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Abstract

In this paper, we give a criterion to judge whether a linear code
over the ring is self-dual. Moreover, we introduce the generating set
in standard form for the cyclic codes over F, + vFp and characterize
the structure of cyclic codes over the ring. Then we prove that
cyclic codes over the ring are principally generated and obtain the
unique generating idempotent for cyclic codes of length n, where n
is coprime to p.
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1 Introduction

Codes over finite rings have been studied in the early 1970s. They have
received much attention recently after Hammons et al. showed that certain
good nonlinear binary codes could be found as images of linear codes over
Z4 under the Gray map [2]. However, these studies are concentrated on the
situation in which the ground rings associated with codes are finite chain
rings in general. In such cases, linear codes over certain finite rings have
been characterized in several papers [1, 3, 5]. The case when the ground
ring is not a finite chain ring seems to be more difficult. More recently,
linear codes over the ring F, + vFp, where v2 = v and p is a prime, which
is not a chain ring but a semi-local ring have been considered. In [8] Zhu
et al. gave some results about cyclic codes over Fs +vF5,, where it is shown
that cyclic codes over the ring are principally generated; in (7] Zhu et al.

*E-mail addresses: zghui2012@126.com (G. Zhang); liangchen_1i@163.com(L. Li).

ARS COMBINATORIA 116(2014), pp. 445-455



studied (1 — 2v)-constacyclic codes over Fy, +vF,, where p is an odd prime.
They determined the image of a (1 — 2v)-constacyclic code over F, + vF,
under the Gray map and the generator polynomials of such constacyclic
codes over Fp, + vF}, and proved that constacyclic codes over the ring are
principally generated.

In this paper, we extend previous works on the linear codes over ring
F, + vF, in two directions. First, we explore the dual codes over the
ring and under what conditions is a linear code over the ring self-dual, see
Section 3. Second, we describe that the structure of cyclic codes and their
duals over Fp, + vFp. Unlike the technique used in the mentioned papers,
we first give the parity check matrices for linear codes over Fj, + vF, and
the characterization of the torsion codes associated with the linear codes
and their duals over Fj, 4+ vFy,; they are used as a tool to study linear codes
over F, + vF,. In addition, by virtue of the generating set in standard
form we try to characterize the structure of cyclic codes over F, + vF, see
Section 4. The necessary notations and some known results are provided
in Section 2.

2 Preliminaries

Let F}, be a finite field with p elements, where p is an odd prime. Through-
out this paper, let R be the commutative ring F,+vF, = {a+vbla,b € F,},
where v2 = v. The ring R is a finite Frobenius ring. Let R™ be the R-
module of n-tuples over R. A linear code C of length n over R is an
R-submodule of R*. For any linear code C of length n over R, the dual
code C* is defined as C1 = {z € R" | z-¢ = 0,Vc € C}, where z - ¢ denotes
the standard Euclidean inner product z and ¢ in R®. Notice that CL is
linear. If C C C*, then C is called self-orthogonal. Moreover, if C = CL,
then C is called self-dual. In~[6], it was proved that for any linear code C
over a finite Frobenius ring R, |C||Ct| = |R|™.

A linear code C of length n over R is cyclic if the code is invariant
under the shift operator (cp,cy, -+ ,¢n—1) — (¢n-1,C0,** ,cn—2). Cyclic
codes of length n over R can be identified as ideals in the quotient ring
R[z]/(z™ — 1) via the isomorphism from R"™ to R[z]/{(z" — 1) defined by
c = (co,C1, " y6n-1) P c(z) = co+e1x+ -+ + cp—1z"" L. Then C is
identified with the set of all polynomial representations of its codewords.

Recall some facts about the cyclic codes over finite field F,,. Every
cyclic code C of length n over F, is a principal ideal in Fp[z]/{(z™ — 1).
Then there is a unique monic polynomial g(z) of minimum degree in C.
This polynomial generates C' and divides "™ — 1. This polynomial g(z) is
called the generator polynomial for C. Let f(z) be a monic polynomial in
Fplz])/{(z™ — 1) and C a cyclic code. If f(z) generates C, then f(z) is the



generator polynomial in C if and only if f(z) divides z" — 1. It will be
convenient to adopt the notation C = (g(z)) to denote the fact that C is
the ideal generated by g(x) and that g(z) is the generator polynomial for
C.

We know that the ring R has two maximal ideals (v) and {1 —v). Their
residue fields are both Fy,. Thus we have two canonical projections defined

as follows:
R=F,4+vF, — R/(1-v)=F,

r+uvg—1+gq;

and
R=F,+vF, — R/(v) = F,

r+ug—rr.

We simple denote these two projections by “~” and “ — ”, respectively.
Denote by 7 and 7 the images of an element » € R under these two projec-
tions, respectively. These two projections can be extended naturally from
R™ to F} or from R|z] to Fp[z].

For k > 0, I denotes the k x k identity matrix. Any nonzero linear code
C over R is permutation-equivalent to a code generated by the following
matrix:

Ik1 (1 - 'U).Bl vA, vAz + (1 - 'U)Bz vAs + (1 - 'U)Ba
G= 0 ’ka, 0 ‘UA4 0 ,
0 0 (1 —v)lg, 0 (1 —v)By

where A; and B; are matrices with entries in F, for ¢,j = 1,2,3,4. Such
a code C is said to have type p?*1pk2p*s and |C| = p?ki+ka+ka[4, 7], For
later convenience the above generator matrix can be written in the form:

I, (1-v)B; vA; vD1 + (1 —v)Ds
G=10 v, 0 vCy , (%)

0 0 (1 — )1, (1-v)Cs

where D, = (A, A3), D2 = (B2, B3),C1 = (A4,0),Cz = (0, By).
Note that any element ¢ of R™ can be expressed as ¢ = a + vb, where
a,b € F. Let C be a linear code of length n over R with generator matrix

in form (*). Define

C1={a € Fjla+vb e C,for some b € F'}

and
Co={a+be€ Fjla+vbe C}.
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Obviously, C and C; are linear codes over F,. The code C) is permutation-
equivalent to a code with generator matrix of the form:

(s B 0 B B
1=\0 0 I, 0 B,)

where B; are p-ary matrices for 1 € {1,2,3,4}. And the code C; is
permutation-equivalent to a code with generator matrix of the form:

G (T 0 A1 A A
27\0 I, 0 A4 0)

where A; are p-ary matrices for ¢ € {1,2,3,4}. It is easy to see that
dimC) = ky + k3,dimC, = k;y + k3.

For a code C of length n over R, let a € R. The submodule quotient is
a linear code of length n over R, defined as follows:

(C:0)={z € R*|az € C}.

The codes (C: v) and (C : (1 — v)) over the field F, are called the torsion
codes associated with the code C over the ring R.

3 Self-dual codes over F, +vF,

We begin with a lemma about the torsion codes associated with the code
over the ring R, which will be used throughout the paper.

Lemma 3.1. With notations as above. Let C be a linear code of length n
over R. Then (1) (C :v) =Cy; (2) (C: (1-v))=Ch.

Proof. (1) For any y € (6'—\1)), there exists an z € (C : v) such that y = 7.
Let £ = r 4 vq, where r,qg € F'. Then T =r +g. Since vz € C, we have
v(r + q) = v(r + vq) = vz € C, which implies that r + g € C3. Therefore
y=F=r4+q€ Cy. It follows that (C : v) C Cj.

Let z € C;. Then there exists an element z+vy € C such that z = z+y.
Hence v(z + y) =v(z+ vy) €Candz+ rt+ye€ (C : v). Thus we have that
z=z4+y=z+y€(C: v) Hence (C v) 2 Ca. Therefore we get the
desired result.

(2) Let y be an element of (C : (1 — v)), then there exists some z € (C :
(1 — v)) such that y = Z. Suppose that z = r + vg, for r,q € Fg. Then
T = r. From (1 —v)z € C we have that r—vr = (1—2)r = (1-v)(r+vq) =
(1 — v)z € C, which leads to r € C;. Hence y =T = r € C). Therefore we
obtain that (C : v) C C;.



If r is an element of Cy, then we have that r +vq € C for some g € F'.

Since (1 —v)r = (1 —v)(r + vq) € C, which shows that r € (C : (1 -
v)). Hence r = 7 € (C:(1—w)), then (C:(1-v)) 2 C;. Therefore
(C: (1 —v)) = C1, as required. |

In the following, AT denotes the transpose of the matrix A.

Theorem 3.2. Let C be a linear code of length n over R with generator
matriz in form (x). Then

(1)

v(—AT) 0 vy 0

vE; + (1 —v)Ep P Q I
H= ,
( (1-0)B) (-v)k 0 0 )

where Ey = (—Ag, BaA1~A3)T, B2 = (A4B1—B,,—B3)T, P = (—A4,0)7,
Q@ = (0, —By)T; k = ky +ko+ ks, is a generator matriz for CL and a parity
check matriz for C.

() (€ o)t = (€T o) (T A -0+ = CL: A= o).
Proof. (1) It is straightforward to check that HGT = 0. Let D be the

R-submodule generated by H, then D C CL. Since R is a Frobenius ring,
we have that |C||C*| = |R|™. It follows that

|ct| = |R[" — " — p2n—k1)—ka—k3
|C| p2k1+k2+k3 p :

Note that |D| = pn—*)+katks — p2(n—ki)=ka-ks and we obtain that |D| =
|CL|, hence D = C+L.

(2) We first prove that (CL:v) C ((C:v))t. Let z € (Ct : v) and
y € (C : v). Then vz € C and vy € C, so (vz)(vy)T =0, i.e., v(zyT) =
0. Hence zyT € (1 — v)R, and 57 = 0, which implies that (CL :v) C
((C :v))t. On the other hand, by Lemma 3.1 and Theorem 3.2(1), we

have that _
dim(CL :v)=n—k+ks=n—ky —ko;

AJ. ————
dim(C:v) =n—dim(C:v)=n— (k1 +k2)=n—k; —ks.

——— . L ——— ————
Hence dim(C*+ : v) = dim(C : v) , which follows that ((C : v))* = (CL : v).
The proof of the second equality is similar to that of the first one and
is left to the reader. ' O

Corollary 3.3. Let C be a linear code of length n over R with generator
matriz in form (%). Then C is self-dual if and only if both the following
two conditions are satisfied:
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(i) C is self-orthogonal;
(‘ii) n = 2(ky + k), k2 = k3.

Proof. Now suppose that both Conditions (i) and (ii) are satisfied. Then
we have that

IC| = p2k1+kz+k3 = p2(k1+kz), |C"L| = p2(n—k)+kz+ks — p2(k1+kz).

Note that C C CL, and then C = C*, that is, C is self-dual.
Suppose that C is self-dual, then C is self-orthogonal. By Lemma 3.1
and Theorem 3.2(1), we have that

dim(C : v) = k1 + ko; dim(CL 1 v) =n — k+ ks = n— ky — ka,
and
dim{C: (1 —v)) = k1 + k3;dim(CL: (1 —v)) =n—k+ky =n — k; — k.
Since C = C*, we have that n = 2(ky + k3), k2 = k3. O

Let A, B be the codes over R. We denote that A® B = {a + bla €
A,be B}

Theorem 3.4. With the above notations, let C be a linear code of length
n over R. Then C can be uniquely expressed as C = vCqy @ (1 — v)Cy.
Moreover, we also have C+ = vCy @ (1 — v)Cy-.

Proof. We first prove the uniqueness of the expression of every element in
vC2 ® (1 — v)Ci. Let vaz + (1 — v)a; = vby + (1 — v)by, where az,b; €
Ca;a1,b1 € Cy. Then v(az — b3) = (1 — v)(by — a;), which implies that
a) = b; and az = bp. Hence [vCe @ (1 —v)C1| = |C1]|C2| = pkrtksphiths =
p2k1 +ha+ks |C|

Next we prove that vCo @ (1 —v)C; C C. Let a € (C : v) and b €
(C:(1—-v)). Then va € C;(1 —v)be C. Setting a = a; + (1 — v)az,b =
by + vba, where al,ag,bl,bz € F;' Then @ = ay € 02,5 = b; € Cy. Thus
va+(1-v)b = va; +(1—v)b; = va+(1—v)b € C. Hence vCo®(1—v)C; C C.
Note that [vCs @ (1 — v)Cy| = |C|, therefore C = vCs & (1 — v)C.

Finally, we prove that the second statement. By the first statement,
Theorem 3.2(2) and Lemma 3.1 we have that

ct = v(m) ®(1—-v)(CL:(1-v))
W€ o)t e -v)((C: -t
= vCf @ (1-v)CE,

which is the desired result. (|
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4 Cyclic codes over F, + vF,

Let R, = R[z]/(z™ - 1) and fi(x), fo(z), -, fs(z) € R,. The ideal gener-
ated by f1(x), fo(x), - , fs(z) will be denoted by (fi(z), fa(z),- - - , fs(z)).
Let f(z) = ap+a1z+a2z%+- - -+apn_17"" !, wherea; € Rfor 0 < i < n-1,
and denote f(z) = dp + iz +++ + 12" Y f(T) = @+ TIT + - +

oy e

Definition 4.1. We say that the set S = {vgi(z), (1 — v)go(z)} is a gen-
erating set in standard form for the cyclic code C = (S) if
(1) For each i € {1,2}, gi(z) is either monic in F,[z] or equals to 0;
(2)If gi(z) # 0, then g;(z)|(z"™ — 1) for each i € {1,2}.

Lemma 4.2. Let S = {vg1(x), (1—v)g2(z)} be a generating set in standard
form for the cyclic code C = (vg,(z), (1 — v)g2(z)}. Then

(1) (C:v) = (g1(z)); (2) (C: (1 - v)) = (g2()),
that is, gi(z) and go(z) are the generator polynomials for cyclic codes
(C :v) and (C : (1 —v)), respectively.

Proof. (1)Obviously, (ﬂ) and (C : (1 — v)) are cyclic codes over ’1:"& S-
iﬁ(ie\vgl(z) € C, we ha\f_ﬂat gi1(z) € (C : v). Then gi(z) = gi(z) €
(C :v). Thus (g:(z)) C (C : v).

Let f(z) € (C : v). Note that vf(z) € C and suppose that vf(z) =
hi(z)vg1(z) + ha(z)(1 — v)g2(x), where hy(z), ho(z) € Rn. Let f(z) =
fi(z)+(1-v) fa(2); ha(x) = hia(z)+(1-v)h12(); ha(z) = har(z)+vheo(z),
where fi(z), f2(z), h11(x), h12(z), h21(x), haa(z) € Fplz]. Then

vf(z) = vfi(z)
= [hn(z) + (1 = v)h12(z)]vg1(z)
+  [ha1(z) + vhaa(2)](1 — v)ga(z)

vhi(z)g1(z) + (1 — v)hay (z)g2(x)
v[h11(2)g1 () — ha1(z)g2(z)] + h21(z)g2(z).

Hence v(fi(z) — h11(z)g1(z) + ha1(z)g2(x)] = ha1(z)g2(z), which implies
that k21 (z)g2(z) = 0 and fi(z) = h11()91(x) —h21(z)g2(z) = A (z)gr(z).
So f(z) = fi(z) = hu(@)i(x) € (91()), which shows that (g(z)) 2
(C :v). Therefore (g;(z)) = (C : v). .

(2) Since (1 —v)gz(x) € C, g2(z) € (C : (1 —v)). Then ga(z) = g2(z) €
(C:(1—v)). Hence (g2(z)) C (C: (1 —v)).

Let f(z) € (C : (1 —v)). Then (1 — v)f(z) € C and suppose that
(1 —v)f(z) = wi(z)vgr(z) + u2(z)(1 — v)ga(z), where uy(x), uz(z) € Rn.
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Let f(z) = fi(z) +vfo(z); vi(z) = uni(z) + (1 —v)ur2(z); u2(x) = ua1(z)+
vugs(z), where f1(z), f2(x), v11(z), u12(z), u21(x), u22(x) € Fp[z]. Then

(1-v)f(z) (1 -v)fi(=)
[ur1(z) + (1 — v)uz(2)vgr (x)
[u21 () + vuza(z))(1 — v)g2(2)

vun(z)g1(z) + (1 — v)ua(z)g2(z)
v[u11(z)91(z) — uz1(z)g2(x)] + ua1(z)g2(z).

o+ u

Hence v[f1(z) + v11(z)g1(z) — uz1(x)ga(x)] = fi(x) — u21(x)g2(x), which
implies that fi(x) — ug1(x)g2(z) = 0 and fi(z) = uz1(z)g2(z). So f(z) =
fi(z) = ua1(z)g2(z)_€ (g2(z)), which shows that (ga(z)) 2 (C: (1 - v))
Therefore (g2(z)) = (C : (1 —v)).

Theorem 4.3. Any nonzero cyclic code C over R has a unique generating
set in standard form.

Proof. We first prove the existence. From Lemma 3.1, (C: (1 —v)) and
(ﬂ) are not all zero. So we may suppose that (C: (1 —v)) # 0 and
(ﬂ) # 0. SiiPE (ﬂ) and (C: (1 —v)) are cyclic codes over F,, we
assume that (C:v) = (q1(2));(C: (1—-v)) = (gﬂ, where g;(z), g2(z)
are the generator polynomials for cyclic codes (C:v) and (C: (1 - v)),
respectively. We will show that C = (vgi1(z), (1 — v)g2(z)).

Since ¢g1(z) € (ﬂ), there is f(z) € (C : v) such that g,(z) = f’(;)
Let f(z) = g1(z)+(1—v) fi(z), fi(z) € Fplz]. Sincevf(z) € C,vg1(z) € C;
Similarly, (1 — v)ga(z) € C. Hence C 2 (vg1(z), (1 — v)ga(z)).

Let f(z) € C. Then vf(z) € C,(1 —v)f(x) € C. We write

f(@) = fi(z) + 1 - v)fa(2) = [1(2) + f2(2)] - vfa(2),

vﬂl_er\e f1(z), fa(z) € Fplz]. Since vf(z) € C, f(z) € (C : v), then f’(;) €
(C :v) = (g1(x)), i.e., fi(z) € (g1(x)). Write fi(z) = w1(z)g1(x), wa(z) €
Fy[z]. Similarly, Since (1 —v)f(x) € C, f(z) € (C : (1 —v)), then f(z) €
(C : (1 -v)) = (g2()), ie., fi(Z) + fa(z) € {g2(x)). Write f1(z) + fo(z) =
ua(z)g2(x), ua(z) € Fp(z]. Thus fa(z) = uz(z)g2(x) — u1(x)g1(z). Hence

f(z) fi(z) + (1 — v) fa()

[fi(z) + fa(z)] — vfa(z)

u2(z)g2(z) — v[ua(z)g2(2) — u1(7)91(2)]
uy (2)[vg1(2)] + uz(z)[(1 — v)g2(z))

which shows that C C (vgi(z), (1 — v)ga2(z))-
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Therefore C = (vg1(z), (1 — v)g2(2))-

If (C:v) = 0, then we choose g;(z) = 0; if (C:(1—v)) = 0, then
g2(z) = 0.

Next we prove the uniqueness of a generating set in standard form for
C. It is obtained from Lemma 4.2 and the uniqueness of the generator
polynomial for cyclic code over finite field F,,. a

Corollary 4.4. The ring R,, is principal.

Proof. Let C be an ideal of R,. According to Theorem 4.3 we have C =
(vgr(z), (1 — v)ga(z)), where {vgi(z),(1 — v)g2(z)} is a generating set in
standard set for C. Note that vgi(z) = v[vgi(z) + (1 — v)ga(z)] and (1 —
v)ga2(z) = (1 — v)[vgi(z) + (1 — v)g2(z)], which imply that C = (vg1(z) +
(1 — v)ga(z)). Then the ring R, is principal. a

Proposition 4.5. The dual C* of a cyclic code C over R is cyclic.
Let gi(z)hi(z) = z™ — 1, go(x)ha(z) = 2™ — 1. Let

~ ~ 1
Fa(@) = %8t @Vhy(2), Fa(a) = a9e8ay(2)

be the reciprocal polynomials of 111(:1:) and ho(z), respectively. We write
hi(z) = geyha(2); h3(2) = glgyha(z)-
Theorem 4.6. Let C be a cyclic code of length n over R with a generating

set in standard form {vgi(z), (1 — v)g2(x)}. Then the generating set in
standard form for the dual code C+ is

{vhi(z), (1 - v)h3(z)}.
Proof. It follows immediately from Theorem 3.2(2) and Lemma 4.2. O

Lemma 4.7. With the above notations, let C = vCo®(1—v)C) be a linear
code of length n over R. Then C is a cyclic code if and only if C, and Co
are both cyclic codes.

Proof. (=) By the fact that (ﬂ) and (C : (1 — v)) are cyclic codes over
F, and Lemma 3.1, it is clear.

(«<=) Let C; and C; be two cyclic codes and 7 be the shift operator.
For arbitrary element ¢ € C, since C = vC; & (1 — v)C}, we may suppose
that ¢ = vea + (1 —v)e1, €1 € Cy, 02 € Ca. Then m(c) = w(vea + (1 —v)ey) =
vm(cg) + (1 —v)w(c1) € vCa® (1 ~v)Cy = C. Hence C is a cyclic code. O

In the following, we explore another approach to describing cyclic code
C over R, involving the generating idempotent which is both idempotent
and generates C. We write C = [e(z)] to denote the fact that e(z) is this
unique generating idempotent of C.
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Theorem 4.8. If n is coprime to p, then every cyclic code C of length n
over R contains a unique generating idempotent e(x), that is, C = [e(z)].
Proof. Since n is coprime to p, there exist two generating idempotents
e1(z), e2(z) in F,[z]/(z™ — 1) such that C; = [e1(z)], C2 = [ez(z)]. Ac-
cording to Theorem 3.4, we have that C = vC2 @ (1 —v)C). Let f(z) € C.
There exist uy(z),uz(z) € Fp[z] such that f(z) = vlua(z)es(z)] + (1 —
v)[uy(z)e1(z)). Note that

f(@) = vlua(z)ex(z)] + (1 - v)[us(z)er(z))
= [u(z) + v(uz(z) — wi(2))][er(z) + v(ea(z) — ex(x))].
On the other hand, for arbitrary element u(z) € R,, setting u(z) = u1(z)+
vug(z), where uy(z),uz(x) € Fplz]. Then
u(z)[e1(z) +v(e2(z) —er())] = u(z){vea(z) + (1 —v)er(z)]
= vui(x) + uz(z)]ex(z)
+ (1 -v)u(z)ei(z)
vC2 ® (1 - 'U)Cl =C.

m

Hence we obtain that (1 — v)ei(z) + vea(z) = ei(z) + v[ea(z) — e1(z))
generates C. Let e(z) = ej(z) + v[ez2(z) — e1(z)). Then (e(z))? = e(z),
hence C = [e(z)]. If there is another d(z) € C such that C = [d(z)].
Since d(z) € C and e(z) generates C, we have d(z) = a(z)e(z) for some
a(z) € Ry, thus

d(z)e(z) = a(z)(e(2))? = a(z)e(z) = d(z).
Similarly, we can prove that d(z)e(z) = e(x). Hence d(z) = e(z). O

Theorem 4.9. Let n be coprime to p and let C = [e(z)]. Then CL has
the generating idempotent [1 — e(z™~1)]mod(z™ — 1).

Proof. According to the proof of Theorem 4.8, if e;(z), e2(z) is the gen-
erating idempotent of C; and Cs, respectively, then we have that e(z) =
e1(z) + v[ea(x) — e1(z)] is the generating idempotent for C. Noting that
the generating idempotents for Ci-, Cy are [1 — e1(z"~1)]mod(z™ — 1) and
[1 — ea(z™!)]mod(z™ — 1), by Theorem 3.4 we obtain the required re-
sult, ]

Theorem 4.10. Let z" — 1 = [];_, pf" (z) be the factorization of z™ — 1
into monic pairwise different irreducible factors over Fy,. Then the number
of the cyclic codes of length n over R is [];_, (ki + 1)2.

Proof. The number of the cyclic codes of length n over F}, is ]'[;‘___l(k.- +1),
so the result follows from Lemma 4.7. a
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