On cycle resonant outerplanar graphs * Xiaofeng Guo a and Zhixia Xu b, a, † ^a College of Mathematics and System Sciences, Xinjiang University, Wulumuqi Xinjiang, 830046, P.R. China > b Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, P.R. China #### Abstract A connected graph G is said to be k-cycle resonant if, for $0 \le t \le k$, for any t disjoint cycles C_1, C_2, \cdots, C_t in G, there is a perfect matching in $G - \cup_{i=1}^t V(C_i)$. A connected graph G is said to be cycle resonant if G is k^* -cycle resonant and k^* is the maximum number of disjoint cycles in G. In this paper we prove that for outerplane graphs, 2-cycle resonant is equivalent to cycle resonant and establish a necessary and sufficient condition for an outerplanar graph to be cycle resonant. We also discuss the structure of 2-connected cycle resonant outerplane graphs. Let $\Phi(G)$ denote the number of perfect matchings in G. For any 2-connected cycle resonant outerplane graph G with k chords, we get $k+2 \le \Phi(G) \le 2^k+1$ and give the extremal graphs for the equalities in the inequalities. AMS Subject Classification 2000: 05C17, 05C70. Supported by NSFC(No.10601044, No.10331020) and XJEDU2006S05. [†] Corresponding author. E-mail: irisxuzx@gmail.com (Zhixia Xu) #### 1 Introduction We consider only finite, simple graphs in this article. In chemical graph theory, a hexagonal system denotes the carbon atom skeleton graph of a benzenoid hydrocarbon, which is a 2-connected plane graph whose every interior face is bounded by a regular hexagon. A hexagonal system H is normal if each of its edges lies in a perfect matching. Fuji Zhang and Rongsi Chen [14] proved that a hexagonal system H is normal if and only if every hexagon of H is resonant, that is, for any hexagon s of H there is a perfect matching M of H such that s is an M-alternating cycle. A hexagonal system H is said to be k-coverable if H contains at least k disjoint hexagons and, for any t disjoint hexagons of H, $1 \le t \le k$, there is a perfect matching M such that the t disjoint hexagons are M-alternating cycle. As a variation and generalization of k-coverable hexagonal systems, Xi-aofeng Guo and Fuji Zhang [1] introduced the concept of k-cycle resonant graphs and gave a necessary and sufficient condition for a graph to be k-cycle resonant. A connected graph G is said to be k-cycle resonant if, for any t disjoint cycles C_1, C_2, \dots, C_t in G, $0 \le t \le k$, there is a perfect matching in $G - \bigcup_{i=1}^t V(C_i)$. A connected graph G is said to be cycle resonant if G is k^* -cycle resonant and k^* is the maximum number of disjoint cycles in G. **Theorem 1.1** (Guo and Zhang [3]) A connected graph G with at least k disjoint cycles is k-cycle resonant if and only if G is a bipartite graph with perfect matchings and, for $1 \le t \le k$ and any t disjoint cycles C_1, C_2, \dots, C_t in $G, G - \cup_{i=1}^t V(C_i)$ contains no odd component. The concept of k-cycle resonant is useful in chemistry. It was shown in [1] that in the hexagonal systems with h hexagons obtained from a same parent hexagonal system with h-1 hexagons, k^* -cycle resonant systems have greater resonance energies than 1-cycle resonant systems, and 1-cycle resonant systems have greater resonance energies than hexagonal systems not being 1-cycle resonant. Meanwhile, in the investigation of matching theory, Lovasz et al. [7] - [11] introduced and investigated elementary graphs, 1-extendable graphs and n-extendable graphs etc. A graph G is said to be elementary if there is a connected spanning subgraph G' of G such that any edge of G' belongs to a perfect matching of G. A graph G is said to be n-extendable if any n independent edges of G are contained in some perfect matching of G. We can similarly call k-cycle resonant graphs as k-cycle extendable graphs. Let \mathcal{G}_k denote the set of all the 2-connected cycle resonant outerplane graphs with k chords and $\Phi(G)$ denote the number of the perfect matchings in a graph G. In the present paper, we prove that, for outerplane graphs, 2-cycle resonant is equivalent to cycle resonant, and establish a necessary and sufficient condition for an outerplanar graph to be cycle resonant. In addition, we discuss the structure of 2-connected cycle resonant outerplane graphs, prove that for any graph $G \in \mathcal{G}_k$, $k+2 \leq \Phi(G) \leq 2^k+1$, and give the extremal graphs for the equalities in the inequalities. #### 2 Some related results on k-cycle resonant graphs A block of a connected graph G is either a maximal 2-connected subgraph of G or a cut edge of G. **Theorem 2.1** (Guo and Zhang [3]) Let G be a k-cycle resonant graph. Then (i) for a 2-connected block G' of G with the maximum number k^* of disjoint cycles, if $k^* \leq k$, G' is k^* -cycle resonant, otherwise G' is k-cycle resonant; (ii) the forest induced by the vertices of G not in any 2-connected block of G has a unique perfect matching. The above theorem implies that a non-2-connected k-cycle resonant graph can be constructed from some disjoint 2-connected k^* (or k)-cycle resonant graphs and a forest with a perfect matching by adding some edges between the 2-connected graphs and the forest so that the resultant graph is connected and the added edges are cut edges. Hence we need only consider 2-connected k-cycle resonant graphs. Let G=(V,E) be a graph, $V_1\subset V$ and $E_1\subset E$, denote by $G[V_1]$ and $G[E_1]$ the subgraph induced by V_1 and E_1 respectively. Let G be a connected graph and H a subgraph of G. A vertex in H is said to be an attachment vertex of H if it is incident with an edge in $E(G)\backslash E(H)$. A bridge B of H in G is either an edge in $E(G)\backslash E(H)$ with two end vertices in H, or a subgraph of G induced by all the edges in a connected component B' of G-V(H) together with all the edges with an end vertex in B' and the other in H. The vertices in $V(B)\cap V(H)$ are also attachment vertices of B to H. A bridge with K attachment vertices is called a K-bridge. The attachment vertices of a k-bridge B of a cycle C in G divide C into k edge-disjoint paths, called the segments of B. Two bridges of C avoid one another if all the attachment vertices of one bridge lie in a single segment of the other bridge, otherwise they overlap. For a bipartite graph, we always color its vertices black and white so that adjacent vertices have different colors. **Theorem 2.2** (Guo and Zhang [3]). A 2-connected graph G is planar 1-cycle resonant if and only if G is bipartite and, for any cycle C in G, any bridge of C has exactly two attachment vertices which have different colors. A plane graph is an embedding of a planar graph. We call the boundary of the unbounded face of a 2-connected plane graph G the outer cycle of G. **Lemma 2.3** (Xu and Guo [13]) Let G be a 2-connected plane bipartite graph, C is the outer cycle of G. If any bridge of C is an odd-length path, then G is 1-cycle resonant. **Theorem 2.4** (Xu and Guo [13]) Let G be a 2-connected plane bipartite graph, then G is 1-cycle resonant if and only if any bridge of the outer cycle of G has exactly two different colored attachment vertices and for any maximal 2-connected subgraph H of any bridge B of C, the following conditions are satisfied: - (1) H is 1-cycle resonant; - (2) H has exactly two different-colored attachment vertices u and v; - (3) u and v avoid any bridge of the outer cycle of H. Construction 2.5 (Xu and Guo [13]) Let G_0, G_1, \dots, G_r be 2-connected plane 1-cycle resonant graphs, in which all the bridges of the outer cycle C_0 of G_0 are paths. Let P_0, P_1, \dots, P_r be edge-disjoint paths of odd length on bridges of C_0 , u_i and v_i be the end vertices of P_i , $i = 1, 2, \dots, r$. Let u_i', v_i' be two different-colored vertices on the outer cycle C_i of G_i which avoid any bridge of C_i . Replace P_i with G_i and identify u_i and u_i' , v_i and v_i' we get a new graph G. Then G is 1-cycle resonant. For a 2-connected subgraph B in G with exactly two attachment vertices, we call $G[E(G)\backslash E(B)]$ the complement of B in G, denoted by \overline{B} . A path P of length greater than or equal to one in a graph G is said to be a chain if the degrees of the end vertices of P are not equal to 2 and the degree of any internal vertex of P is equal to 2 in G. The set of internal vertices of a chain P in G is denoted by $V_I(P)$. A vertex u of a graph G is said to be cycle-related to another vertex v of G if u is contained in a 2-connected block of G and any cycle containing u must also contain v. If v is also cycle-related to u, then u and v are mutually cycle-related. **Theorem 2.6** (Guo and Zhang [3]). A 2-connected graph G is planar 2-cycle resonant if and only if, - (i) G is planar 1-cycle resonant, - (ii) for a chain P with even length and end vertices v_1 and v_2 , $G V_I(P)$ has exactly two blocks each of which is 2-connected and v_1 and v_2 are cycle-related to the common vertex of the two blocks, (iii) for a chain P with odd length and end vertices v_1 and v_2 such that $G-V_I(P)$ is not 2-connected, either (a) $G-V_I(P)$ has exactly three blocks, each of which is 2-connected, and each of v_1 and v_2 is cycle-related to the other attachment vertex of the block containing it, and the attachment vertices of the third block are mutually cycle-related in the third block, or (b) any two 2-connected blocks of $G-V_I(P)$ are disjoint, (iv) for a 2-connected subgraph B_1 of G with exactly two attachment vertices, if \overline{B}_1 is not 2-connected and every block of \overline{B}_1 is 2-connected, then \overline{B}_1 has exactly three blocks, say B_2 , B_3 , B_4 , and the attachment vertices of each of B_1 , B_2 , B_3 , B_4 are mutually cycle-related in the block. Based upon the above theorem, Biao Zhao and Xiaofeng Guo gave a method for constructing any plane 2-cycle resonant graph from smaller plane 2-cycle resonant graphs and simple plane 1-cycle resonant graphs in [15] and later established a linear algorithm for recognizing plane 2-cycle resonant graphs in [16]. #### 3 The resonance of outerplanar graphs A graph is outerplanar if it has an embedding in the plane such that every vertex lies on the boundary of unbounded face. An outerplane graph is a planar embedding with every vertex on the boundary of the unbounded face. Let G be a 2-connected outerplane graph, then the boundary of the unbounded face of G is a Hamilton cycle C of G and every edge of G not on C is a chord of C. The chain of G is either a chord of C or a path contained in the cycle C. We give C a fixed orientation and for any vertex v, let v^+ and v^- denote the vertex that is successive and predecessor of v respectively. If u and v are two vertices on C, let C[u,v] denote the segment on C between u and v along the given orientation, and let $C(u,v) = C[u^+,v^-]$. We consider C[u,v] and C(u,v) both as paths and as vertex sets. If f is a face of G, denote respectively by E(f) and V(f) the sets of the edges and the vertices on the boundary of f. The degree of a face f denoted by d(f) is the number of edges with which f is incident, cut edges are counted twice. An edge e in G is said to be subdivided when it is deleted and replaced by a path of length two connecting its ends, the internal vertex of this path is a new vertex. An edge e in G is said to be double-subdivided when it is deleted and replaced by a path of length three connecting its ends, the internal vertices of this path are two new vertices. Conversely, let $P = v_0v_1 \cdots v_t$ ($t \ge 3$) be a chain in G, P is said to be double-contracted if it is deleted and replaced by $P' = v_0v_3v_4 \cdots v_t$. The number of the perfect matchings in a graph G is denoted by $\Phi(G)$. The following properties for double-subdividing and double-contracting are obvious. **Lemma 3.1** Let G be a graph with a perfect matching, e an edge in G, and $P = v_0v_1 \cdots v_t$ $(t \geq 3)$ a chain in G. Let e be double-subdivided and the resultant graph be G', and let P be double-contracted and the resultant graph be G''. Then $(i) \Phi(G) = \Phi(G') = \Phi(G'')$; (ii) G is k-cycle resonant if and only if G' (resp. G'') is k-cycle resonant. Note that if every bridge of the outer cycle C of a 2-connected plane bipartite graph G is an odd-length path, then by the operations of successive double-contracting of the bridges of C, the final resultant graph is an outerplane (not necessarily simple) graph. Besides, from Construction 2.5 [13] we can see that any plane 1-cycle resonant graph can be constructed from outerplane 1-cycle resonant graphs by the operations of double-subdivision by the construction method in Construction 2.5. Therefore it is important to know the resonance property of the outerplane graphs. In the following we will give a necessary and sufficient condition for a 2-connected outerplane graph to be 2-cycle resonant and get some properties of 2-cycle resonant 2-connected outerplane graphs. Let G be a 2-connected outerplane graph and C the outer cycle of G. If G is 1-cycle resonant, then G is bipartite. Conversely, if G is bipartite, then any bridge of C is a chord and therefore an odd-length path, from Lemma 2.3, G is 1-cycle resonant. Thus we have the following theorem. **Theorem 3.2** Let G be a 2-connected outerplane graph, then G is 1-cycle resonant if and only if G is bipartite. The following theorem indicates that for 2-connected outerplane graphs, 2-cycle resonant is equivalent to cycle resonant. **Theorem 3.3** A 2-connected outerplane graph G is cycle resonant if and only if G is 2-cycle resonant. Proof. The necessity is obvious. We need only to prove the sufficiency. Suppose that G is a 2-connected 2-cycle resonant outerplane graph, but is not cycle resonant, that is, there is a minimum integer number k > 2 such that G is (k-1)-cycle resonant, but not k-cycle resonant. By Theorem 1.1, there are k disjoint cycles in G, say C_1, C_2, \dots, C_k , such that $G - \bigcup_{i=1,2,\dots,k} V(C_i)$ has at least two odd components G_1, G_2 . We can assert that every C_i , $i = 1, 2, \dots, k$, has at least one vertex adjacent to a vertex in G_j for j = 1, 2. Otherwise, G would not be (k-1)-cycle resonant, a contradiction. But if both G_1 and G_2 are adjacent to every C_i , that is, $E(V(G_j), V(C_i)) \neq \phi$ for $i = 1, 2, \dots, k$ and j = 1, 2, then G would not be an outerplane graph, again a contradiction. The proof is thus complete. \Box From the above theorem and by the light of Theorem 2.6 we can get some properties of the interior faces which turn out to be a sufficient condition for a connected outerplane bipartite graph to be cycle resonant. **Theorem 3.4** Let G be a 2-connected cycle resonant outerplane graph that is not a cycle, C the outer cycle of G, and f an interior face of G. Then - (i) If $E(f) \cap E(C) = \emptyset$, then d(f) = 4 and the degrees of the vertices incident with f are all four; - (ii) If $E(f) \cap E(C)$ contains a chain P = C[x,y] of even length in C, then d(x) = d(y) = 3 and $E(f) = \{xv, yv\} \cup E(P)$, where v is vertex in $C(y^+, x^-)$; - (iii) If $E(f) \cap E(C)$ contains only one chain P = C[x,y] of odd length, then either (a) the length of P is greater than one, xy is a chord in G and $E(f) = E(P) \cup \{xy\}$; or (b) there are two vertices u and w in $C(y^+, x^-)$ such that $E(f) = E(P) \cup \{yu, uw, wx\}$, d(x) = d(y) = 3, u and w are cycle-related in G[C[u, w]]; - (iv) If $E(f) \cap E(C)$ contains more than one chain on C, then the lengths of the chains contained in $E(f) \cap E(C)$ are all odd and any two chords contained in $E(f) \setminus E(C)$ have no common end vertex. - *Proof.* (i) Since G is 2-connected bipartite and the edges on the boundary of f form a cycle in G, d(f) is not odd. Now if the boundary vertices of f are $v_1v_2\cdots v_t$ consecutively, then each $B_i=G[C[v_i,v_{i+1}]]$, i=1,2,...t, $v_{t+1}=v_1$, is a 2-connected subgraph with two different-colored attachment vertices, by Theorem 2.6(iv), t=4 and the attachment vertices of each of B_1, B_2, B_3, B_4 are mutually cycle-related in the block. Thus we have $d(v_1)=d(v_2)=d(v_3)=d(v_4)=4$. - (ii) Since P is a chain of even length with end vertices x and y, from Theorem 2.6 (ii), $G V_I(P)$ has exactly two blocks each of which is 2-connected and x and y are cycle-related to the common vertex of the two blocks, let the common vertex of the two blocks be v, then xv and yv are chords of G and d(x) = d(y) = 3, $E(f) = \{xv, yv\} \cup E(P)$. - (iii) Let P be the only one chain of length odd with end vertices x and y contained in $E(f) \cap E(C)$. If $G V_I(P)$ is 2-connected then xy is a chord in G. If $G \setminus V_I(P)$ is not 2-connected, from Theorem 2.6(iii)(a), $G V_I(P)$ has exactly three blocks, each of which is 2-connected, and x (resp. y) is cycle-related to the other attachment vertex of the block containing it, say u (resp. w), and the attachment vertices u and v of the third block are mutually cycle-related in the third block. Thus $E(f) \setminus E(C) = \{xu, uw, wy\}$, and d(x) = d(y) = 3. (iv) From Theorem 2.6(ii) we know that $E(f) \cap E(C)$ contains no chain of even length. Let P be a chain of odd length contained in $E(f) \cap E(C)$. Since P is not the only chain contained in $E(f) \cap E(C)$, $G \setminus V_I(P)$ is not 2-connected. By Theorem 2.6(iii)(b), any two 2-connected blocks of $G - V_I(P)$ are disjoint, therefore any two chords contained in $E(f) \setminus E(C)$ have no common end vertex. \square Let f be an interior face of a 2-connected outerplane cycle resonant graph G. We call f a face of type 1, 2, 3, 4 if f satisfies condition (i),(ii),(iii),(iv) in the above lemma respectively. More specifically, let f be of type 3, if E(f) contains only one chord, we call f of type 3(1) and if E(f) contains more than one chord, we call f of type 3(2). **Theorem 3.5** Let G be a 2-connected outerplane bipartite graph that is not a cycle and C be the outer cycle of G. Then G is cycle resonant if and only if every interior face f of G is of type $i, i \in \{1, 2, 3, 4\}$. *Proof.* The necessity has been proven in Theorem 3.4 and we need only show the sufficiency here. Let G be a 2-connected outerplane bipartite graph with the property that every interior face f of G is of type 1, or 2, or 3, or 4. It is easy to verify that G satisfies the conditions (i) - (iv) of Theorem 2.6, and so G is 2-cycle resonant. Hence G is also cycle resonant by Theorem 3.3. \square #### 4 The structure of cycle resonant outerplanar graphs In this section we further discuss the structure of 2-connected cycle resonant outerplane graphs. A characterization for a 2-connected cycle resonant outerplane graphs with maximum degree $\Delta=3$ is given. In addition, it is showed that, any 2-connected cycle resonant outerplane graph can be constructed by a series of operations from a 2-connected cycle resonant outerplane graphs with maximum degree $\Delta=3$. **Theorem 4.1** Let G be a 2-connected bipartite outerplane graph with maximum degree $\Delta = 3$ and C be the outer cycle of G. Let v_1, v_2, \dots, v_t be the consecutive vertices of degree 3 along C with the given orientation. Then the following statements are equivalent: - (i) G is cycle resonant; - (ii) v_i and v_{i+1} have different colors for $i = 1, 2, \dots, t-1$; - (iii) there is no even chain in G; - (iv) every interior face of G is type 3(1) or type 4. *Proof.* (i) \Longrightarrow (ii). Since G is cycle resonant and $\Delta=3$, from Theorem 3.6, every face of G is type 3(1) or type 4, therefore any two vertices v_i and v_{i+1} have different colors for $i=1,2,\cdots,t-1$. (ii) \Longrightarrow (i). If any two consecutive vertices v_i and v_{i+1} have different colors for $i = 1, 2, \dots, t-1$, since $\Delta = 3$, every face of G is type 3(1) or type 4, by Theorem 3.6 G is cycle resonant. It is easy to see that for 2-connected outerplane graph with the maximum degree $\Delta = 3$, (ii), (iii) and (iv) are equivalent. \Box **Theorem 4.2** Suppose G is a 2-connected cycle resonant outerplane graph, C is the outer cycle of G, and v is a vertex of G with $d(v) \geq 4$. Let the neighbors of v be v_1, v_2, \cdots, v_t along C with $vv_1, vv_t \in E(C)$ and $vv_2, vv_3, \cdots, vv_{t-1}$ being chords. Denote by f_i the face containing the chords vv_i and vv_{i+1} . Then - (i) f_1 and f_{t-1} are type 3(1) or type 4; - (ii) if d(v) = 4, then f_2 is type 1, 2 or 3(2); - (iii) if $d(v) \geq 6$, then f_3, f_4, \dots, f_{t-3} are all type 2, $d(v_i) = 3$, $i = 3, 4, \dots, t-2$; - (iv) if $d(v) \ge 5$, then f_2 and f_{t-2} are type 2 or type 3(2), $d(v_3) = d(v_{t-2}) = 3$; - Proof. (i) We prove the result for f_1 and similarly we will get the result for f_{t-1} . We first show that for any $x \in C(v, v_2^-)$, $v_2x \notin E(G)$. Otherwise let $v_2x \in E(G)$ with $x \in C(v, v_2^-)$. Since G is bipartite, $v_1v_2 \notin E(G)$. Then $G vv_1$ contains either two 2-connected blocks or three 2-connected blocks and v is cycle related to v_2 by Theorem 2.6. This contradicts that $vv_{t-1} \in E(G)$. Now if $C[v, v_2]$ is a chain, f_1 is type 3(1). Otherwise $C[v, v_2]$ contains at least two chains and is type 4. - (ii) If d(v) = 4, f_2 contains two adjacent chords vv_2 and vv_3 and can only be type 1, 2 or 3(2). - (iii) Assume $d(v) \geq 6$ and f_i is a face with $i \in \{3, 4, \dots, t-2\}$. It is clear that f_i is not type 1, 3(1) or 4. Since v is cycle-related neither to v_i nor to v_{i+1} , f_i is not type 3(2) with $E(f_i) = \{vv_i, vv_{i+1}, v_iu\} \cup C[u, v_{i+1}]$ or $E(f_i) = \{vv_i, vv_{i+1}, v_{i+1}u\} \cup C[v_i, u]$, in which $u \in C(v_i, v_{i+1})$. Now f_i can only be a face of type 2 and $d(v_i) = 3$, $i = 3, 4, \dots, t-2$. - (iv) Since $d(v) \geq 5$, f_2 and f_{t-2} can only be type 2 or type 3(2). - If $d(v) \ge 6$, from (iii) we have $d(v_3) = d(v_{t-2}) = 3$. Assume d(v)=5. Since v is not cycle-related to v_3 in $G[C[v_3,v]]$ or $G[C[v,v_3]]$, f_2 is not type 3(2) with $E(f_2)=\{vv_2,vv_3,v_3u\}\cup C[v_2,u]$ in which $u\in C(v_2,v_3)$ and f_3 is not type 3(2) with $E(f_3)=\{vv_3,vv_4,v_3u\}\cup C[u,v_4]$ in which $u\in C(v_3,v_4)$, thus we have $d(v_3)=3$, and $d(v_{t-2})=3$ similarly. \square From Theorem 4.2(iii) we can get the following corollary. **Corollary 4.3** Suppose G is a 2-connected cycle resonant outerplane graph without face of type 2, then the maximum degree of G is at most 5. Furthermore, we can reduce a 2-connected cycle resonant outerplane graph G into a a 2-connected cycle resonant outerplane graph with maximum degree $\Delta=3$ as follows. If each interior face of G is type 3(1) or type 4, by Theorem 4.1 G is a 2-connected cycle resonant outerplane graphs with the maximum degree $\Delta=3$. If G contains faces of type 1, 2 or 3(2), we can use the following operations to get a 2-connected cycle resonant outerplane graphs with $\Delta=3$. (a) If f is type 1 with $E(f)=\{v_1v_2,v_2v_3,v_3v_4,v_4v_1\}$, then any face adjacent to f is type 3(1) or 4, delete the edges v_1v_2 and v_3v_4 , the face containing v_2v_3,v_4v_1 is type 4. (b) If f is type 2 with $E(f)=\{vu',vu''\}\cup C[u',u'']$, we can delete f from G by deleting the vertices in C(u',u''), identifying the vertices u' and u'' to a new vertex u, and changing the chords vu' and vu'' to a new chord vu. (c) If f is type 3(2) in G with $E(f)=\{v_1v_2,v_2v_3,v_3v_4\}\cup C[v_4,v_1]$, since v_2 and v_3 are cycle-related in $G[C[v_2,v_3]]$, the face containing v_2v_3 other than f is type 3(1) or type 4, after deleting the edge v_2v_3 the face containing v_1v_2,v_3v_4 is type 4. Reversely, any 2-connected cycle resonant outerplane graph G can be constructed from a 2-connected cycle resonant outerplane graph G' with maximum degree $\Delta = 3$ by the converse operations of the above operations. # 5 The extremal problem of the number of perfect matchings in cycle resonant outerplane graphs A 2-connected cycle resonant outerplane graph G is called standard if the length of its any even chain is 2, the length of its any odd chain is 1 or 3, and the length of a chain C[x,y] is 3 if and only if xy is a chord of G. Let G_1 and G_2 be two 2-connected cycle resonant outerplane graphs. We denote $G_1 \approx G_2$ if the final resultant graphs obtained respectively from G_1 and G_2 by successively double-contracting are isomorphic. Note that if G is standard, then G can not be double-contracted. From Lemma 3.1 we have $\Phi(G_1) = \Phi(G_2)$. Suppose G is a plane graph. The dual graph [12] G^* of G is a plane graph having a vertex for each region in G. The edges of G^* correspond to the edges of G as follows: if e is an edge of G that has region X on one side and region Y on the other side, then the corresponding dual edge $e^* \in E(G^*)$ is an edge joining the vertices x, y of G^* that correspond to the faces X, Y of G. The weak dual of a plane graph G is the graph obtained from the dual G^* by deleting the vertex corresponding to unbounded face of G. The weak dual of an outerplane graph is a forest and the weak dual of an 2-connected outerplane graph is a tree. Let G be a 2-connected outerplane graph, T the weak dual of G, and f a face of G which corresponds a leaf of T. Then f is type 3(1) and the only chord $uv \in E(f)$ is called a leaf chord of G. We denote by G - u - v the graph obtained from G by deleting vertices u and v and G - uv the graph obtained from G by deleting the edge uv from G. **Lemma 5.1** Let G be a 2-connected outerplane graph with a perfect matching, uv be a chord of the outer cycle of G. Then $\Phi(G) = \Phi(G - u - v) + \Phi(G - uv)$. *Proof.* To each perfect matching M of G-u-v there corresponds a perfect matching $M\cup uv$ of G containing the chord uv and each perfect matching M' of G-uv is also a perfect matching in G not containing the chord uv. It follows that $\Phi(G)=\Phi(G-u-v)+\Phi(G-uv)$. \square **Lemma 5.2** Let G be a 2-connected cycle resonant outerplane graph and uv a leaf chord of G. Then $\Phi(G-u-v) < \Phi(G-uv)$ and $2\Phi(G-uv) > \Phi(G)$. Proof. Without loss of generality we assume that G is standard and let f be the face which corresponds a leaf in the weak dual of G with $E(f) = \{ux, xy, yv, uv\}$. Let $G - u - v = G_1 \cup \{xy\}$, then $\Phi(G - u - v) = \Phi(G_1)$. For each perfect matching M of G_1 , $M \cup \{ux, yv\}$ is a perfect matching in G - uv. Besides, G - uv has at least one perfect matching containing the edge xy, it follows that $\Phi(G - u - v) < \Phi(G - uv)$, from Lemma 5.1 we have $2\Phi(G - uv) > \Phi(G)$. \square Let $H_k \in \mathcal{G}_k$ be a graph with the maximum degree $\Delta = 3$ whose the consecutive vertices of degree three are v_1, v_2, \cdots, v_{2k} along C and whose chords are $v_i v_{2k+1-i}, i=1,2,\cdots,k$. Let $Q_k \in \mathcal{G}_k$ be a graph with the maximum degree $\Delta = 3$ whose consecutive vertices of degree three are v_1, v_2, \cdots, v_{2k} and whose chords are $v_i v_{i+1}, i=1,3,5,\cdots,2k-1$. Let $J_k \in \mathcal{G}_k$ be a graph with exactly one vertex of degree k+2, k vertices of degree 3, and all the other vertices being of degree 2. We will show that for any $G \in \mathcal{G}_k$ with the maximum degree $\Delta(G) = 3$, $\Phi(H_k) \leq \Phi(G) \leq \Phi(Q_k)$, and that for any $G \in \mathcal{G}_k$, $\Phi(L_k) \leq \Phi(G) \leq \Phi(Q_k)$. The Fibonacci numbers are the sequence of numbers $\{F_n, n=1, 2, \cdots\}$ defined by the linear recurrence equation $F_n = F_{n-1} + F_{n-2}$ with $F_0 = 0$ and $F_1 = F_2 = 1$. Lemma 5.3 $\Phi(H_k) = F_{k+3}$ and $\Phi(Q_k) = 2^k + 1$, $k = 0, 1, 2, \cdots$. *Proof.* We prove the two equalities by induction on k. For k=0, $\Phi(H_0)=\Phi(Q_0)=2$ and $F_3=2$, the equalities are true. For the chord v_1v_{2k} of H_k , by the induction hypothesis, $\Phi(H_k - v_1 - v_{2k}) = \Phi(H_{k-2})$ and $\Phi(H_k - v_1v_{2k}) = \Phi(H_{k-1})$, therefore $$\Phi(H_k) = \Phi(H_k - v_1 - v_{2k}) + \Phi(H_k - v_1 v_{2k})$$ $$= \Phi(H_{k-2}) + \Phi(H_{k-1}) = F_{k+1} + F_{k+2} = F_{k+3}.$$ For the chord v_1v_2 of Q_k , since $\Phi(Q_k - v_1 - v_2) = 2^{k-1}$ and by the induction hypothesis $\Phi(Q_k - v_1v_2) = \Phi(Q_{k-1})$, $$\begin{split} &\Phi(Q_k) = \Phi(Q_k - v_1 - v_2) + \Phi(Q_k - v_1 v_2) \\ &= 2^{k-1} + \Phi(Q_{k-1}) = 2^{k-1} + 2^{k-1} + 1 = 2^k + 1. \quad \Box \end{split}$$ Lemma 5.4 $F_{r+s+4} < F_{r+3} F_{s+3}$. Proof. Honsberger [5] (1985, p. 107) gives the following relation $$F_{n+m} = F_{n-1}F_m + F_nF_{m+1}.$$ Thus we have $$F_{r+s+4} = F_{(r+2)+(s+2)} = F_{r+1}F_{s+2} + F_{r+2}F_{s+3}$$ $< F_{r+1}F_{s+3} + F_{r+2}F_{s+3} = F_{r+3}F_{s+3}. \quad \Box$ **Theorem 5.5** For any graph $G \in \mathcal{G}_k$ with the maximum degree $\Delta(G) = 3$, $F_{k+3} \leq \Phi(G) \leq 2^k + 1$. Furthermore, the left hand equality holds only when $G \approx H_k$ and the right hand equality holds only when $G \approx Q_k$. Proof. We prove by induction on k. For k=0, $\Phi(H_0)=\Phi(Q_0)=\Phi(G)=2$ and the result is true. Let uv be a leaf chord of G, from Lemma 5.1 $\Phi(G)=\Phi(G-u-v)+\Phi(G-uv)$. By the induction hypothesis, $F_{k+2}\leq\Phi(G-uv)\leq 2^{k-1}+1$ and the left hand equality holds only if $G-uv\approx H_{k-1}$ (that is, $G\approx H_k$) and the right hand equality holds only if $G-uv\approx Q_{k-1}$ (that is, $G\approx Q_k$). Now, it suffices to prove that $\Phi(G-u-v)$ is maximum (resp. minimum) only if $G \approx Q_k$ (resp. $G \approx H_k$). Notice that there are two components in G-u-v one of which is a path with one perfect matching. Denote by G' the other component of G-u-v and let the 2-connected blocks of G' be G_1, G_2, \dots, G_t . Clearly G-V(G') is a cycle containing u and v, say C_{uv} . It is easy to check that $\Phi(G-u-v)=\Phi(G')=\Phi(G_1)$ $\Phi(G_2)$ \cdots $\Phi(G_t)$. We claim that $\Phi(G-u-v)$ is maximum only if G' has maximum number of 2-connected blocks, that is t=k-1, each G_i is a cycle and $\Phi(G-u-v)=2^{k-1}$. To the contrary, assume that $\Phi(G-u-v)$ is maximum but t< k-1. Then at least one block of G' has at least one chord. Without loss of generality, suppose that G_1 has a chord. Let xy be a leaf chord of G_1 . Let G'' be the graph obtained from G' by removing xy and constructing a new cycle block G_{t+1} disjoint from 2-connected blocks in G' such that V(G'') together with $V(C_{uv})$ still induce a graph in G_k with the maximum degree $\Delta=3$, say G^* , and G^*-u-v has t+1 2-connected blocks. From Lemma 5.2, we have $2\Phi(G_1-xy)>\Phi(G_1)$ and $\Phi(G^*-u-v)=\Phi(G'')=\Phi(G_1-xy)$ $\Phi(G_2)\cdots\Phi(G_t)$ $\Phi(G_t)=\Phi(G_t-xy)$ $\Phi(G_t)>\Phi(G_t)$ $\Phi(G_t)=\Phi(G_t-u-v)$, a contradiction. Hence $\Phi(G-u-v)$ is maximum only if G' has k-1 2-connected blocks, that is, $G\approx Q_k$. We claim that $\Phi(G-u-v)$ is minimum only if t=1, $G_1\approx H_{k-2}$ and $\Phi(G-u-v)=F_{k+1}$. Otherwise, let $\Phi(G-u-v)$ be minimum but t>1, without loss of generality, let G_1 and G_2 be two 2-connected blocks of G-u-v which have r chords and s chords respectively. Replace G_1 and G_2 in G' by a new 2-connected block $G'_1\approx H_{r+s+1}$ to obtain the resultant graph G''' such that V(G''') together with $V(C_{uv})$ still induce a graph in G_k with the maximum degree $\Delta=3$. From Lemma 5.4 we have $\Phi(H_{r+s+1})=F_{r+s+4}< F_{r+3}$ $F_{s+3}=\Phi(G_1)$ $\Phi(G_2)$ and $\Phi(G''')=\Phi(G'_1)$ $\Phi(G_3)$ $\Phi(G_4)$ \cdots $\Phi(G_t)<\Phi(G_1)$ $\Phi(G_2)$ \cdots $\Phi(G_t)=\Phi(G')$, a contradiction. Hence $\Phi(G-u-v)$ is minimum only if t=1, $G_1\approx H_{k-2}$, that is, $G\approx H_k$. \square **Theorem 5.6** Let $G \in \mathcal{G}_k$ be a 2-connected cycle resonant outerplane graph with k chords. Then $k+2=\Phi(L_k)\leq \Phi(G)\leq \Phi(Q_k)=2^k+1$. *Proof.* Since G is a 2-connected bipartite outerplane graph, G has two perfect matchings containing no chord and for each chord uv of G, there is one perfect matching containing a unique chord uv, so $\Phi(G) \geq k + 2 = \Phi(J_k)$. On the other hand, for a leaf chord uv of G, by a similar argument as in the proof of Theorem 5.5, $\Phi(G-uv) \leq 2^{k-1}+1 = \Phi(Q_{k-1})$ and the equality holds only if $G \approx Q_k$, and $\Phi(G-u-v)$ is maximum only if G-u-v has maximum number of 2-connected blocks. By Theorem 3.4, it is not difficult to verify that any two 2-connected blocks of G-u-v are disjoint. Now it follows that $\Phi(G-u-v)$ is maximum only if $\Phi(G-u-v)$ has k-1 2-connected blocks and $\Phi(G-u-v) = 2^{k-1}$. Hence $\Phi(G) \leq \Phi(Q_k) = 2^k + 1$. Acknowledgement: We would like to thank the referees for their helpful comments. ### References [1] Xiaofeng Guo, Fuji Zhang, k-cycle resonant graphs, Discrete Math. 135 (1994) 113-120. - [2] Xiaofeng Guo, Fuji Zhang, k-Resonant benzeniod systems and k-cycle resonant graphs, J. Chem. Inform. Comput. Sci. 41 (2001) 480-483. - [3] Xiaofeng Guo, Fuji Zhang, Planar k-cycle resonant graphs with k = 1, 2, Discrete Appl. Math. 129 (2003) 383-397. - [4] Xiaofeng Guo, Fuji Zhang, Reducible chains of planar 1-cycle resonant graphs, Discrete Math. 275 (2004) 151-164. - [5] Honsberger, R. "A Second Look at the Fibonacci and Lucas Numbers." Ch. 8 in Mathematical Gems III. Washington, DC: Math. Assoc. Amer., 1985. - [6] L. Lovasz, M. D. Plummer, Matching Theory, Annals of Discrete Math. Vol.29, North-Holland, Amsterdam, 1986. - [7] L. Lovasz, A note on factor-critical graphs, Studia Sci. Math. Hungar.7 (1972) 279-280. - [8] L. Lovasz, Ear-decompositions of matching-covered graphs, Combinatorica 2 (1983) 395-407. - [9] L. Lovasz, M. D. Plummer, On bicritical graphs, Infinite and Finite Sets(Colloq. Keszthely, Hungary, 1973), II, Colloq. Math. Soc. Janos Bolyai 10 (1975) 1051-1079. - [10] L. Lovasz, M. D. Plummer, On a family of planar bicritical graphs, Proc. London Math. Soc. Ser. 30 (3) (1975) 160-176. - [11] L. Lovasz, M. D. Plummer, On minimal elementary bipartite graphs,J. Combin. Theory Ser. B 23 (1977) 127-138. - [12] D. B. West, Introduction to graph theory, Prentice Hall(2nd edition), 2000. - [13] Zhixia Xu and Xiaofeng Guo, Construction and recognition of planar 1-cycle resonant graphs, NY Acad. Sci. Graph Theory Notes NY XLII (2002) 44-48. - [14] Fuji Zhang and Rongsi Chen, When each hexagon of a hexagonal system covers it, Discrete Appl. Math. 30 (1991) 63-75. - [15] Biao Zhao and Xiaofeng Guo, Construction and decomposition of planar two-cycle resonant graphs, MATCH-Commun. Math. Comput. Chem. 49 (2003) 83-98. - [16] Biao Zhao and Xiaofeng Guo, A linear algorithem for recognizing planar two-cycle resonant graphs, MATCH-Commun. Math. Comput. Chem. 50 (2004) 165-182.