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Abstract

Let G be a graph. The Randié¢ index of G is the sum of the
weights (d(u)d(v))~'/? of all edges uv of G, where d(u) and d(v) are
the degrees of the vertices v and v in G. In this paper, we give a
sharp upper bound for Randié index R{G) among all unicyclic graphs
G with n vertices, k pendant vertices with n > 3k and k > 3.
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1. Introduction

Mathematical descriptors of molecular structure, such as various topo-
logical indices, have been widely used in structure-property-activity stud-
ies (see [11] and [12]). In order to measure the extent of branching of the
carbon-atom skeleton of saturated hydrocarbons, Randié introduced the
branching index which was called Randié index later. The Randié index
of an organic molecule whose molecular graph is G is defined as (see [22])

3 (d(u)d(v))~*/2, where d(u), d(v) are the degrees of u and v and the sum
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is over all edges of G. This index is also called the molecular connectivity
indez or simply connectivity indez of G and denoted by R(G). The index
has been closely correlated with many chemical properties [11] and found
to parallel the boiling point, Kovats constants, and a calculated surface. In
addition, the Randi¢ index appears to predict the boiling points of alkanes
more closely, and only it takes into account the bonding or adjacency de-
gree among carbons in alkanes (see [12]). In the past 30 years, the index
has became one of the most popular molecular descriptors and has been
extensively studied by both mathematicians and theoretical chemists [23].

More data and additional references on the index can be found in [7, §].

There are many results concerning Randi¢ index. In [2], Bollobéds and
Erdés gave the sharp lower bound of R(G) > v/n — I when G is a graph
of order n without isolated vertices. Yu [26] gave the sharp upper bound
of R(T) < (n + 2v/2 — 3)/2 when T is a tree of order n. In [3], chemical
trees with minimum Randi¢ index are characterized and in [10], chemical
trees of a given order and a number of pendant vertices with minimum and
with maximum Randié index are characterized. Liu et al presented a upper
bound on the Randié¢ index for all chemical graphs with n vertices, m > n
edges and k > 0 pendant vertices in [20). Zhang et al characterized trees
of a given order and a number of pendant vertices with maximum Randié
index in [27]). In [5], Gao and Lu gave the sharp lower bound of Randié
index among unicyclic graphs and Lin et al gave the first three largest
Randi¢ indices among unicyclic graphs [17]. Lower bounds about unicyclic
graphs with particular structure such as with given pendant vertices [21],
or given girth [18], or given diameter [24] or with perfect matching [19] were
considered. More research results about unicyclic graphs in other index can

be found in [14] and [25].

386



For a comprehensive survey of the Randié index’s mathematical prop-
erties and research results, see the book of Li and Gutman “Mathematical
Aspects of Randié-Type Molecular Structure Descriptors” [13], the book
of “Recent Results in the Theory of Randi¢ Index” [9] and three survey
papers [15, 16, 6].

Let G = (V, E) be a graph of order n (n > 3). For u € V(G), we denote
the degree of u by d(u). A pendant vertex is a vertex of degree 1. Denote
Vi(G) = {v € V(G)|d(v) = i} and E;;(G) = {uv € E(G)|d(v) = ,d(v) =
j}. Then V;(G) is the set of pendant vertices.

Unicyclic graphs are connected graphs with n vertices and n edges. We
denote by U(n,k) the set of all unicyclic graphs with n vertices and &
pendant vertices.

" In the paper, we will determine graphs with the largest Randié¢ index
among U(n, k) with n > 3k and k > 3.

If v is a vertex of G or uv is an edge of G, then we denote by G — v or
G — uv the graph obtained from G by deleting the vertex v and the edges
incident with it or the edge uv € E(G). Let Ps = vgv, - - - v5 be a path of G
with d(v;) = -+ = d(vs—1) = 2 (unless s = 1). If d(v) = 1 and d(v,) > 3,
then we call P, a pendant chain of G and we also call that s the length of
the pendant chain P;.

Let G € U(n, k) and wv € E(G) with d(u) = ¢ and d(v) = j. Denote

z(uv) =4 = (—1— - i)z
ij \/; \/_; .
If H is a subgraph of G, then we will denote z(H) = 3, ¢ g Z(uv).
Thus another formula of R(G) is (see [4])
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R(G) = g - % Z z(uw) =
weE(G)
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Let Gpk,s (n 2 3k, 3 < s < k and 2s > k) be a graph of order
n obtained from a cycle C, = vjvg - v,v1 by attaching k — s edges to
arbitrary k — s vertices of C,, and then attaching two pendant paths of
length at least 2 to each vertex of degree 1, respectively and attaching
2s — k pendant paths of length at least 2 to each vertex of C, with degree
2 (see Fig. 1). Then Gn ks € U(n, k) and

n n k(7-3v/2-6
R(Gn.k,a ='§—2(kz:m,(,+l))=.§_ ( 5 \/—)

i==]1

" \d g >

Gss Giosa Giss

Figure 1:
The following three Lemmas had been shown in [1], we just cite them
here.
Lemma 1.1 Let 0 < i < k < j, then x5 > T + Zyj.

Lemma 1.2 Let G be a graph. Let wv € E(G) with d(u) = i and
dv)=j. Ifi<j. Then

a: uv —:B,] Z Tr(k+1)-
t<k<j—1

Moreover, the equality holds if and only if j =i+ 1.

Lemma 1.3 Let G be a graph and P a path of G connecting u and v.
Letd(u) =1 and d(v) = j. Ifi < j, then

:B(P)= Z .’)2(6 Z mk(k+1)

ecE(P) i<k<j—1
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2. Main Result

Let G* € U(n,k) such that R(G*) = max{R(G)|G € U(n,k), n >
3k, k > 3}. Let V; = {vy,---,vx} be the set of pendant vertices. Since
G* € U(n,k) and |V;| = k, there exist k pendant paths which denoted
by P; = viv}---vi, where v{ = v; with d(v}) = 1 and d(v},) 2 3 (i =
1,2,---,k). Note that v}, and v}, may be the same vertex for some 7 # j.

Firstly, we will give some lemmas which will be used later.
Lemma 2.1 For every v € V(G*), d(v) < 3.

Proof. Suppose to the contrary that there is a vertex vo € V(G*)
such that d(vp) > 4. If there exists some 7 (1 < ¢ < k) such that vy = v;f.,

or d(vi,) > 4, then by Lemmas 1.1 and 1.3, we have

R(G*) =

IN
0ol 3
|
DN =
A\
™
Py
x

2
n 1
< 5-3 (szvi(iﬂ)) = R(Gnk,s),

=1
a contradiction. Hence we can assume that d(v},) =3 for i = 1,2,---,k.
Since d(vp) >4, 9 # vgl. Then there is a path P in G* joining v}l and vg
with E(P)NE(P;) =0 fori =1,2,---,k. Then

R@G) = 7 -3a(@)
k
< 3-3 (zzuz-) + z(P))
i=1
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g d(v},)-1 d(vo)—1

n 1
5 -2- Z Z Ti(i+1) + Z Ti(i+1)
i=1 i=1 i=3
n 1
< 373 (kzﬁ%u)) = R(Crps),
a contradiction. .

Lemma 2.2 Ey3 = 0.

Proof.  Suppose to the contrary that E;3 # 0. Without loss of
generality, assume v; € V; and u; € V3 with u;v; € E(G*). Then P, =

v1u;. By Lemma 2.1, d(v},) =3 fori = -, k. By Lemma 1.3, we have
RG") = g - —:z:(G)
< Z P)
s 35 :.2‘ ch( + 13
=2
n 1 k d(v:‘.)—l
< 373 Z Z Tii+1) + T13
i=2  i=1
n 1 2
< 27 2 (kzxi(ﬂ'l)) = R(Gnk,s),
1
a contradiction. =

By Lemma 2.2, the lengths of the pendant paths P; (1 < ¢ < k) are
at least 2. Combining Lemmas 2.1 and 2.2, we easily have the following

result.
Lemma 2.3 |Eq3| > k.
Now we give our main result as follows.

Theorem 2.4 Let G € U(n,k) withn > 3k and k > 3. Then

2 -_— —
(kzmi(i+1)) =g_k(7 3\6/5 \/6)

i=1

R(G) < 7~

[T
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Moreover, the equality holds if and only if G € {Grisin > 3k, 3 < s <
k and 2s > k}.

Proof. Let G* € U(n,k) such that R(G*) = max{R(G)|G € U(n, k), n >
3k, k > 3}. By Lemma 2.1, we have

Wil = k
Vi[+ Vo] + Vsl = =n
V| +2|Va| + 3|V5] = 2n,

which implies |V}| = |V3| = k and |V2| = n — 2k.
Obviously, |Ey;| = 0. By Lemma 2.2, |Ey3| = 0 and then [E2| = &k by

Lemma 2.1. Suppose |E23| = m > k. Then

1
LC PR T
n 1 2
< 373 (k % x"‘"“’) ™ FGne)

a contradiction. Thus we have |Ez3| = k by Lemma 2.3.

Let C be the unique cycle of G*. Now we will show that d(v) = 3 for
all v € V(C). Suppose there exists a vertex v € V(C) such that d(v) = 2.
Since V4| = k and |Ey3| = 0, we have |Ez3| > k + 2 > k, a contradiction.
Thus d(v) = 3 for all v € V(C) which implies G' € {Gns|3 < s <
k and 2s > k}. .
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