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Abstract
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1 Introduction

We consider only finite, simple graphs in this article. In chemical graph
theory, a hexagonal system denotes the carbon atom skeleton graph of a
benzenoid hydrocarbon, which is a 2-connected plane graph whose every
interior face is bounded by a regular hexagon. A hexagonal system H is
normal if each of its edges lies in a perfect matching. Fuji Zhang and
Rongsi Chen [14] proved that a hexagonal system H is normal if and only
if every hexagon of H is resonant, that is, for any hexagon s of H there
is a perfect matching M of H such that s is an M-alternating cycle. A
hexagonal system H is said to be k-coverable if H contains at least k
disjoint hexagons and, for any t disjoint hexagons of H, 1 < ¢ < k, there is
a perfect matching M such that the t disjoint hexagons are M-alternating
cycle.

As a variation and generalization of k-coverable hexagonal systems, Xi-
aofeng Guo and Fuji Zhang [1] introduced the concept of k-cycle resonant
graphs and gave a necessary and sufficient condition for a graph to be
k-cycle resonant.

A connected graph G is said to be k-cycle resonant if, for any ¢ disjoint
cycles C1,Cs,--- ,C; in G, 0 £ t £ k, there is a perfect matching in
G —Ui_,V(Ci). A connected graph G is said to be cycle resonant if G is
k*-cycle resonant and k* is the maximum number of disjoint cycles in G.

Theorem 1.1 (Guo and Zhang [3]) A connected graph G with at least k
disjoint cycles is k-cycle resonant if and only if G is a bipartite graph
with perfect matchings and, for 1 < t < k and any t disjoint cycles
C1,Cz,++,Ct in G, G — Ui_,V(C;) contains no odd component.

The concept of k-cycle resonant is useful in chemistry. It was shown in
[1] that in the hexagonal systems with h hexagons obtained from a same
parent hexagonal system with h — 1 hexagons, k*-cycle resonant systems
have greater resonance energies than 1-cycle resonant systems, and 1-cycle
resonant systems have greater resonance energies than hexagonal systems
not being 1-cycle resonant.

Meanwhile, in the investigation of matching theory, Lovasz et al. (7]
- [11) introduced and investigated elementary graphs, 1-extendable graphs
and n-extendable graphs etc. A graph G is said to be elementary if there is
a connected spanning subgraph G’ of G such that any edge of G’ belongs
to a perfect matching of G. A graph G is said to be n-extendable if any n
independent edges of G are contained in some perfect matching of G. We
can similarly call k-cycle resonant graphs as k-cycle extendable graphs.

Let G denote the set of all the 2-connected cycle resonant outerplane
graphs with k chords and ®(G) denote the number of the perfect matchings
in a graph G.
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In the present paper, we prove that, for outerplane graphs, 2-cycle reso-
nant is equivalent to cycle resonant, and establish a necessary and sufficient
condition for an outerplanar graph to be cycle resonant. In addition, we
discuss the structure of 2-connected cycle resonant outerplane graphs, prove
that for any graph G € G, k +2 < ®(G) < 2% + 1, and give the extremal
graphs for the equalities in the inequalities.

2 Some related results on k-cycle resonant graphs

A block of a connected graph G is either a maximal 2-connected subgraph
of G or a cut edge of G.

Theorem 2.1 (Guo and Zhang [3] ) Let G be a k-cycle resonant graph.
Then

(i) for a 2-connected block G' of G with the mazimum number k* of disjoint
cycles, if k* < k, G’ is k*-cycle resonant, otherwise G’ is k-cycle resonant;
(ii) the forest induced by the vertices of G not in any 2-connected block of
G has a unique perfect matching.

The above theorem implies that a non-2-connected k-cycle resonant
graph can be constructed from some disjoint 2-connected &* (or k)-cycle
resonant graphs and a forest with a perfect matching by adding some edges
between the 2-connected graphs and the forest so that the resultant graph is
connected and the added edges are cut edges. Hence we need only consider
2-connected k-cycle resonant graphs.

Let G = (V,E) be a graph, Vi C V and E; C E, denote by G[Vi]
and G[E;] the subgraph induced by V; and E) respectively. Let G be a
connected graph and H a subgraph of G. A vertex in H is said to be an
attachment vertex of H if it is incident with an edge in E(G)\E(H). A
bridge B of H in G is either an edge in E(G)\E(H) with two end vertices in
H, or a subgraph of G induced by all the edges in a connected component
B’ of G — V(H) together with all the edges with an end vertex in B’ and
the other in H. The vertices in V(B) N V(H) are also attachment vertices
of B to H. A bridge with k attachment vertices is called a k-bridge.

The attachment vertices of a k-bridge B of a cycle C in G divide C into
k edge-disjoint paths, called the segments of B. Two bridges of C avoid one
another if all the attachment vertices of one bridge lie in a single segment
of the other bridge, otherwise they overlap.

For a bipartite graph, we always color its vertices black and white so
that adjacent vertices have different colors.

Theorem 2.2 (Guo and Zhang [3] ). A 2-connected graph G is planar
1-cycle resonant if and only if G is bipartite and, for any cycle C in G,
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any bridge of C has ezactly two attachment vertices which have different
colors.

A plane graph is an embedding of a planar graph. We call the boundary
of the unbounded face of a 2-connected plane graph G the outer cycle of
G.

Lemma 2.3 (Xu and Guo [13] ) Let G be a 2-connected plane bipartite
graph, C is the outer cycle of G. If any bridge of C' is an odd-length path,
then G is I1-cycle resonant.

Theorem 2.4 (Xu and Guo [13] ) Let G be a 2-connected plane bipartite
graph, then G is 1-cycle resonant if and only if any bridge of the outer
cycle of G has ezactly two different colored attachment vertices and for
any mazimal 2-connected subgraph H of any bridge B of C, the following
conditions are satisfied:

(1) H is 1-cycle resonant;

(2) H has exactly two different-colored attachment vertices u and v;

(3) u and v avoid any bridge of the outer cycle of H.

Construction 2.5 (Xu end Guo [13] ) Let Go,Gy,- -+ , Gy be 2-connected
plane 1-cycle resonant graphs, in which all the bridges of the outer cycle Cy
of Go are paths. Let Py, Py,--- , P, be edge-disjoint paths of odd length on
bridges of Co, u; and v; be the end vertices of P;, i =1,2,---,r. Let u},v]
be two different-colored vertices on the outer cycle C; of G; which avoid
any bridge of C;. Replace P; with G; and identify u; and u}, v; and v} we
get a new graph G. Then G is 1-cycle resonant.

For a 2-connected subgraph B in G with exactly two attachment ver-
tices, we call G|[E(G)\E(B)] the complement of B in G, denoted by B.

A path P of length greater than or equal to one in a graph G is said to
be a chain if the degrees of the end vertices of P are not equal to 2 and the
degree of any internal vertex of P is equal to 2 in G. The set of internal
vertices of a chain P in G is denoted by V;(P).

A vertex u of a graph G is said to be cycle-related to another vertex v
of G if u is contained in a 2-connected block of G and any cycle containing
u must also contain v. If v is also cycle-related to u, then v and v are
mutually cycle-related.

Theorem 2.6 (Guo and Zhang [3] ). A 2-connected graph G is planar
2-cycle resonant if and only if,

(i) G is planar 1-cycle resonant,

(i) for a chain P with even length and end vertices vy and vz, G —
Vi(P) has ezactly two blocks each of which is 2-connected and v, and v
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are cycle-related to the common vertez of the two blocks,

(iii) for a chain P with odd length and end vertices v; and vy such
that G — Vi(P) is not 2-connected, either (a) G — Vi(P) has ezactly three
blocks, each of which is 2-connected, and each of v1 and vy is cycle-related
to the other attachment vertez of the block containing it, and the attachment
vertices of the third block are mutually cycle-related in the third block, or
(b) any two 2-connected blocks of G — Vi(P) are disjoint,

(iv) for a 2-connected subgraph By of G with ezactly two attachment
vertices, if By is not 2-connected and every block of By is 2-connected, then
B, has ezactly three blocks, say By, B3, Bs, and the attachment vertices of
each of By, By, Ba, By are mutually cycle-related in the block.

Based upon the above theorem, Biao Zhao and Xiaofeng Guo gave a
method for constructing any plane 2-cycle resonant graph from smaller
plane 2-cycle resonant graphs and simple plane 1-cycle resonant graphs in
[15] and later established a linear algorithm for recognizing plane 2-cycle

resonant graphs in [16].

3 The resonance of outerplanar graphs

A graph is outerplanar if it has an embedding in the plane such that every
vertex lies on the boundary of unbounded face. An outerplane graph is
a planar embedding with every vertex on the boundary of the unbounded
face. Let G be a 2-connected outerplane graph, then the boundary of the
unbounded face of G is a Hamilton cycle C of G and every edge of G not on
C is a chord of C. The chain of G is either a chord of C or a path contained
in the cycle C. We give C a fixed orientation and for any vertex v, let vt and
v~ denote the vertex that is successive and predecessor of v respectively.
If u and v are two vertices on C, let C[u,v| denote the segment on C
between u and v along the given orientation, and let C(u,v) = Clut,v™].
We consider Clu,v] and C(u,v) both as paths and as vertex sets. If f is
a face of G, denote respectively by E(f) and V(f) the sets of the edges
and the vertices on the boundary of f. The degree of a face f denoted by
d(f) is the number of edges with which f is incident, cut edges are counted
twice.

An edge e in G is said to be subdivided when it is deleted and replaced
by a path of length two connecting its ends, the internal vertex of this
path is a new vertex. An edge e in G is said to be double-subdivided
when it is deleted and replaced by a path of length three connecting its
ends, the internal vertices of this path are two new vertices. Conversely, let
P =wv; -+ v (t = 3) be a chain in G, P is said to be double-contracted if
it is deleted and replaced by P’ = vovsvy - - - v;. The number of the perfect

37



matchings in a graph G is denoted by ®(G). The following properties for
double-subdividing and double-contracting are obvious.

Lemma 3.1 Let G be a graph with o perfect matching, e an edge in G,
and P = vovy---v; (t 2 3) a chain in G. Let e be double-subdivided and
the resultant graph be G', and let P be double-contracted and the resultant
graph be G”. Then (i) ®(G) = ®(G') = ®(G"); (ii) G is k-cycle resonant
if and only if G’ (resp. G") is k-cycle resonant.

Note that if every bridge of the outer cycle C of a 2-connected plane bi-
partite graph G is an odd-length path, then by the operations of successive
double-contracting of the bridges of C, the final resultant graph is an out-
erplane (not necessarily simple) graph. Besides, from Construction 2.5 [13]
we can see that any plane 1-cycle resonant graph can be constructed from
outerplane 1-cycle resonant graphs by the operations of double-subdivision
by the construction method in Construction 2.5. Therefore it is important
to know the resonance property of the outerplane graphs.

In the following we will give a necessary and sufficient condition for a 2-
connected outerplane graph to be 2-cycle resonant and get some properties
of 2-cycle resonant 2-connected outerplane graphs.

Let G be a 2-connected outerplane graph and C the outer cycle of G.
If G is 1-cycle resonant, then G is bipartite. Conversely, if G is bipartite,
then any bridge of C is a chord and therefore an odd-length path, from
Lemma 2.3, G is 1-cycle resonant. Thus we have the following theorem.

Theorem 3.2 Let G be a 2-connected outerplane graph, then G is 1-cycle
resonant if and only if G is bipartite.

The following theorem indicates that for 2-connected outerplane graphs,
2-cycle resonant is equivalent to cycle resonant.

Theorem 3.3 A 2-connected outerplane graph G is cycle resonant if and
only if G is 2-cycle resonant.

Proof. The necessity is obvious. We need only to prove the sufficiency.

Suppose that G is a 2-connected 2-cycle resonant outerplane graph, but
is not cycle resonant, that is, there is a minimum integer number k >
2 such that G is (k — 1)-cycle resonant, but not k-cycle resonant. By
Theorem 1.1, there are k disjoint cycles in G, say C1,Cs, - - ,Cy, such that
G — U1z, k V(C:) has at least two odd components Gy, G,.

We can assert that every C;, i = 1,2,--- ,k, has at least one vertex
adjacent to a vertex in G; for j = 1,2. Otherwise, G would not be (k — 1)-
cycle resonant, a contradiction.
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But if both G; and G are adjacent to every C;, that is, E(V(G;), V(Ci)) #
¢fori=1,2,.---,kand j = 1,2, then G would not be an outerplane graph,
again a contradiction.

The proof is thus complete. O

From the above theorem and by the light of Theorem 2.6 we can get
some properties of the interior faces which turn out to be a sufficient con-
dition for a connected outerplane bipartite graph to be cycle resonant.

Theorem 3.4 Let G be a 2-connected cycle resonant outerplane graph that
is not a cycle, C the outer cycle of G, and f an interior face of G. Then

(i) If E(f) N E(C) = 0, then d(f) = 4 and the degrees of the vertices
incident with f are all four;

(it) If E(f) N E(C) contains a chain P = C|z,y] of even length in C,
then d(z) = d(y) = 3 and E(f) = {zv,yv} U E(P), where v is vertez in
Clyt,z7);

(iii) If E(f)N E(C) contains only one chain P = C|z,y] of odd length,
then either (a) the length of P is greater than one, zy is a chord in G and
E(f) = E(P) U {zy}; or (b) there are two vertices u and w in C(y*,z~)
such that E(f) = E(P) U {yu,uw,wz}, d(z) = d(y) = 3, u and w are
cycle-related in G[Cu, w]];

(iv) If E(f)NE(C) contains more than one chain on C, then the lengths
of the chains contained in E(f) N E(C) are all odd and any two chords
contained in E(f)\E(C) have no common end vertez.

Proof. (i) Since G is 2-connected bipartite and the edges on the boundary
of f form a cycle in G, d(f) is not odd. Now if the boundary vertices of
[ are vjva - - - vy consecutively, then each B; = G[C[vi,vit1]], ¢ = 1,2, ...t,
Vg41 = U, is a 2-connected subgraph with two different-colored attachment
vertices, by Theorem 2.6(iv), t = 4 and the attachment vertices of each
of By, By, B3, B; are mutually cycle-related in the block. Thus we have
d(v;) = d(v2) = d{vs) = d(vq) = 4.

(ii) Since P is a chain of even length with end vertices z and y, from
Theorem 2.6 (ii), G — V;(P) has exactly two blocks each of which is 2-
connected and z and y are cycle-related to the common vertex of the two
blocks, let the common vertex of the two blocks be v, then zv and yv are
chords of G and d(z) = d(y) = 3, E(f) = {zv,yv} U E(P).

(iii) Let P be the only one chain of length odd with end vertices z and
y contained in E(f) N E(C). If G — Vi(P) is 2-connected then zy is a
chord in G. If G\V;(P) is not 2-connected, from Theorem 2.6(iii)(a), G —
Vi(P) has exactly three blocks, each of which is 2-connected, and z (resp.
y) is cycle-related to the other attachment vertex of the block containing
it, say u (resp. w), and the attachment vertices u and w of the third
block are mutually cycle-related in the third block. Thus E(f)\E(C) =
{zu, vw, wy}, and d(z) = d(y) = 3.
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(iv) From Theorem 2.6(ii) we know that E(f)N E(C) contains no chain
of even length. Let P be a chain of odd length contained in E(f) N E(C).
Since P is not the only chain contained in E(f) N E(C), G\V;(P) is not 2-
connected. By Theorem 2.6(iii)(b), any two 2-connected blocks of G~V;(P)
are disjoint, therefore any two chords contained in E(f)\E(C) have no
common end vertex. O

Let f be an interior face of a 2-connected outerplane cycle resonant
graph G. We call f a face of type 1, 2, 3, 4 if f satisfies condition
(i),(ii),(iii),(iv) in the above lemma respectively. More specifically, let f
be of type 3, if E(f) contains only one chord, we call f of type 3(1) and if
E(f) contains more than one chord, we call f of type 3(2).

Theorem 3.5 Let G be a 2-connected outerplane bipartite graph that is
not a cycle and C be the outer cycle of G. Then G is cycle resonant if and

only if every interior face f of G is of type i, i € {1,2,3,4}.

Proof. The necessity has been proven in Theorem 3.4 and we need only
show the sufficiency here.

Let G be a 2-connected outerplane bipartite graph with the property
that every interior face f of G is of type 1, or 2, or 3, or 4. It is easy to
verify that G satisfies the conditions (i) - (iv) of Theorem 2.6, and so G is
2-cycle resonant. Hence G is also cycle resonant by Theorem 3.3. O

4 The structure of cycle resonant outerplanar graphs

In this section we further discuss the structure of 2-connected cycle resonant
outerplane graphs. A characterization for a 2-connected cycle resonant
outerplane graphs with maximum degree A = 3 is given. In addition, it
is showed that, any 2-connected cycle resonant outerplane graph can be
constructed by a series of operations from a 2-connected cycle resonant
outerplane graphs with maximum degree A = 3.

Theorem 4.1 Let G be a 2-connected bipartite outerplane graph with maz-
imum degree A = 3 and C be the outer cycle of G. Let vy, v, - ,v; be the
consecutive vertices of degree 8 along C with the given orientation. Then
the following statements are equivalent:

(i) G is cycle resonant;

(1) v; and viyy have different colors fori=1,2,--- ,t —1;

(iii) there is no even chain in G,

(iv) every interior face of G is type 3(1) or type 4.

Proof. (i)==(ii). Since G is cycle resonant and A = 3, from Theorem 3.6,
every face of G is type 3(1) or type 4, therefore any two vertices v; and
vi4+1 have different colors for ¢ =1,2,-.- ,t = 1.



(ii)=>(i). If any two consecutive vertices v; and v;;; have different
colors for i = 1,2,.-- ,t — 1, since A = 3, every face of G is type 3(1) or
type 4, by Theorem 3.6 G is cycle resonant.

It is easy to see that for 2-connected outerplane graph with the maxi-
mum degree A = 3, (ii), (iii) and (iv) are equivalent. O

Theorem 4.2 Suppose G is a 2-connected cycle resonant outerplane graph,
C is the outer cycle of G, and v is a vertex of G with d(v) > 4. Let
the neighbors of v be vy,vo,--+ ,v; along C with vvy,vv, € E(C) and
vvg, V3, -+ , VW1 being chords. Denote by f; the face containing the
chords vu; and vviq1. Then

(i) f1 and f,—1 are type 3(1) or type 4;

(ii) if d(v) = 4, then fa is type 1, 2 or 3(2);

(iiz) Zf d(v) 2 6: then f31 f4"" aft—3 are all type 21 d(vi) = 3: i=
3,4,.-- ,t—2;
(iv) if d(v) > 5, then fa and fi_2 are type 2 or type 3(2), d(v3)
d(vt_g) = 3,’

Proof. (i) We prove the result for f; and similarly we will get the result
for fi—1. We first show that for any € C(v,v; ), vox ¢ E(G). Otherwise
let vox € E(G) with z € C(v,v; ). Since G is bipartite, vv2 ¢ E(G).
Then G — vv, contains either two 2-connected blocks or three 2-connected
blocks and v is cycle related to v, by Theorem 2.6. This contradicts that
vve—; € E(G). Now if Clv, vo] is a chain, f; is type 3(1). Otherwise C[v, v9)
contains at least two chains and is type 4.

(ii) If d(v) = 4, fa contains two adjacent chords vvp and vvz and can
only be type 1, 2 or 3(2).

(ili) Assume d(v) > 6 and f; is a face with i € {3,4,--- ,t —2}. It is
clear that f; is not type 1, 3(1) or 4. Since v is cycle-related neither to v;
nor to vi41, fi is not type 3(2) with E(f;) = {vvi, vvit1,viu} U Clu, vi4q]
or E(f;) = {vvi, viy1,Vig1u} U Clus, u), in which u € C(v;,vi41). Now f;
can only be a face of type 2 and d(v;) = 3,4 =23,4,--- ,t - 2.

(iv) Since d(v) > 5, f2 and f;—2 can only be type 2 or type 3(2).

If d(v) > 6, from (iii) we have d(v3) = d(v,—3) = 3.

Assume d(v) = 5. Since v is not cycle-related to vz in G[Clvs,v]] or
G[C[‘U,'U:;]], f2 is not type 3(2) with E(f;) = {vvg,vv3,v3u} U C[’Ug,’u,] in
which u € C(vg,v3) and fs is not type 3(2) with E(f3) = {vvs, vus, vau} U
Clu,v4] in which v € C(vs,v4), thus we have d(vs) = 3, and d(v;—2) = 3
similarly. O

From Theorem 4.2(iii) we can get the following corollary.

Corollary 4.3 Suppose G is a 2-connected cycle resonant outerplane graph
without face of type 2, then the mazimum degree of G is at most 5.
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Furthermore, we can reduce a 2-connected cycle resonant outerplane
graph G into a a 2-connected cycle resonant outerplane graph with maxi-
mum degree A = 3 as follows.

If each interior face of G is type 3(1) or type 4, by Theorem 4.1 G is
a 2-connected cycle resonant outerplane graphs with the maximum degree
A = 3. If G contains faces of type 1, 2 or 3(2), we can use the following
operations to get a 2-connected cycle resonant outerplane graphs with A =
3. (a) If f is type 1 with E(f) = {v1v2,v2vs,vsv4,v4v1}, then any face
adjacent to f is type 3(1) or 4, delete the edges vyu2 and wv3vy, the face
containing vyvs, v4v; is type 4. (b) If f is type 2 with E(f) = {vu/, vu"}U
Clu',u"], we can delete f from G by deleting the vertices in C(v’/,u"),
identifying the vertices v’ and u” to a new vertex u, and changing the
chords vu' and vu” to a new chord vu. (c) If f is type 3(2) in G with
E(f) = {v1v2,v2v3,v3u4} U Clug, v1], since vz and vz are cycle-related in
G[C|vz, v3]], the face containing vovs other than f is type 3(1) or type 4,
after deleting the edge vou3 the face containing vyva, v3vy is type 4.

Reversely, any 2-connected cycle resonant outerplane graph G can be
constructed from a 2-connected cycle resonant outerplane graph G’ with
maximum degree A = 3 by the converse operations of the above operations.

9 The extremal problem of the number of perfect
matchings in cycle resonant outerplane graphs

A 2-connected cycle resonant outerplane graph G is called standard if the
length of its any even chain is 2, the length of its any odd chain is 1 or
3, and the length of a chain C[z,y] is 3 if and only if zy is a chord of G.
Let G; and G2 be two 2-connected cycle resonant outerplane graphs. We
denote Gy =~ G if the final resultant graphs obtained respectively from G,
and G by successively double-contracting are isomorphic. Note that if G
is standard, then G can not be double-contracted. From Lemma 3.1 we
have &(G)) = &(Gs).

Suppose G is a plane graph. The dual graph [12] G* of G is a plane
graph having a vertex for each region in G. The edges of G* correspond
to the edges of G as follows: if e is an edge of G that has region X on
one side and region Y on the other side, then the corresponding dual edge
e* € E(G*) is an edge joining the vertices =,y of G* that correspond to the
faces X,Y of G. The weak dual of a plane graph G is the graph obtained
from the dual G* by deleting the vertex corresponding to unbounded face
of G. The weak dual of an outerplane graph is a forest and the weak dual
of an 2-connected outerplane graph is a tree.

Let G be a 2-connected outerplane graph, T' the weak dual of G, and f
a face of G which corresponds a leaf of T. Then f is type 3(1) and the only
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chord uv € E(f) is called a leaf chord of G. We denote by G — u — v the
graph obtained from G by deleting vertices u and v and G — uv the graph
obtained from G by deleting the edge uwv from G.

Lemma 5.1 Let G be a 2-connected outerplane graph with a perfect match-
ing, uv be a chord of the outer cycle of G. Then ®(G) = (G —u —v) +
(G - wv).

Proof. To each perfect matching M of G — u — v there corresponds a
perfect matching M U uv of G containing the chord uwv and each perfect
matching M’ of G — uv is also a perfect matching in G not containing the
chord uv. It follows that ®(G) = &(G —u —v) + (G —wv). O

Lemma 5.2 Let G be a 2-connected cycle resonant outerplane graph and
uwv a leaf chord of G. Then &(G — u —v) < (G — wv) and 29(G — wv) >
®(G).

Proof. Without loss of generality we assume that G is standard and let f
be the face which corresponds a leaf in the weak dual of G with E(f) =
{uz, 2y, yv,uw}. Let G —u — v = Gy U {zy}, then &(G — v — v) = B(Gy).
For each perfect matching M of G;, M U {ux, yv} is a perfect matching in
G — uv. Besides, G — uv has at least one perfect matching containing the
edge zy, it follows that (G — u — v) < ®(G — wv), from Lemma 5.1 we
have 2®(G — wv) > &(G). O

Let Hy € G be a graph with the maximum degree A = 3 whose the
consecutive vertices of degree three are v1,vs, -+ , v, along C and whose
chords are v;vok41-i,t = 1,2,--- k. Let Qr € Gx be a graph with the
maximum degree A = 3 whose consecutive vertices of degree three are
V1, Vg, - ,vor and whose chords are v;vi+1,¢ = 1,3,5,--- ,2k — 1. Let
Jk € Gi be a graph with exactly one vertex of degree k + 2, k vertices of
degree 3, and all the other vertices being of degree 2. We will show that for
any G € G with the maximum degree A(G) = 3, &(Hi) < ®(G) < ®(Qx),
and that for any G € Gi, ®(Lx) < &(G) < ®(Q%).

The Fibonacci numbers are the sequence of numbers {F,,,n =1,2,---}
defined by the linear recurrence equation F,, = F,,_; + F,,_ with Fp =0
and F; 1= Fz =1,

Lemma 5.3 &(H) = Fry3 and ®(Qx) =25 +1, k=0,1,2,---.

Proof. We prove the two equalities by induction on k. For k = 0, ®(Hp) =
®(Qo) = 2 and F; = 2, the equalities are true.

For the chord vyvgy of Hy, by the induction hypothesis, ®(Hy — v; —
vor) = ®(Hy—2) and ®(Hj — vyvok) = Q(Hk—l); therefore

@(Hk) = @(Hk e Ut ‘vzk) + @(Hk - vlvgk)
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= ®(Hi—2) + ®(Hr-1) = Fie41 + Fiep2 = Fiya.

For the chord vjvp of Qy, since (Qx — v1 — v2) = 2%~ and by the
induction hypothesis ®(Qx — v1v2) = ®(Qk-1),

®(Qk) = 2(Qx — v1 — v2) + B(Qk — v1v2)
=214 P(Qey)=21+2*1+1=2+1. O
Lemma 5.4 Fy 44 < Fry3 Foys.
Proof. Honsberger [5] (1985, p. 107) gives the following relation
Fotm=FoaFn + FoFpya
Thus we have
Frysra = Firyoy4(s+2) = Fri1Fsr2 + FryaFoys
< Frp1Fop3+ FryoFoy3 = FryaFoys. O

Theorem 5.5 For any graph G € G;. with the mazimum degree A(G) = 3,
Fip3 < &(G) < 2% +1. Furthermore, the left hand equality holds only when
G = Hj and the right hand equality holds only when G = Q.

Proof. 'We prove by induction on k. For k£ =0, ®(Hp) = &(Q) = ®(G) =
2 and the result is true. Let uv be a leaf chord of G, from Lemma 5.1
d(G) = (G — u — v) + ®(G — wv). By the induction hypothesis, Fi42 <
®(G—-uv) < 2¥-1+1 and the left hand equality holds only if G —uv =~ Hi_,
(that is, G = H}) and the right hand equality holds only if G —uv &= Q.
(that is, G = Q).

Now, it suffices to prove that (G —u—v) is maximum (resp. minimum)
only if G = Q) (resp. G =~ Hy).

Notice that there are two components in G — u — v one of which is a
path with one perfect matching. Denote by G’ the other component of
G —u — v and let the 2-connected blocks of G’ be Gy, Ge, -+ ,G;. Clearly
G — V(G') is a cycle containing « and v, say Cy,. It is easy to check that
(G —u—v)=9(G) =8(Gy) ®(G2) -+ ®(G).

We claim that ®(G — v — v) is maximum only if G' has maximum
number of 2-connected blocks, that is t = k — 1, each G; is a cycle and
®(G — u —v) = 2%¥-1, To the contrary, assume that (G — u — v) is
maximum but ¢ < k — 1. Then at least one block of G’ has at least one
chord. Without loss of generality, suppose that G; has a chord. Let zy be
a leaf chord of G;. Let G” be the graph obtained from G’ by removing zy
and constructing a new cycle block G:4; disjoint from 2-connected blocks
in G’ such that V(G") together with V(C,,) still induce a graph in G



with the maximum degree A = 3, say G*, and G* —u —v has t + 1 2-
connected blocks. From Lemma 5.2, we have 2®(G; — zy) > ®(G;) and
O(G*—u—v) = ¥(G") = &(G; —zy) B(G2) - ®(G;) ¥(Gi1) =29(G,—
zy) ®(Gy) -+ B(G:) > B(G1) B(G2) -+ ¥(Ge) = &(G') = B(G —u—v),
a contradiction. Hence ®(G — u — v) is maximum only if G’ has k — 1
2-connected blocks, that is, G =~ Q.

We claim that (G — v — v) is minimum only if t = 1, Gy = Hi_2
and ®(G — u — v) = Fj41. Otherwise, let (G — u — v) be minimum but
t > 1, without loss of generality, let G; and G, be two 2-connected blocks
of G — u — v which have r chords and s chords respectively. Replace G,
and G in G’ by a new 2-connected block G} =~ H,;,+1 to obtain the
resultant graph G’ such that V(G™ together with V(C,,) still induce
a graph in G) with the maximum degree A = 3. From Lemma 5.4 we
have Q(Hr+a+l) = Fr+3+4 < Fr+3 F3+3 = @(Gl) ‘I)(Gz) and @(G’”) =
B(G}) ®(Gs) ®(Gy) -+ B(G:y) < B(G1) B(G2) -+ B(G:) = 2(G'), 2
contradiction. Hence ®(G — u — v) is minimum only if t =1, G; = Hj_,,
that is, G = Hy. O

Theorem 5.6 Let G € Gy be a 2-connected cycle resonant outerplane
graph with k chords. Then k+2 = ®(Lx) < ®(G) < &(Qx) = 2% + 1.

Proof. Since G is a 2-connected bipartite outerplane graph, G has two
perfect matchings containing no chord and for each chord uv of G, there
is one perfect matching containing a unique chord wv, so ®(G) > k+2 =
&(J).

On the other hand, for a leaf chord uv of G, by a similar argument as in
the proof of Theorem 5.5, ®(G—uv) < 2¥~141 = &(Qk—,) and the equality
holds only if G = Qy, and (G — u — v) is maximum only if G — v — v has
maximum number of 2-connected blocks. By Theorem 3.4, it is not difficult
to verify that any two 2-connected blocks of G — u — v are disjoint. Now
it follows that (G — u — v) is maximum only if (G —u —v) has k-1 2-
connected blocks and ®(G —u—v) = 2¥~1. Hence &(G) < &(Qx) = 2% +1.
O
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