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Abstract

Let G be a simple quadrangulation on a closed surface F2. A
face-contraction and a 4-cycle removal are two reductions for quad-
rangulations defined in this paper.

o G is irreducible if any face-contraction breaks the simplicity of
G,

e G is Ds3-irreducible if G has minimum degree at least 3 and
any face-contraction or any 4-cycle removal either breaks the
simplicity or reduces the minimum degree to less than 3,

e G is K3-trreducible if G is 3-connected and any face-contraction
or any 4-cycle removal breaks the simplicity or the 3-connectedness
of the graph,

e G is Sy-irreducible if G has no separating 4-cycle and any
face-contraction breaks the simplicity or creates a separating
4-cycle.

In [7], it was shown that except the sphere and the projective plane,
the irreducibility and the Djs-irreducibility of quadrangulations are
equivalent. In this paper, we shall prove that for all surfaces, the
Ds-irreducibility and the Ks-irreducibility of quadrangulations are
equivalent. We also prove that for the sphere, the projective plane
and the torus, the Ds-irreducibility and the Ss-irreducibility of quad-
rangulations are equivalent, but this does not hold for surfaces of high
genus.
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1 Intoroduction

A quadrangulation G of a closed surface F? is a fixed embedding of some
simple graph such that each face is bounded by a cycle of length 4. Clearly,
the minimum degree of G is at least 2. We denote the vertex set and the
edge set of a graph G by V(G) and E(G), respectively. A k-cycle means
a cycle of length k and denoted by Ci. A k-cycle is said to be odd (resp.,
even) if k is odd (resp., even). A facial cycle C of G is a cycle bounding
a face of G. (We often denote the facial cycle of a face f by 8f.) We say
that a simple closed curve [ on F? is separating if F2 — [ is disconnected.
We say that S C V(G) is a cut of G if G— S is disconnected. In particular,
S is called a k-cut if S is a cut with |S| = k. A cycle C of G is said to be
separating if V(C) is a cut set.

Let G be a quadrangulation on a closed surface F2 and let f be a face
of G bounded by a cycle abcd. The face-contraction of f at {a,c} in G
is to identify @ and ¢, and replace the two pairs of multiple edges {ab, cb}
and {ad, cd} with two single edges respectively. See Figure 1. We can also
define the face-contraction of f at {b,d}. (The inverse operation of the face-
contraction is called a vertez-splitting.) If the graph obtained from G by a
face-contraction is not simple, then we don’t apply it. A quadrangulation
G is said to be irreducible if no face-contraction can be applied to G.
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Figure 1: A face-contraction at {a, c}.

In [8], it was proved that a 4-cycle is the unique irreducible quadrangu-
lation on the sphere, and that there exist precisely two irreducible quad-
rangulations of the projective plane shown in Figure 2, where Q} and Qf,
are the unique quadrangular embeddings of K4 and K3 4 on the projective
plane, respectively. The irreducible quadrangulations on the torus and the
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Klein bottle have also been determined in [5, 6). There exist precisely eight
and ten irreducible quadrangulations of the torus and the Klein bottle,
respectively. In general, by bounding the number of vertices by a linear
function of the Euler characteristic of F2 [4], it was proved that for any
closed surface F2, there exist only finitely many irreducible quadrangula-
tions on F2, up to homeomorphism.

Qb Q%

Figure 2: Irreducible quadrangulations on the projective plane.

Clearly, every quadrangulation G on any closed surface F'2 is 2-connected
and hence the minimum degree of G is at least 2. If G has a vertex of degree
2, then G — v is also a quadrangulation on F2,

Let G be a quadrangulation on a closed surface F? with minimum
degree at least 3, and let f be a face of G bounded by vyvovsvs. The 4-
cycle addition to f is to put a 4-cycle ujususuy inside f in G and join v;
and u; for i = 1,2, 3,4, as shown in Figure 3. (The inverse operation of a 4-
cycle addition is called the 4-cycle removal.) Consider the quadrangulation,
denoted by G, on F?2 obtained from G by applying a 4-cycle addition to all
faces of G. Then each face-contraction applied to G yields a vertex of degree
2. Therefore, in order to reduce quadrangulations preserving the minimum
degree at least 3, we need more operations other than a face-contraction.

Embed a 2n-cycle vyuyvaus . .. vnun (n 2 3) into the sphere, put vertex
z on one side and vertex y on the other side and add edges zv; and yu;
for i = 1,...,n. The resulting quadrangulation on the sphere with 2n + 2
vertices is said to be the pseudo double wheel and denoted by Wa,,. The
smallest pseudo double wheel is Wg, which is the cube. See, for example,
the left side of Figure 4.

Embed a (2n — 1)-cycle C = v1v2...v2p—1 (n > 2) into the projective
plane so that the tubular neighborhood of C forms a Mébius band. Next,
put a vertex = on the center of the unique face of the embedding and join
z with v; for all 7 so that the resulting graph is a quadrangulation. The
resulting quadrangulation on the projective plane with 2n vertices is said
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Figure 3: 4-cycle addition.

to be the Mébius wheel and denoted by Wan—1. See, for example, the right
side of Figure 4, where the outer decagon represents the projective plane.

Yy
A o
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Figure 4: Wg and Ws.

Let G be a quadrangulation on a closed surface F2 with minimum degree
at least 3. We say that G is D3-irreducible if each face-contraction or each
4-cycle removal applied to G breaks the simplicity or the minimum degree
at least 3 of the graph.

THEOREM 1 (Nakamoto(7]) o If G is a Ds-irreducible quadrangu-
lation on the sphere, then G is isomorphic to a pseudo double wheel.

o If G is a D3-irreducible quadrangulation on the projective plane, then
G is isomorphic to either Q}, in Figure 2 or a Mébius wheel.
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e Let G be a quadrangulation on a closed surface other than the sphere
and the projective plane. Then G i3 Ds-irreducible if and only if G is
irreducible.

In this paper, we consider 3-connected quadrangulations on closed sur-
faces. A 3-connected quadrangulation G on a closed surface F? is said to
be K3-irreducible if each face-contraction or each 4-cycle removal applied
to G breaks the simplicity or the 3-connectedness.

The following theorem is our first result.

THEOREM 2 For any closed surface F?, a quadrangulation G is Ds-
irreducible if and only if G is K3-irreducible.

The spherical case has already been proved in [1]. Moreover, they re-
stricted face-contractions to faces incident to a vertex of degree at most 3,
but we cannot do so in general, since a quadrangulation on a closed surface
with high genus might have no vertex of degree at most 3.

In the final section, we also consider the class of all quadrangulations
without separating 4-cycles. A quadrangulation G is said to be Sy-irreducible
if G has no separating 4-cycle and if each face-contraction breaks the sim-
plicity or makes a separating 4-cycle. (Note that we don’t need the 4-cycle
removal since a quadrangulation for which a 4-cycle removal can be ap-
plied has a separating 4-cycle.) In [1], it was shown that for the sphere, the
Sy-irreducible quadrangulations coincide with the Ds-irreducible quadran-
gulations. The following theorem claims that the same facts hold for the
projective plane and the torus, too.

THEOREM 3 For the sphere, the projective plane and the torus, e quad-
rangulation G is Sy-irreducible if and only if G is Kz-irreducible.

However, a theorem such as Theorem 3 does not hold for closed surfaces
with high genera, as shown in the following theorem.

THEOREM 4 There exists a closed surface F2, both orientable and nonori-
entable, which admits a Sy-irreducible quadrangulation but is not Ks-irreducible.

Let S be an infinite set of graphs. Assume that there exists a subset
So C S such that for any graph G = Gy in S, there is a sequence of graphs
Gy,Gy,...,Gy in S where G; € Sy and each Gy is obtained from G; by
one of specific operations of graphs, for 0 < ¢ <!+ 1. This implies that all
the members of S can be constructed from the graphs in Sp by applying
the inverse of the corresponding operations. Therefore, our theorems are
generating theorems for quadrangulations on surfaces.
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2 3-Connected quadrangulations

In this section, we shall prove Theorem 2. Before doing it, we prepare
several lemmas.

LEMMA 5 A quadrangulation on a closed surface F? has no separating
odd cycle corresponding a separating simple closed curve on F2.

Proof. Suppose that a quadrangulation G on F? has such a separating
odd cycle C. Cutting F? along C, we obtain two surfaces, each of whose
boundary component is C. Pasting a disk to the boundary of one of the
surfaces, we get an embedding on the closed surface with all quadrilateral
faces, except one bounded by C. Since C has odd length, the dual of the
graph has exactly one vertex of odd degree, which is impossible. B

Let G be a quadrangulation on a closed surface F'2 and let f be a face
of G bounded by a 4-cycle abcd. We say that f is contractible at {a,c} in G
if the graph obtained from the face-contraction of f at {a, ¢} is simple. We
say that f is D3-contractibleat {a,c} in G if f is contractible at {a, c}, and if
the graph obtained from the face-contraction at {a, ¢} has minimum degree
at least three. Similarly, we can define K3-contractible and Sy-contractible
faces.

Let G be a quadrangulation on a closed surface F2 and let f be a face
of G bounded by a 4-cycle vovyvavs. Then a pair {v;,viy2} is called a
diagonal pair of f in G, where the subscripts are taken modulo 4. A closed
curve ! on F? is said to be a diagonal k-curve for G if | passes only through
distinct k faces fg,..., fr—-1 and distinct k vertices zo, ..., 2x_1 of G such
that for each ¢, f; and fi;, share z;, and that for each %, {z;_1,z;} forms
a diagonal pair of f; of G, where the subscripts are taken modulo k.

LEMMA 6 Let G be a quadrangulation on a closed surface F? with a 2-cut
{z,y}. Then there ezists a separating diagonal 2-curve for G only through
T and y.

Proof. Observe that every quadrangulation on any closed surface F2 is
2-connected and admits no closed curve on F?2 crossing G at most once.
Thus there exists a simple separating closed curve ! on F? crossing only z
and y, since {z,y} is a cut set of G.

We shall show that [ is a diagonal 2-curve. Suppose that [ passes through
two faces f1 and f» meeting at two vertices z and y. If [ is not a diagonal
2-curve, then z and y are adjacent on 8f; or 8f,. Since G has no multiple
edges between z and y, and since {z,y} is a 2-cut of G, we may suppose
that z and y are adjacent in 8f;, but not in 8f;. Here we can take a
separating 3-cycle along I. This contradicts Lemma 5. B
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LEMMA 7 Let G be a 3-connected quadrangulation on a closed surface F'2,
and let f be a face of G bounded by abcd. If the face-contraction of f at
{a,c} breaks the 3-connectedness of the graph but preserves the simplicity,
then G has a separating diagonal 3-curve passing through a,c and z for
some z € V(G) — {a,b,c,d}.

Proof. Let G’ be the quadrangulation on F? obtained from G by the
face-contraction of f at {a,c}. Since G’ has connectivity 2, G’ has a 2-cut.
By Lemma 6, G’ has a separating diagonal 2-curve !’ passing through two
vertices of the 2-cut. Clearly, one of the two vertices must be [ac] of G’,
which is the image of @ and c by the contraction of f. (If not, G would not
be 3-connected, a contradiction.) Let x be another vertex of G’ on I’ other
than [ac]. Note that z is not a neighbor of [ac] in G'.

Now apply the inverse operation of the face-contraction of f at {a,c}
to G’ to obtain G. Then a diagonal 3-curve for G passing through only a, c
and z arises from !’ for G'. B

LEMMA 8 Let G be a K3-irreducible quadrangulation on a closed surface
F2. If G has a separating 4-cycle C = zox1223, then there is no face f of
G such that

(i) one of the diagonal pairs of f is {;,zi+2} for some i, and

(ii) f has a separating diagonal 3-curve l intersecting C only at z; and
Zi4o transversely.

Proof. For getting contradictions, we suppose that G has a separating 4-
cycle C = zoz1z273 and a face f bounded by azjczs. Since C is separating,
G has two subgraphs Gr and G such that GRUG; = G and GRNG = C.
Suppose that f is contained in Ggr. Furthermore, we assume that Gg
contains as few vertices of G as possible.

Since C is separating, we have f # C. By (ii), f has a separat-
ing diagonal 3-curve ! through z;,z3 and some vertex z. Note that z €
V(GL)-V(C) by (ii). Since G is K3-irreducible, f is not K3-contractible at
{a,c}. Observe that ! (or the 3-cut {z,z,23}) separates a from c. Further,
G does not have both of edges az and cz since 8f # C. Therefore, there
is no path of G of length at most 2 joining e¢ and ¢ other than az;c and
azxsc. Moreover, if {a,c} N {zo, 22} = 0, then f has no separating diagonal
3-curve joining a and ¢, either. This contradicts the Ks-irreducibility of G.
Therefore we may suppose that a = zo and ¢ # z2, and f has a separating
diagonal 3-curve, say v, through a (= o) and c.

Since -y separates z; and z3 and since z2 is a common neighbors of z;
and z3, v must pass through 2, and hence we can find a face f' of Gg
one of whose diagonal pair is {c,z2}. Let C’ be the 4-cycle z,z2z3c of G.
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Since deg(c) > 3, we have 8f' # C’, and hence C' is a separating 4-cycle in
Gp such that C’ # C. Moreover, v and C’ cross transversely at z2 and c.
Therefore, C’ and f’ are a 4-cycle and a face which satisfy the assumption
of the lemma, and moreover, C’ can cut a strictly smaller graph than Gr
from G. Therefore, this contradicts the choice of C. B

Now we shall prove Theorem 2.

Proof of Theorem 2. Let G be a quadrangulation on F2. We first claim
that if G is D3-irreducible, then G is 3-connected. Suppose that this does
not hold. Since G must have connectivity 2, G has a 2-cut {z,y} of G. By
Lemma 6, there is a separating diagonal 2-curve ! passing through z and y.
Let f; and f> be the two faces through which ! passes, where 8f; = za;yb;,
for ¢ = 1,2. Since f; and fo intersect only at z and y (otherwise, G
has a vertex of degree 2), we have deg(z),deg(y) > 4. Hence, f; is Ds-
contractible at {a1,b1}. (It is easy to see that there is no path of length at
most 2 joining a; and by, but intersecting neither z and y.) This contradicts
that G is Ds-irreducible. Hence G is 3-connected.

We shall prove the necessity. Since G is Ds-irreducible, each face-
contraction and each 4-cycle removal transforms G into a quadrangulation
with a vertex of degree 2, loop or multiple edges. Since G is 3-connected
as shown above, this implies that G is K3-irreducible.

Next we shall prove the sufficiency. For getting a contradiction, assume
that the sufficiency does not hold. Let G be a K3-irreducible quadrangula-
tion on F2, Suppose that a 4-cycle removal in G yields a new face F' such
that the resulting graph, denoted by G’, has the minimum degree > 3, but
is not 3-connected. Then, by Lemma 6, there is a separating diagonal 2-
curve through F and f in G’, where f is a face of G’. However by Lemma 8,
it is impossible since we can easily find a separating diagonal 3-curve in G
passing through f and two faces of G placed in the region corresponding
to F.

We consider the reduction of G by face-contractions. Let f be a face
of G which is bounded by z,a172b; and D3-contractible at {z1,z2}, but is
not Ks-contractible. Let G’ be the quadrangulation obtained from G by
a face-contraction of f at {z;,z2}. Then G’ is a simple quadrangulation
with minimum degree at least 3, but is not 3-connected. By Lemma 7,
G has a sequence of three faces, say fi, fo and f3 bounded by zia1z2b,,
Zoagxabe and zzazzibs, respectively, such that a separating diagonal 3-
curve [ passing through z,, 2 and z3, where we suppose that a3, as, a3 and
by, by, b3 are separated by I. We denote the 3-cut {z;,z2,z3} of G by X.
Further, let A and B be two components of G — X, which contain ay, a3, a3
and by, ba, b3, respectively. (See Figure 6. To obtain the configuration of
annular part of F2, identify two horizontal broken lines.)
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Figure 5: Structures of f1 U fo U f3 in Case 1.

We consider the coincidence of aj,as,as, by, by and b3. Since [ is sep-
arating, we clearly have {a1,as,a3} N {b1,bo,b3} = 0. Since G’ is simple
and has minimum degree at least 3, we do not have the two cases when
ay = az = a3 and when a; # ap = ag, and similarly, we don’t have the two
cases when by = by = by and when by # by = b3.

Case 1. a; = ag # a3 (or by = by # bs).

See the left-hand side of Figure 5. Consider the face-contraction of f3
at {a3, b3} in G. Since G is Ks-irreducible, G has either a path of length at
most two joining as and bs, intersecting neither x; nor zs, or a separating
diagonal 3-curve for f3 through asz and b3 (by Lemma 7). First, we assume
the former. If the face-contraction at {as, bs} yields a loop, then G has an
edge joining az and bs. However, it is impossible since X separates a3 and
bs in G. If the contraction yields multiple edges, then G should have two
edges agzs and bazs. However, this is also impossible since a; = as # as.

Hence we assume the latter case, that is, there is a separating diagonal
3-curve v for f3 through as and b3 and the third vertex v in G. If v € X,
we have v = z7 or z3 and there is a separating 3-cycle of G, contrary to
Lemma 5. Next, we suppose the case of v € B. In the case, there should
be a face bounded by a 4-cycle azz;vz; for distinct 7, j € {1, 2, 3}, through
which v passes. However, it requires the edge aszs since {7,j} # {1,3}, a
contradiction. (Observe that z, has the unique neighbor a; in A.)

Thus, we may assume that v € A and have v = ay, clearly. Moreover,
we have by = bg since by # bs (see the right-hand of Figure 6). Now, observe
that a 4-cycle C' = ajz3a3zr; does not bound a face of G since deg(az) > 3.
Therefore, C’ is a separating 4-cycle, in which some quadrilateral face is
incident to @; and a3, and a separating diagonal 3-curve ~ crossing C’
transversely at a; and as. This contradicts Lemma 8.

Case 2. a1, as,as, by, by and by are distinct (See Figure 6 again).
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Figure 6: Structures of f; U fo U f3 in Case 2.

We first consider the case when the face-contraction of f; at {a;,b;}
breaks the 3-connectedness of the graph but preserves the simplicity, for
some i, say ¢ = 3. Then, by Lemma 7 again, G has a separating diagonal
3-curve v through as and b3. Moreover, since ay, b1, az, bg, as and by are
all distinct, the third vertex v on v must be in X. However, by the sim-
ilar argument in Case 1, we can find a separating odd cycle, contrary to
Lemma 5.

Secondly we may suppose that the face-contraction of fo at {as,bo}
breaks the simplicity of the graph. Since ay, b1, as, ba, a3 and b3 are distinct,
both az and by are adjacent to ;. Now we have the contradiction for the
choice of fi, since the face-contraction of f; at {:I‘]_,Ig} makes two edges
z9az and zyae be multiple edges. Therefore, the sufficiency also holds. ®

3 Without separating 4-cycles

In this section, we consider quadrangulations without separating 4-cycles.
Clearly, a quadrangulation G with no separating 4-cycle admits no sepa-
rating diagonal 2-curve, and hence G is 3-connected, by Lemma 6. Now we
shall prove Theorem 3.

Proof of Theorem 3. We first prove that if G is Kz-irreducible, then
G has no separating 4-cycle. (Note that the statement holds only on the
sphere, the projective plane or the torus.) For getting a contradiction, we
suppose that G has a separating 4-cycle C = abed. Since C bounds a
quadrilateral 2-cell region, denoted by R, on the surface, we may suppose
that there is no separating 4-cycle in R, except C. Let C be the subgraph
of G consisting of the vertices and the edge of C and in the interior of C.
By Lemma 6 in [1], the plane quadrangulation C must be a pseudo double
wheel.
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Figure 7: Configurations in the proof of Theorem 3.

If C is a cube then it is Kz-removal while if C is not a cube then we can
find a Ks-contractible face, since there is no face outside R whose diagonal
pair is {a,c} or {b,d}, by Lemma 8. (See the left-hand of Figure 7. There
does not exist a face like f in the figure.) Therefore, G has no separating
4-cycle.

We shall show the sufficiency. For getting a contradiction, we suppose
that G is Ks-irreducible, but has a Ss-contractible face f. (Note that the
4-cycle removal cannot be applied to G since G has no separating 4-cycle.)
Since G is Ks-irreducible, the graph obtained from G by contracting f is
not 3-connected, then it has a separating diagonal 2-curve by Lemma 6,
and hence we can find a separating 4-cycle along it. Therefore, we can
conclude that G is Sy-irreducible.

Next we shall prove the necessity. If the necessity does not hold,
then there exists a quadrangulation G which is Ss-irreducible but not Ka-
irreducible. That is, G has a face f with 8f = abed such that the graph,
say G', obtained from G by contracting f at {a, c} has a separating 4-cycle
C’, but it is still 3-connected. Therefore, we have degg(b),degg(d) > 4.
Let [ac] be the vertex of G’ obtained by identifying a and c¢. Clearly, [ac]
is a vertex of C’; for otherwise, G would have a separating 4-cycle, a con-
tradiction. Suppose that b is contained in the 2-cell region bounded by C’.
Let C’ = [ac]pgr and C be the pre-image of C’ which is the path apgrc of
length 4 in G.

Consider the face-contraction of f at {b,d} in G, and let G” be the
resulting graph. Since G is S;-irreducible, either G” is non-simple or it has
a separating 4-cycle. In the former case, G has a path of length at most 2
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joining b and d, which must cross C. Although we might have d = ¢, we
have d # r and d # p since G has no separating 4-cycle. However in any
case, ¢ and b must be joined by an edge (since the hexagon abergp is a 2-cell
region and by Lemma 5). Since degg(b) > 4, G must have a separating
4-cycle, a contradiction.

In the latter case, G has a path, say P = bzyzd, of length 4 joining b and
d, which must cross C. If P passes through ¢ (in this case, either z = q or
z = q, by Lemma 5), then we can find a separating 4-cycle (abgp, berq, dapg
or derq), a contradiction. Hence we suppose that P passes through either
p or r, say p, then p = y. (See the right-hand of Figure 7.) Now consider
the face-contraction of the face abzp at {a,z}. (Note that the 4-cycle abzp
bound a face since G has no separating 4-cycle.) We have z # g, since
P does not pass through g, by the assumption. Since G is Sy-irreducible,
the resulting graph either is non-simple or has a separating 4-cycle. The
former case can be easily excluded, and consider the latter case. In this
case, d and z must be joined by a path of length 3 intersecting neither b
nor p. Since deg(b) > 4 (and by our assumptions), the latter case does not
happen unless G has a separating 4-cycle, a contradiction. Therefore, G is
also K3-irreducible. B

The sufficiency of Theorem 3 does not hold even on the Klein bottle.
Consider the quadrangulation on the Klein bottle obtained from two copies
of @b by pasting them to identify a facial cycle of one copy and a facial
cycle of the other. Then it is Ks-irreducible since each face-contraction
breaks the simplicity of Qb. However, it clearly has a separating 4-cycle.
In the same way, we can construct such a quadrangulation on each closed
surface other than the sphere, the projective plane and the torus.

The necessity of Theorem 3 does not hold in general, either.

Proof of Theorem 4. It was proved in [2, 3] that the complete graph K,
with n vertices quadrangulates a closed surface F, with Euler characteristic
x if and only if n(n — 5)/4 = —x, except the Klein bottle and the double
torus. Let G be a quadrangular embedding of Kg on F_g with vertex set
{1,...,8}. Note that F_g can be the orientable closed surface of genus 4,
and the nonorientable closed surface of crosscap number 8. Suppose that
the vertices 2,3,4,5,6,7,8 lie in the cyclic order around the vertex 1 in
the embedding G. Let G’ be the embedding on the same surface obtained
from G by removing the vertex “1” and add a vertex a to join 2, 3,4, 5 and
a vertex b to join 5,6,7,8. See Figure 3. Since G’ — {a,b} = G — {1} is
complete, each diagonal pair {z,y} of a quadrilateral face of G’ is adjacent
if {z,y} C {2,3,4,5,6,7,8}. For other pairs, since G’ has no quadrilateral
face whose diagonal pair is {a, b}, the diagonal pairs are joined by a path
of length at most 2.
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Figure 8: G and G'.

_l\{ow prepare another copy of G, denoted by &', whose vertices are
a,b,2,...,8, corresponding to a,b,2,...,8 in G', respectively. Let Q be
the quadrangulation of F_;5 obtained, as follows:

1. Add an edge ab and @b to G’ and G’ respectively, and then each of
G’ and G’ has a unique pentagonal face.

2. Paste G’ and G/ along the pentagonal faces so that the corresponding
vertices of G’ and G’ are identified.

3. Delete the edge joining the two vertices a(= @) and b(= b).

Clearly, Q has a face, say g, bounded by a5b5, which is K3-contractible
at {a, b}, but it is not Ss-contractible. Therefore, @ is not K3-irreducible.
However, the face g is non-contractible at {5, 5}, since G’ has an edge 25
and since G’ has an edge 5. Moreover, any other face of Q belongs to
either G’ or G’, and hence it is non-contractible at either diagonal pair.
Therefore, @ is S4-irreducible, but it is not Xs-irreducible. B
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