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Abstract

The harmonic index of a graph G is defined as the sum of weights
W of all edges uv of G, where d(u) and d(v) are the degrees
of the vertices v and v in G, respectively. In this paper, we give

a sharp lower bound on the harmonic index of trees with a perfect
matching in terms of the number of vertices. A sharp lower bound
on the harmonic index of trees with a given size of matching is also

obtained.
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1 Introduction

Let G be a simple connected graph with vertex set V(G) and edge set
E(G). Its order is |V(G)|, denoted by n. For v € V(G), let Ng(v) (or
N (v) for short) be the set of vertices which are adjacent to v in G and let
dg(v) (or d(v) for short) be the degree of v. Clearly, d(v) = |N(v)]. We
will use G —v to denote the graph that arises from G by deleting the vertex
v € V(G).

The Randié index is one of the most successful molecular descriptors in
structure-property and structure-activity relationships studies. The Randié
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index of a graph G is defined in [10] as the sum of the weights (d(u)d(v))_%
over all edges uv of G. The mathematical properties of this graph in-
variant have been studied extensively (see recent book [6] and survey [8]).
Motivated by the success of Randi¢ index, various generalizations and mod-
ifications were introduced, such as the sum-connectivity index [11,12] and
the general sum-connectivity index [2, 3].

Another variant of the Randié index, named the harmonic index H(G),
which is defined as

Z d(u) + d(v)

uwvEE(G)

where the summation goes over all edges uv of G. This index was first
appeared in [4]. Estimating bounds for H(G) is of great interest, and many
results have been obtained. For example, Favaron et al. [5] considered the
relationship between the harmonic index and the eigenvalues of graphs;
Zhong (13, 14] found the minimum and maximum values of the harmonic
index for simple connected graphs, trees and unicyclic graphs, and char-
acterized the corresponding extremal graphs, respectively. Li and Shiu [9]
studied how the harmonic index behaves when the graph is under perturba-
tions and provided a simpler method for determining the unicyclic graphs
with maximum and minimum harmonic index among all unicyclic graphs,
respectively. Moreover, the lower bound for harmonic index is also obtained
in [9]. Deng et al. [1] studied the relationship between the harmonic index
and the chromatic number of a graph G, and obtained the lower bound for
H(G) in terms of its chromatic number.

In this paper, we consider the relationship between the harmonic index
and the matching number of a tree. Lower bounds on the harmonic index
of trees with a perfect matching and trees with a given size of matching are
obtained, respectively.

2 Preliminaries

Two distinct edges in a graph G are called to be independent if they are
not adjacent in G. A matching of G is a set of mutually independent edges
in G. The largest matching is called a maximum matching. The cardinality
of a maximum matching of G is commonly known as its matching number.
Let M be a matching of G. M is called the m-matching of G if M contains



exactly m edges of G. A vertex v of G is said to be M-saturated if it is
incident with an edge of M, otherwise v is called an M-unsaturated vertex.
The matching M of G is called a perfect matching if all vertices of G are

M-saturated.
We begin with the following two important results due to Hou and Li [7]

for trees with an m-matching.

Lemma 2.1 ( [7]) Let T be a tree of order n(n > 3) with a perfect match-
ing. Then T has at least two pendant vertices such that each of them is

adjacent to a verter of degree 2.

Lemma 2.2 ( [7]) Let T be a tree of order n with an m-matching, where
n > 2m. Then there is an m-matching M and a pendant vertez v such that

v is an M -unsaturated vertez.

Let e = uv be an edge of a graph G. Let G’ be the graph obtained
from G by contracting the edge e into a new vertex u. and adding a new
pendent edge u.ve, where v, is a new pendent vertex. We say that G’ is
obtained from G by separating an edge uv (see Fig. 1).
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Figure 1: Separating an edge uv.

Lemma 2.3 ( [9]) Let e = uv be a cut edge of a connected graph G and
suppose that G — uwv = Gy U Gy (|[V(G1)|, |[V(G2)| > 2),where G, and G,
are two components of G — uv,u € V(G1) and v € V(G2). Let G’ be the
graph obtained from G by separating the edge uv. Then H(G) > H(G').

Lemma 2.4 (1) For z > 3, the function f(z) = 252 — 228 _ 2 45 mono-

tonicly decreasing on x.
(2) For x > 2, the function g(z) = -?T'.f - i“—_ﬁi is monotonicly decreas-
ing on x.



Proof. (1) We consider the derivative of f(z). For z > 3, we have

dfiz) 6 8 L2
dr  (z+2)2 (z+1)2 @ z2
6z%(z +1)2 + 2(z + 2)%(x + 1)? — 8(z + 2)%z?
B z2(z + 1)2(z + 2)2
—8z3 + 24z + 8
T 2z +1)2(z +2)°

<0.

Thus f(z) is monotonicly decreasing on z.
(2) Note that, for z > 2, we have

dg(zx) 6 6 <0

dz  (z+2)? (z+1)2

Thus g(z) is monotonicly decreasing on z.

Lemma 2.5 Let z,y be positive numbers with 1 <y <z —1. Let
2z -2y—2 2r—4y—4 2
h = - - =
(.9) z+2 z+1 T

Then h(z,y) is monotonicly decreasing on x and y, respectively.
Proof. We consider some partial derivatives of h(z,y). Note that

Oh(z,y) 4 2 2
Oy z+l1 z4+2 =z

-2 <o
T (x+2)(z+ Dz
Thus, h(z,y) is monotonicly decreasing on y. On the other hand,
Oh{z,y) _ 2y+6 2y 4y+6
0z =~ (z+2)2 2 (z+1)2
_ 1222y + 24zy + 8y — 122° — 1822
(z + 2)%(z + 1)222 )

Note that y < z — 1. Then we have
Oh(z,y) _ 122%(z — 1)+ 24z(x — 1) + 8(x — 1) — 1223 — 18z
<
8z ~— (z +2)%(z + 1)222
_ —6z%2 - 16z —8 0
T (z+2)(z +1)2%2?

Thus h(z,y) is monotonicly decreasing on z.
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3 Main results

Let n and m be positive integers and n > 2m. Let T%(n, m) be a tree
of order n, which is obtained from a star S,_,,4; by attaching a pendant
edge to each of certain m — 1 non-central vertices of S,_m4+1. Obviously,
T%(n,m) is a tree of order n with an m-matching. Let f(n,m) be the
harmonic index of T°(n,m). Then

2n—-2m+1) 2m-1) 2(m-1)
f(n,m) = n—m+1 n—-m+2+ 3

Now, we give the following initial result.

Theorem 3.1 Let T be a tree of order n = 2m with a perfect matching.

Then
H(T) > f(2m,m),

the equality holds if and only if T = T°(2m,m).

Proof. We prove the theorem by induction on m. If m = 1,2,3, then
the theorem holds clearly by the fact that there are at most two trees with
n = 2m vertices and a perfect matching for m =1, 2, 3.

Let T be a tree of order 2m with a perfect matching (m > 4). Then
T have a perfect matching M. If M contains a non-pendent edge zy of T,
then let T be the tree obtained from T by performing separating an edge zy.
Then T contains a perfect matching Mo = M U {eo} \ {xy}, where € is the
new edge added into T after performing separating. Repeat this procedure
until there is no non-pendent edge in the most updated perfect matching.
Let T” be the resulting tree and the corresponding perfect matching be M’.
By Lemma 2.3, we have H(T) > H(T’). Note that the equality does not
hold if at least one separating is preformed. Clearly, each edge in M’ is a
pendent edge.

By Lemma 2.1, 77 has a pendant vertex z1 which is adjacent to a vertex
x5 of degree 2. Then z,z, € E(T”) and there is a unique vertex z3 # x;
such that zox3 € E(T'). Let T* = T' — 2y — 2. Then T* is a tree
with 2(m — 1) vertices and with an (m — 1)-matching. Let d(z3) =d and
N(z3) \ {z2} = {v1,¥2,...,¥d-1}, then d > 3. Without loss of generality,
we can assume d(y1) =1, d(y;) > 2 for i = 2,...,d — 1. By the induction
assumption, we have
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HT') = H(T)+

1

*Z( Iy +d d(y, +d— )

2
> f(2(m-1),m-— 1)+ +—3 -3
d-1
2 2
+§<d(yi)+d_d(yi)+d—l)
_ 2 2 2m-2) 2(m-1)
d-1
2 2 2 2 2
+2+d+1+d—2+,.}=:2(d(yi)+d-d(yi)+d—1)
2 2m-6 2m-2 2 2 2
2 fOmm)+ ot T Ty T2vd T TTd " d

+Hd-2) (2-2+d 142”1)

2 29m-6 2m—-2 2d—2 2d—6 2
= f@mm+ ot T - Y5 yd T d d

Moreover, note that d < m. Then Lemma 2.4(1) implies that
2d—2 2d-6 2>2m-2 2m—-6 2

2+d 1+d d~-2+m 1+m m

That is,

2 2m-6 2m-2
fOmm)+ o+ T T i
2m—2_2m—6_3
24+m 1+4m m
= f(2m,m).

H(T")

v

The equality H(T) = f(2m,m) holds if and only if separating is not pre-
formed and equality holds throughout the above inequalities. That is, if
and only if T* = T°(2(m—1),m—1),d(y1) = 1,d(%:) =2 fori = Ld=1
and d = m. Thus T = T%(2m, m). O

Another result of the present paper is to give a sharp lower bound on
the harmonic index of trees with a given size of matching as follows.
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Theorem 3.2 Let T be a tree of order n with an m-matching, where n >

2m. Then
H(T) > f(n,m),

the equality holds if and only if T = T%(n,m).

Proof. We prove the theorem by induction on n. Suppose that n = 2m.
Then the result follows from Theorem 3.1. Now we suppose that n > 2m.
Let T be a tree of order n with an m-matching. By Lemma 2.2, T has
an m-matching M and a pendant vertex v which is M-unsaturated. Let
uv € E(T) with d(u) = d and N(u) \ {v} = {v1,v2,...,v4-1}. Obviously,
d>2 LetT' =T —v. Then T' is a tree with n — 1 vertices and with an
m-matching. By the induction assumption, we have

’ 9 d-1 9 2
H(T) H(T)+m+i=1 (d+d(vi)—d+d(”i)_1)

v

2 % 2 2
fin—1,m) + d—ﬁ"‘; (d+d(vi) - d+d("h‘)"1)

2(n-2m) 2(n—-2m+1) 2(m-1) 2(m —1)
n—m n—m+1 n-m+1 n-m+2

= f(n’m)+

2 & 2 2
IEESRP (d+d(v,-)_d+d(v,-)—1)
2n dm 2n—6m+4 2m -2
n—m n-m+1 n—-m+2
d-—1

f(n,m) +

2 2 2
+d—ﬁ+§(d+d(m) - d+d(vi)—1)‘

Now, we consider the following two cases.
Case 1. d(v;)>22fori=1,2,...,d—1.
In the case, we have

2n—4m 2n-6m+4 2m — 2
H > — -
(1) 2 fln,m)+ n—m n—-m+1 n—m+2

2 2 2
oyt 1)(d+2 d+1)
2n—-4dm 2n-6m44 2m —2

= fln,m)+ n-m n-m+1 n-m+2
2d—2_2d—4
d+2 d+1°

413



Moreover, note that T has an m-matching and d < n — m. Then Lemma 2.4(2)
implies that

2d—2_2d—4>2n—2m—2_2n—2m—4
d+2 d+1 =~ n—-m+2 n—-m+1"

That is,

2n—4m 2n—6m+4 2m—2
> - -
HT) =2 f(n,m)+ n—m n—m+1 n—m+2
2n—2m—-2 2n—-2m-4
n—-m-+2 n—m+1

= 5 m)+2n—4m_ 4n — 8m 2n —4dm
- ™ n—m n—-m+1 n—m+2
= f(n,m)+ 4n —8m

(n—m)(n—-m+1)(n—m+2)
>  f(n,m).

Case 2. There exists some i (1 < i < d— 1) such that d(v;) = 1.
Without loss of generality, we assume that d(vi) = d(v2) = -+ =
d(vg) =1 and d(v;) > 2for k+1 < i < d-1, where £ > 1. Then we
have
2n—-4m 2n—-6m+4 2m -2

HT) 2 f(n,m)+

- n-m n-m+1 n-m+2
d-1
2 2 2 2 2
L (L __Z -
TS (d+1 d)+i=zk;1(d+d(v.~) d+d(ve)—1)
2n—4m 2n—-6m+4 2m — 2
2 fln,m)+ n-m n-m+l n-m+2
2 2k 2k 2 2
+m+m‘7+(d"°‘1)(m‘m)
2n—4m 2n—-6m+4 2m — 2
= f(n,m)+ n-m n—-m+1 n—m+2
20-2k~2 2d—4k-4 2k
d+2 d+1 d’

Note that T has an m-matching, k < n—2m and d < n—-m. Then

Lemma 2.5 implies that

2d — 2k — 2 2d—4k—4_2§ 2m -2 +2n—6m+4_2n—4m
d+2 d+1 d " n—-m+2 n—m+1 n—-m
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That is,
2n—4m 2n—-6m+4 2m — 2

HT) =2 f(n,m)+

- n—m n-m+1 _n—m+2
+ 2m — 2 2n—6m+4_2n—4m
n—m+2 n—m+1 n—m
= f(n,m).

The equality H(T') = f(n,m) holds if and only if equality holds throughout
the above inequalities. That is, if and only if TV = T%(n — 1,m), d(v;) = 1
for1<i<n—-2m,d(y;))=2forn-2m+1<i<d-landd=n-m.
Thus T = T%(n, m). a
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