2 < i< 3.
Now, we consider several possible cases as follows.

Case 1. {d(x1y1),d(z121)} {d(z22), d(z23)} = @. Without loss of
generality, we may assume that ¢(z131) = 4 and ¢(z1z) = 5. Since
A(G) + 4 > 8, we can always choose a color, say 8, to color zz; to extend
¢ to G such that Cy(z) # Cy(z1), Ce(x) # Ce(x2), Cs(z1) # Cs(y1) and
Ce(zT1) # Cy(zy). If Cy(z) # Cy(z3), we are done. Otherwise, we have
Cs(z) = Cy(x3) = {2, 3, 8}. In this case, we erase the color of zz; and recol-
or it with 1. If a neighbor of 2, say y2, verifies Cy¢(y2) = {1, 3, 7}, then we
color zzy with 4. If the other neighbor 22 of zj, verifies Cy(22) = {3,4,7},
then we color zz; with 5. Now, we observe that Cy(z;) = {8,4,5},
Co(z3) = {8,2,3}, Cy(x2) = {3,5,7} and Cy(z) = {8,3,5}. So the re-
sulted coloring is an (A(G) + 4)-avd-coloring of G.
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Case 2. |[{d(z1y1), d(z121)} N{o(z22), ¢(223)}] = 1. Without loss of
generality, we may assume that ¢(z;y1) = 2 and ¢(z121) = 4. Since
A(G) +4 2 8 (A(G) =2 A(H) = 4), we can always choose a color, say 8,
to color zz; to extend ¢ to G such that Cy(x) # Cy(z1), Cy(x) # Cs(z2),
Cy(x) # Calws), Col(a1) # Co(u1) and Cy(a1) # Co(z1). The extended
coloring is an (A(G) + 4)-avd-coloring of G, a contradiction.

Case 3. [{d(x1y1), d(z121)} N o(zz2), p(z23)} = 2. Without loss of
generality, we may assume that ¢(z;y1) = 2 and ¢(z12;) = 3. Then
we first erase the color of zza. If {@(z2y2), d(z222)} {3} = D, then we
may assume that ¢(z2y2) = 4 and ¢(x222) = 5. We recolor zz2 with 1.
However, it is possible that Cy(y2) = {1,4,5}. Then we color zz, with
6. Similarly, it is also possible that Cy(z2) = {4,5,6}. Thus we color
zzo with 7, and hence |{¢(zz2), d(zz3)} N{P(z131), d(z121)} = 1, we get
back to case 2. If [{¢(z2y2), #(z222)} N{3}| = 1, then we may assume that
d(z2y2) = 3 and ¢(zoz2) = 4, the following discussion is similar to the
above procedure. Finally, we can conclude that ¢ can be extended to a
(A(G) + 4)-avd-coloring of G, a contradiction. This proves Lemma 6. B

With almost the same arguments as used in the proof of Lemma. 4, one
can verify the following conclusion. We omit its proof.

Lemma 7 FEach 4-vertex is not adjacent to any 2-vertez, and each 5-vertex
is adjacent to at most one 2-vertex. Moreover, if a 5-vertex u is adjacent
to a 2-vertez, then u is not adjacent to any 3-vertez.

Intuitively from the definition of avd-coloring, adjacent vertices of dis-
tinct degree make little influence on the avd-chromatic number. We show
that if a vertex is adjacent to two 2-vertices, then most neighbors of it
would have the same degree as itself.

Lemma 8 Letd, k,! be positive integers, and let D be a graph of mazimum
degree d such that D is not (d + !)-avd-colorable with minimum |V (D)| +
|E(D)|. Let H is the graph obtained from D by removing all vertices of
degree 1 in D. If a k-vertex u of H is adjacent to two 2-vertices, then
Ny (u) contains at most (k — 1 — 1) vertices of degree not equal to k.

Proof. By contradiction, suppose that Ng(u) contains at least k—! vertices
of degree not equal to k, and hence Ny (u) contains at most [ vertices of the
same degree as u. Let Ny (u) = {u1,ug, - ,ux} withdy(v1) = dg(ug) = 2
and dy(u;) =k for k —1+1 < i <k, and let v; be the neighbor of u,
different from u. We consider two cases.

Case 1. dy(v) = 2.
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Let w; be the neighbor of v, different from u;. Clearly, by Lemma 1(2)
and (3), dg(u) = dy(u) and dg(v,) = dg(v1) = 2. Let G' = G —ujv;. By
the minimality of G, G’ admits a (d + !)-avd-coloring ¢ with the color set
C={1,2,8,. - ,d+!}. By Lemma 3, we may suppose ¢(uu;) = ¢(v1w) =
1 and ¢(uu;) =1 for 2 < ¢ < k. Without loss of generality, we may assume
that Cy(uk—14:) = {2,3,--- , k, k+i} for 1 < i < I. Let vp be the neighbor of
1o different from u. In this case, we first erase the colors of uu; and uus. If
ug is a bad 2-vertex, then we recolor uug witha € C\{2,3, .- ,k}|JCs(v2)
and recolor uwu; with 8 € C\{1,2,3, - ,k,a}. Now Cy(u) # Cs(u;) for
k—1l+1<i<kand ¢(uu) = B # d(vriw1). If us is a good 2-vertex, then
we color uup with @ € C\{2,3,---,k} U{¢(uzv2)} and recolor wu; with
B € C\{1,2,3,--- ,k,a}. Now Cy(u) # Cy(u;) for k—1+1<i <k and
d(uuy) = B # p(viwr). So we can color uyv; with ¢ € C\{k + 1,1}, and
get a (d + I)-avd-coloring of G, a contradiction.

Case 2. dy(v1) = 3.

Suppose that dg(v) = dy(v). We may assume by symmetry that ug
has no neighbor of degree 2. Let G' = G — uu;. By the minimality of G,
G’ admits a (d + l)-avd-coloring ¢. Without loss of generality, assume that
d(uu;) =i for 2 < i <kand p(ugv) = 1. If Cop(tth—tsi) = {2,3, - ,k, k+
i} for 1 < i < {, then we erase the color of uuy. Since uz has no neighbor
of degree 2, we can recolor uug with a € C\{2,3,--- ,k,k+ 1} {p(uov2)}.
Now, we can color uu; with 8 € C\{1,2,3,---,k, a} such that Cy(u) #
Co(u;) for k —14+1<i<kand ¢(urr) = B # ¢(uyv1), and get a (d+ 1)-
avd-coloring of G, a contradiction.

Now we suppose dg(u) = m > k. Let vgy1,--,u be the (m — k) 1-
vertices adjacent to v in G. Let G’ = G — vvy,. Then, G’ admits a (d + !)-
avd-coloring ¢. Without loss of generality, we assume that ¢(uu;) = ¢ for
1 <i<m—1, We color uu,, with m + ¢ — 1, either we are done or verifies
Co(uk—i+i) = {1,2,--- ,m—1,m+i—1}, where 1 < i < [. In this case, we
recolor wu,, with m+1, and get a (d+!)-avd-coloring of G, a contradiction.
| |

Applying Lemma 8 with ! = 4 to G, we have the following two conclu-

sions.

Corollary 1 Let v be a k-vertex of H. If v of H is adjacent to two 2-
vertices, then Ny (v) contains at most k — 5 vertices of degree not equal to
k.

Corollary 2 There is no k-vertez in H adjacent to (k — 4) 2-vertices for
k>6.
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Let f be a 5-face of G. By Lemma 2, a 2-vertex incident with f is
adjacent to at most one 2-vertex. We will show that 8(f) has at most two
2-vertices.

Lemma 9 H does not contains a face f = [z1z5 - - x5] such that dy(z;) =
2 for all x; except , and x3.

Proof. Suppose to the contrary that H contains a face f = [z1z2- - z3]
such that dg(z;) = 2 for all z; except z; and 3. By Lemma 1(2) and
(3), we know that dg(z;) = dy(x;) for 1 < i < 5. Let G = G — z4xs.
By the minimality of G, G’ admits a (A(G) + 4)-avd-coloring ¢ using the
color set C' = {1,2,3,--- ,A(G) + 4}. If ¢(x125) # H(z374), then we
can color w4xs with ¢ € C\{¢(z175), (z374)}, and get an avd — coloring
of G. If ¢(z125) = P(xz3z4), without loss of generality, we assume that
d(T175) = Pp(xaz4) = 1, d(zy172) = 2 and ¢(z2z3) = 3. Now, we exchange
the color between z3z4 and zoz3 such that ¢(z4z3) = 3 and ¢(z2z3) = 1,
and get a new (A(G)+4)-avd-coloring of G'. Then we can color z4zs with a
color a € C\{1, 3}, and get a (A(G)+4)-avd-coloring of G, a contradiction.
1

We still need a lemma from [2]. It describes the distribution of 2-vertices
around a 6-face.

Lemma 10 [2] H does not contain a face f = [x1x---zg] Such that
du(z;) = 2 for all x; except x, and 4.

3 Proof of Theorem 1

Now, we are ready to prove Theorem 1.

First, we define a weight function w as follow. For each v € V(H),
let w(v) = Sdy(v) — 4. For each f € F(H), let w(f) = 3du(f) - 4.
Then, Y (8du(v)-4)+ Y (2du(f)—4) = -8, which follows from

veV(H) feF(H)
the Euler's formula |V(H)| — |E(H)| + |F(H)| = 2 and the Degree Sum
Formula Y du(v)= Y du(f)=2|E(H)|. Next, we will design a
veV(H) feF(H)

discharging rule and redistribute weights between elements of V(H)UF(H).
Once the discharging procedure is completed, we get a new weight function
w'. However, the sum of all weights is kept fixed during the discharging
process. We will show that w'(z) > 0 for all z € V(H) u F(H). This
leads to the contradiction 0 < —8, and hence proves the nonexistence of
the counterexample.
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A face f = [ujususz---] of G is called a weak face belonging to us if
dg(uz) > 5 and either dy(u;) = 2 or dy(us) = 2. The discharging rule are
defined as follows.

(R1) If v is a 2-vertex incident with a face f, then f gives § to v for each
occurrence of v in 9(f).

(R2) If v is a 4*-vertex, then v gives ¢ L to each adjacent 3-vertex.

(R3) If vis a 5F-vertex, then v gives § & to each weak face belonging to v.

Now, we calculate «’. Let vhea d-vertex of H. Thend > 2.

Ifd =2, then w'(v) =§ x 2 — 4+ % x2=0 Dby (R;) and Lemma 2.

Ifd =3, then w'(v) > § x 3 4+1 x 2 = 0 by (Rz) and Lemmas 4
and 6.

Ifd=4, then w'(v) > § x4 —-4— § x4 =0 by (R;) and Lemma 7.

If d = 5, then by Lemma 7, v is adjacent to at most one 2-vertex, and is
not adjacent to any 3-vertex if it is adjacent to a 2-vertex. So, there are at
most two weak faces belonging to v, and thus w'(v) > §x5-4—-£x2>0
hy (Ra).

Suppose that d > 6. For i € {2,3}, let n; be the number of i-vertices
adjacent to v. By Corollaries 1 and 2, nga +n3 <d —5.

If d = 6, then ny +n3 < 1, and hence there are at most two weak faces
belonging to v. So, w'(v) > § x6—-4—§x2~1 x5 > 0by (Rp) and (R3).

If d = 7, then ny + ng < 2, and there are at most four weak faces
belonging to v. Therefore, w'(v) > & x 7—4 -4 x 4> 0 by (R;3).

If d = 8, then no+n3 < 3, and there are at most six weak faces belonging
to v. Hence, w'(v) > § x 8 —4— £ x 6 > 0 by (R3).

Ifd =9, then no+n3 <4, there are at most eight weak faces belonging
to v. Hence, w (v)>6x9 4— 3 x8>0hy (Rs).

If d = 10, then the number of faces incident with v is at most 10. If
v has to give 5 to each face incident with it, then ny = 5. Since n3 = 0
whenever ny =5, w'(v) > § x 10-4—-§ x10=0.

Let v be an 11-vertex. Similarly, if the number of weak faces incident
with v is 11, then ng = 6, and ny = 6 implies that ng = 0. So, w'(v) >
Sx11- 4—--><11>0

Ifd =12, then v is incident with at most 12 faces. If v has to give 5 to
each face incident with it, then ns = 6. Note that ny + n3 < 6. We have

w(v)>Ex12-4-+14 ><12——->0by (R2) and (R3).

If d > 13, and v has to give 5 to each face mmdent with it, then
ns > [£]. Now,n3<|_dj and thus w'(v) > § xd—4— dxd-}x |_J>0
for d > 13 by (R3) and (Rd)
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To complete the proof of Theorem 2, it is enough to show that the value
w'(f) of each face f is nonnegative. Let f be a k-face, and let £(f) denote
the number of occurrences of 2-vertices in d(f). Clearly, k > 5 since G has
girth at least 5. If k > 7, then by Lemma 2, we have

2m, for k=3m (3.1)
£&(f) < ¢ 2m, fork=3m+1 (3.2)
2m +1, for k=3m+2 (3.3)

For every vertex v € 8(f), we use 8(f) to denote the number of vertices
in 8(f) which have to give £ to f. By lemmas 2, 4 and 7, B(f) > [£].
Therefore, according to the discharging rules we know that w'(f) > % X
k—a4— (5] x2+1)x £+ (5] x ¢ >0fork>9. So, we suppose that
k<8

If k¥ = 5, then there are at most two 2-vertices in 3(f) by Lemma 9.
Moreover if £(f) = 2, then B(f) > 2. Hence w'(f) > #x5-4—4x2+4x2 =
0.

If k = 6, then there are at most three 2-vertices in (f) by Lemma 10.
Moreover if £(f) = 3, then B(f) = 3. Hence w’(f) > $ x6—4—4x3+3x3 >
0.

If k = 7, then there are at most four 2-vertices in 8(f) by (3.2). More-
over if £(f) =4, then B(f) =3. Hence w'(f) > § x7T—4—§ x4+ 4 x3=
>0
° If k = 8, then we know that there are at most five 2-vertices in 8(f) by
(3.3). Moreover if £(f) = 5, then B(f) = 3. Hence w'(f) > $ x8 -4 - 3 x
5+2x3=£%>0.

This completes the proof. 1
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