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ABSTRACT. Let G be a finite abelian group, and let S be a
sequence over G. Let f(S) denote the number of elements in
G which can be expressed as the sum over a nonempty subse-
quence of S. In this paper, we determine all the sequences S
that contains no zero-sum subsequences and f(S) < 2|5} - 1.
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1. INTRODUCTION

Let G be a finite abelian group (written additively)throughout the
present paper. J(G) denotes the free abelian monoid with basis G,
the elements of which are called sequences (over G). A sequence of
not necessarily distinct elements from G will be written in the form
S=g-ge=[1" 0= [Ty 9%) € F(G), where vg(S) > 0
is called the multiplicity of g in S. Denote by |S| = k the number
of elements in S (or the length of S) and let supp(S) = {g € G :
vg(S) > 0} be the support of S.

We say that S contains some g € G if v4(S) > 1 and a sequence
T € F(G) is a subsequence of S if vg(T') < v4(S) for every g € G,
denoted by T'|S. If T|S, then let ST~! denote the sequence obtained
by deleting the terms of T from S. Furthermore, by o(S) we denote
the sum of S, (i.e. 0(S) = Yf; 0 = e Va(S)g € G). By 3(S)
we denote the set consisting of all elements which can be expressed
as a sum over a nonempty subsequence of S, i.e.

E(S ) = {o(T) : T is anonempty subsequence of S}.

We write f(S) = |Y_(S)], < S > for the subgroup of G generated
by all the elements of S.
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Let S be a sequence over G. We call S a zero — sum sequence if
o(S) = 0, a zero — sum free sequence if (W) # 0 for any subse-
quence W of S, and squarefree if vg(S) < 1 for every g € G. We
denote by A*(G) the set of all zero-sum free sequences in F(G).

Let D(G) be the Davenport’s constant of G, i.e., the smallest
integer d such that every sequence S over G with |S| > d satisfies 0 €
3(8). For every positive integer r in the interval {1, ..., D(G)—-1},
let

fe(r) = min f(S), (1.1)

S,|S|=r

where S runs over all zero-sum free sequences of r elements in G.
How does the function fg behave?

In 2006, Gao and Leader proved the following result.

Theorem A [5] Let G be a finite abelian group of ezponent m.
Then

(i) If1<r<m-—1 then fo(r)=r.

(%) If ged(6, m) = 1 and G is not cyclic then fg(m) =2m — 1.

Recently, Sun[10] showed that fg(m) = 2m — 1 still holds without
the restriction that gcd(6, m) = 1.

Using some techniques from the author [11], the author [12] proved
the following two theorems.

Theorem B(12, 8] Let S be a zero-sum free sequence over G such
that < S > is not a cyclic group, then f(S) > 2|S| - 1.

Theorem C [12] Let S be a zero-sum free sequence over G such
that < S > is not a cyclic group and f(S) = 2|S|—1. Then S is one
of the following forms

(i) S =a*(a+g)¥, x > y > 1, where g is an element of order 2.

(i) S = a*(a+g)¥g, x = y > 1, where g is an element of order 2.

(iii) S = ab, z > 1.

However, Theorem B is an old theorem of Olson and White [8]
which has been overlooked by the author. For more recent progress
on this topic, see [4, 9, 13].

The main purpose of the present paper is to determine all the
sequences S over a finite abelian group such that S contains no zero-
sum subsequences and f(S) < 2|S| — 1. To begin with, we need the
notation of g-smooth.

Definition 1.1. [7, Definition 5.1.3] A sequence S € F(G) is called
smooth if S = (n19)(nag) - --- - (mg), where |S| e N,ge G, 1 =

434



np<-o- Sy, n=ny 40+ < ord(g) and 3 (S) ={g,..., ng} (
in this case we say more precisely that S is g-smooth).

We have

Theorem 1.1. Let G be a finite abelian group and let S be a zero-
sum free sequence over G with f(S) < 2|S| — 1. Then S has one of
the following forms:

(i) S is a-smooth for some a € G.

(ii) S = a*b, where k € N and a,b € G are distinct.

(i) S = akb!, where k > | > 2 and a,b € G are distinct with

2a = 2b.
(iv) S = a*b'(a — b), where k > 1 > 2 and a,b € G are distinct

with 2a = 2b.
For a sequence S over G we call
h(S) = max{vy(S)lg € G} € [0, |S]]
the mazimum of the multiplicitiesof S.

Let S = o™WWT with z > y > h(T), then Theorem 1.1(i) can be
stated more precisely as that S is a-smooth or b-smooth.

2. SOME LEMMAS
Let @ # Go C G be a subset of G and k € N. Define
f(Go, k) = min{f(S) : S € F(Go) zero — sumfree, squarefree and |S| = k}

and set f(Go, k) = oo, if there are no sequences over Gy of the above
form.

Lemma 2.1. Let G be a finite abelian group.
(1) fkeNand S=5,: -+ - Sx € A*(G), then

f(8) > f(S1)+ -+ f(Sk).
@) If GoC G, k€N and f(Go, k) >0, then

=1, if k=1,
=3, if k=2,

f(Go, k) >5, if k=23,
>6, if k=3 and 29g#0 forall ge Gy,
> 2k, if k>4.
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Proof. 1. See [6, Theorem 5.3.1].

2. See [6, Corollary 5.3.4].
O

Lemma 2.2. Let a, b be two distinct elements in an abelian group
G such that a?b? € A*(G), 2a # 2b,a # 2b, and b # 2a. Then
f(a®¥?) =8.

Proof. It is easy to see that a, 2a, b, 2b, a +b, a+2b, 2a + b, 2a+ 2b
are all the distinct elements in 3~ (a2b%). We are done. O

Lemma 2.3. Let S = a*b be a zero-sum free sequence over G. If
S = akb is not a-smooth, then f(S) = 2k + 1.

Proof. The assertion follows from the fact that a, ..., ka, b, a +
b, ..., ka + b are all the distinct elements in 3" (a*b). (W]

Lemma 2.4. {10, Lemma 4] Let S be a zero-sum free sequence over
G. If there is some element g in S with order 2, then f(S) > 2|S|—

Lemma 2.5. Let k > | > 2 be two integers, and let a and b be
two distinct elements of G such that a*bt € A*(G) and a*b is not
smooth. Then we have

(i) If 2a # 2b, then f(a*b') > 2(k +1).

(4) If 2a = 2b, then f(a*b!) = 2(k +1) — 1.

Proof. If nb # sa for any n and s with 1 <n<land 1< s <k,
then ra + 8b,r+s # 0,0 < r <k, 0 < s < b are all the distinct
elements in ¥ (a*b'), and so

F@*)y =kl + kE+1>2(k+1).

Now we assume that nb = sa for some n and s with 1 <n <! and
1< s < k. Let n be the least positive integer with nb=sa,1 <n <
l,1<s<k.Then n>2and s> 2 by our assumptions. It is easy
to see that

a,..., ka,..., (k+[é]s)a

b, a+b, ...,b+ka,...,b+(k+[l_Tl]s)a,

......

(n=1)b, ..., (n—)b+ka, ..., (n—l)b+(k+[———n—'—+—1] Ja
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are all the distinct elements in }_(a*?!), and so
! —
n

-n+1

1 l
Js+ +1+k+] Is

f@%6=k+%k+1+k+[

=nk—-s+1)+ls+s-1.

Since n(k—s+1)+Ils+s—-1-2(k+l)=(n-2)(k—s)+ (I —-1)(s—
2) 4 n — 3, we have f(a*b’) > 2(k + 1) — 1 and the equality holds if
and only if n = s = 2, that is 2a = 2b. This completes the proof.

O

Remark: Note that if akb' € A*(G), k > 1 > 2, then the condi-
tions that a*b’ is smooth and 2a = 2b cannot hold simultaneously.
Otherwise, we may suppose that 2a = 2b and a*b' is a-smooth (the
case that a*b! is b-smooth is similar), then b = ta, 2 <t < (k+1). It
follows that b+ (t-2)a =2(t—1)a=2b-22a=0,0<t—-2< k-1,
which contradicts the fact that a*b' € A*(G).

Lemma 2.6. [12, Lemma 2.9]Let S = a*blg, k > | > 1 be a zero-
sum free sequence over G with b — a = g and ord(g) = 2, then
f(S)=2k+1)+1.

Lemma 2.7. Let S; € F(G) and a, g € G such that S = S1a €
A*(G), S is g-smooth and S is not g-smooth. Then f(S) = 2f(S1)+
1.

Proof. If a €< g >, then >(S) = >_(S1) U {a} U (32(S1) + a), and
so f(S) =2f(S1) + 1.

Ifae<g>, welet) (S1)={g,...,ng},a=1tg,t €N, thent >
n+2 by our assumptions. It follows that }(S) = {g, ..., ng, tg, (t+
l)g, ..., (t +n)g}, and so f(S) = 2f(S1) + 1. 0O

Lemma 2.8. Let k > 2 be a positive integer and a, b, c three distinct
elements in G such that a*bc € A*(G) and a*be is not a-smooth.
Then f(a*bc) > 2k + 4.

Proof. Observe that f(a¥bc) > 2k + 4 when a¥bc is b or c-smooth.
We consider first the case that a*b is a-smooth (the case that afc
is a-smooth is similar). It is easy to see f(a*b) > k + 2, and so
f(akbe) = 2f(a*b) + 1 > 2k + 5 by Lemma 2.7. Therefore we may
assume that both a*b and a*c are not a-smooth in the remaining
arguments. We divide the proof into three cases.
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(i) If a¥(b + ¢) is not a-smooth, then a, ..., ka, b,b+a, ..., b+
¢, b+c+a, ..., b+c+ ka are distinct elements in ¥ (a*bc), and so

fl@*be) > k+k+14+k+1>2k+4.

(i) If neither a*(b—c) nor a*(c—b) is a-smooth, then a, ..., ka, b, b+
a,..., ¢ c+a, ..., ct+ka, b+c+ka are distinct elements in 3~ (a¥bc),
and so

fla®be) > k+k+1+k+1+1>2k+5.

(iii) If a®(b+c) is a-smooth and a*(b—c) (or a¥(c—b) ) is a-smooth,

then we have

b+c=sa, b—c=ta, 1<s,t<k+1, s#t.

Itis easy tosee that q, ..., ka, (k+1)a, ..., (k+3)a, ¢, c+a, ..., c+
(k + t)a are all distinct elements in Y (a*bc), and so

fla®be) =k +s+k+t+1>2k+4.

The second equality holds if and only if (s, t) = (1, 2) or (2, 1). We
are done. O

The following corollary follows immediately from Lemmas 2.1, and
2.7 and the proof of Lemma 2.9.

Corollary 2.1. Let k > 1 be a positive integer and a, b, ¢, d four
distinct elements in G such that a¥bed € A*(G) and a*bed is not
a-smooth. Then f(a*bed) > 2k + 6.

Lemma 2.9. Let a,b,z be three distinct elements in G such that
akblz € A*(G), k>1>1,2a=2b, and x # a — b, then f(akblz) >
2k +1+1)+1.

Proof. If there are no distinct pairs (m, n) # (0, 0),(m1, n1) #
(0,0),0 <m,m < k,0<n,n; <l such that ma + nb = mja +
nb + z, then Y (akblz) = Y (akb!) U {2} U (T (a*¥") + z), and so
fla*b'z) = 2f(a*t) +1=4(k+1)—1>2(k+1+1)+ 1.

If there are two distinct pairs (m, n) # (0, 0), (71, n1) # (0, 0), 0 <
m, my < k, 0 < n, ny <! such that ma + nb = mija + n1b + z, then
z=a-borz=ua+bl<u<(k+l—-1)orz=wbv>2o0r
z=ta,t> 2.

Let z = ua+b1 < u< (k+1-1), thena,...,(k+1+
u)a, b, -+, b+ (k + I + u)a are all distinct elements in Y (a*bz),
and so f(akblz) = 2(k+1+u) +1>2(k+1+1)+ 1.
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Let z = vb, 2 < v < (k+1!) (the case that = = ta, ¢ > 2 is similar).
If k is even, then b, ..., (k+1+v)b, a,a+b, ...,a+(k+1—2+v)b
are all distinct elements in }_(a*b'z), and so f(a*b'z) = 2(k+1+v—
1)+1 2> 2(k+1+41)+1. If kis odd, thend, ..., (k+I+v—1)b, a, a+
b, ...,a+ (k+!—1+wv)b are all distinct elements in }_(a*b'z), and
so f(a*b'z) = 2(k+14+v—1)+1>2(k+1+1)+1. Wearedone. O

Lemma 2.10. Let a, b,z be three distinct elements in G such that
a*’z € A*(G), k > 2 and a*b?z is not a-smooth or b-smooth, then
f(a*b?z) = 2k + 5 if and only if 2a = 2b and x = b — a.

Proof. We divide the proof into four cases.

Case 1 a*b? is not smooth and 2b = sa, 2 < s< k. Ifz =b —a,
thena, ..., (k+s)a,b—a,b, ..., b+ (k+s—1)a are all the distinct
elements in 5" (a*b%z), and so f(a*b?z) = 2(k+s)+1. Ifz = ta, 2 <
t<k,thena,...,(k+s+t)a, b, ..., b+ (k+t)a are all the distinct
elements in ¥ (a*b%z), and so f(akb?z) = 2(k+t) +s+1. Ifz =
ta+b, 1<t <k, thena,..., (k+s+t)a, b, ..., b+(k+t+s)aareall
the distinct elements in 3" (a*b%z), and so f(akb%z) = 2(k+t+s)+1.
Therefore f(a*b?z) = 2k + 5 if and only if 2a = 2band £ = b - a in
this case.

Case 2 a*b? is not smooth and 2b = sa, s > k or 2b €< a >, then
f(a*b?) = 3k + 2. If k > 3, then f(akb%z) > f(a*b?) +1=3k+3 >
2k +5. If k =2 and f(abx) = 7, then f(a?b’z) > f(abz) + f(ab) =
T+3>2k+5 If k=2and f(abz) =6 (ie,z=a+borz=a—-b
or £ = b— a), then it is easy to check that f(a%b?z) > 2k + 5.

Case 3 a*b? is smooth and a¥b%z is not smooth. If ak¥? is a-
smooth, then f(a*b?z) = 2f(a*?) +1>2(k+2x2)+1 > 2k +5.
If a¥b? is b-smooth, then f(a*b?z) = 2f(a*b?) +1 > 2(2+2k) +1 >
2k + 5.

Case 4 a*b%z is z-smooth. We have f (akb2x) >21+2k+2x3>
2k + 5.

This completes the proof of the lemma.

O

3. PROOFS OF THE MAIN THEOREMS

To prove the main theorem of the present paper, we still need the
following two obviously facts on smooth sequences.

Fact 1 Let r be a positive integer and a € G. If WT; € A*(G) is
a-smooth foralli=1,...,r,then S=T} - --- . T,W is a-smooth.

439



Fact 2 Let r, k, | be three positive integers and a, b two distinct
elements in G. If S € A*(G) is a-smooth and a*b'T; € A*(G) is a-
smooth or b-smooth for all i = 1,...,r, then the sequence Sa*b'T} -
... . T, is a-smooth or b-smooth.

Proof of Theorem 1.1:

We start with the trivial case that S = a* with k € Nand a € G.
Then Y (S) = {a,...,ka}, and since S is zero-sum free, it follows
that k < ord(a). Thus S is a-smooth.

If S = Sig € A*(G), where g is an element of order 2, then
f(S) >2|S| - 1 by Lemma 2.4, and f(S) > f(S1) + 2 since Y_(S) D
Y(S1)U {g, g+ 0(S1)} IfS = Sig192 € A*(G), where g; and
go are two elements of order 2, then f(S) > 2|S| since > (S) 2
3 °(S191) U {g2, 91 + 92, g1 + g2 + o(S1)}. Therefore it suffices to
determine all S € A*(G) such that S does not contain any element of
order 2 and f(S) < 2|S|—1, and when f(S) < 2|S| -1, determine all
Sg € A*(G) such that g is an element of order 2 and f(Sg) = 2|S|+1.

To begin with, we determine all S € A*(G) such that S does not
contain any element of order 2 and f(S) < 2|S|—1. Let S = a®b¥c*T
with ¢ > y > 2 > h(T) and q, b,c & supp(T’). The case that
[supp(S)| = 2 follows from Lemmas 2.3 and 2.5 and the remark after
Lemma 2.5. Therefore we may assume that |supp(S)| > 3 and S
does not contain any element of order 2 in the following arguments.

If £ = y = 2, then S allows the product decomposition

S=8 -8,

where S; =abc- ---,i =1, ..., z are squarefree of length |S;| > 3.
By Lemma 2.1, we obtain

s x
£ 23 £y 22 1S = 28],
i=1 i=1
Ifz>y>2z2>2h(T),orz >y > 22 h(T), then S allows a
product decomposition

S=T-- -T,W
having the following properties:
o 7 > 1 and, for every ¢ € [2, r], S; € F(G) is squarefree of
length |S;| = 3.
o W € F(G) has the form W =a*, k> 1or W =akb, k > 1
or W=akth, k>1>2.



We choose a product decomposition such that k is the largest integer
in W = a* (or a¥b or a*b', k > | > 2) among all such product
decompositions. We divide the remaining proof into three cases.

Case 1 W =a*, k > 1. If T; = zyz with a € {z, y, 2} for some
i, 1 < i < r such that aFzyz is not a-smooth whenever k > 1, then
S admits the product decomposition

S=Ty- - T1TiTipy - -+ - T,

where T;, i = 1, ..., r have the properties described above and T} =
a*zyz. By Lemma 2.1, and Corollary 2.1, we get

™ T
£(8) 2 Y F(Ty) + F(T) 2 D 2T + 2|T;| = 2IS).
J#i J#i
If T; = azy for some i, 1 < i < 7 such that a**+1zy is not a-smooth,
then S admits the product decomposition

S=Ty -+ T\ T{Tiyy- -+ - T,

where T}, 2 =1, ..., r have the properties described above and T =
a*tlzy. By Lemmas 2.1 and 2.8, we get

r T
F(8) 2D F(T) + F(T) 2 Y 24Ty + 2T = 2|$].
i i
Therefore we have proved that if S is not a-smooth and W = a*,
then f(S) = 2|S]|.

Case 2 W =a*b, k > 1.

Let T; = zyz with a & {z,y, 2z} forsome ¢, 1 <i<r. Ifk =1,
then T,W = abzyz. If k = 2, then T;W = abz-ayz. If k > 3 and one
sequence among three sequences a*lyz, a*~1zz, and a*~lzy, say,
a*~lyz is not a-smooth, then T;W = abz - a*~1yz. It follows from
Lemmas 2.1 and 2.8 that f(T;W) > 2|T;|+2|W|, and so f(S) > 2|S|.

Let T; = bxy for some 4,1 < i < r, then k > 2. If £k = 2, then
T,W = abz - aby. If k > 2 and a*~1by (or a*~1bz) is not a-smooth,
then T;W = abz - a*~lby (or T;W = aby - a*~1bz). It follows from
Lemmas 2.1 and 2.8 that f(T;W) > 2|T;|+2|W]|, and so f(S) > 2|S|.

Let T, = abz for some i,1 < ¢ < r, then T;W = ak+1p2z. If
a**1b2z is not a-smooth or b-smooth, then by Lemma 2.10 we have
F(TW) > 2/T;| + 2IW], and so £(S) > 2]5].

Therefore we have proved that if S is not a-smooth or b-smooth,
then f(S) > 2|S| in this case.
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Case 3 W = a*b!, k > 1 > 2. If 2a # 2b and a*b' is not smooth,
then by Lemma 2.5 we have f(W) > 2|W| and we are done. Note
that the conditions that 2a = 2b and e’ is smooth cannot hold
simultaneous. Here we omit the similar arguments as we have done
in Case 1.

Subcase 1 2a = 2b.

Let T; = zyz with a ¢ {z, y, 2z} for some i,1 < ¢ < r, then
T.W = abzy - a*~1p'-1z. It follows from Lemmas 2.1 and 2.9 that
F(TW) 2 2|Ti| + 2|W|, and so f(S) > 2|S].

Let T; = byz for some ¢,1 < ¢ < r,thenk > 1 +1, ;W =
aby - a*~1btz. It follows from Lemmas 2.1 and 2.9 that f(T;W) >
2|T;| + 2|W|, and so f(S) > 2|S|.

Let T; = abx for some i, 1 < ¢ < r, then T,W = aF*+1pi+1z. If
a*+1p2z is not a-smooth or b-smooth, then by Lemma 2.10 we have
f(TW) 2 2|T| + 2|W|, and so f(S) > 2|S|.

Subcase 2 a*b' is smooth, a # 2b, and b # 2a. Then W =
(a26?)*Wy, W) = a® or Wy = af1b. If §; = SW~IW, is not a-
smooth or b-smooth, then f(S;) > 2|5/, and so by Lemmas 2.1 and
2.2 f(S) > sf(a??) + f(S1) > 85 +2|S1| = 2|S|. If §; = SW—IwW;
is a-smooth or b-smooth, then S is a-smooth or b-smooth.

Subcase 3 a = 2b.

Let T; = zyz with a, b € {z, y, z} for some i, 1 <i <r, then it is
easy to see that f(T;W) = f(a*blzyz) = f(b?*+zyz). It follows from
Corollary 2.1 that 4***!zyz is b-smooth or f(TW) > 2(|Ti| + [W]).

Let T; = bzy with a, b ¢ {z, y} for some 7,1 < i < 7, then
f(T:W) = f(a*bHlzy) = f(b**++1zyz). Tt follows from Lemma 2.8
that b2*++1zy is b-smooth or f(T;W) > 2(|Ti| + |W)).

Let T; = abr with a # z,b # « for some ¢,1 < 7 < r, then
f(TiW) = f(akt1bi+1z) = f(b%++32y2). Tt follows from Lemma
2.3 that b?++37 is b-smooth or f(T;W) > 2(|T3| + |W]).

Subcase 4 b = 2a. Similar to Subcase 3.

Therefore we have proved that if S is not a-smooth or b-smooth,
then f(S) > 2|S| — 1 and f(S) = 2|S| — 1 if and only if S = a*b or
S=akbl, 20 =2bk>1>2.

Finally, when f(S) < 2|S| — 1, we will determine all Sg € A*(G)
such that g is an element of order 2 and f(Sg) = 2|S| + 1.

(i) If S is a-smooth (the case that S is b-smooth is similar), we
set 3 (8) ={a, ..., na}, n < 2|S| -1, then g & Y (S) since g is an
element of order 2 and Sg € A*(G). It follows that ) (Sg) = 3 (S)uU
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{g}U{g+>>(S)}, and so f(Sg) = 2n+1. Therefore f(Sg) < 2|S|+1
if and only if S = a*.

(ii) S = a*b is not smooth, by Lemma 2.8, f(a*bg) < 2k + 1 only
if a®bg is a-smooth, which is impossible since g is an element of order
2 and a*bg € A*(G).

(iii) S = a*b!, 2a = 2b, k > | > 2. The result follows from Lemmas
2.5 and 2.9.

Therefore we have proved that if S =a®¥ - --- € A*(G),z >y >
.-+, where a, b, ... are distinct elements of G and f(S) < 2|S| -1,
then S is a-smooth or b-smooth or S = a*b,b & Y (a*) or § =
afFt k>1>22a=2bor S=a*%, k>1>2,2a=2b,g=0a-b.
Theorem 1.1 is proved.
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