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Abstract

The chromatic sum X(G) of a graph G is the smallest sum of
colors among of proper coloring with the natural number. In
this paper, we introduce a necessary condition for the existence
of graph homomorphisms. Also, we present £(G) < xs(G)|G|
for every graph G.
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1 Introduction and Preliminaries

We consider finite undirected graphs with no loops and multiple
edges and use [4] for the notions and notations not defined here.
Let G be a graph and ¢ be a proper coloring of it, define Z.(G) =
2 {vev(c)} €(v)- The vertex-chromatic sum of G, denoted by X(G),
is defined as min{X¥.(G)| ¢ is a proper coloring of G}.

The chromatic sum first appeared in 1987 from two different
sources. In theoretical graph theory, Kubika in her Ph.D. thesis
introduced the chromatic sum of a graph with the above notation.
Supowit introduced the optimum cost chromatic partition problem,
from its application in VLSI design [10]. The vertex-strength of
G denoted by s(G), or briefly by s, is the smallest number s such
that there is a proper coloring ¢ with s colors where L.(G) = £(G).
Clearly, s(G) 2 x(G) and equality does not always hold. In fact, for
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every positive integer k, almost all trees satisfy s > k; see [7]. Chro-
matic sum has been investigated in literature [1, 2, 3, 5, 6, 7, 10, 11}.

In [11], Thomassen et al. obtained several bounds for chromatic
sum for general graphs. The first is a rather natural result of an
application of a greedy algorithm: ¥(G) < n + e, where n and e
are the number of vertices and edges of G, respectively. Also, they
presented an upper and lower limit for the chromatic sum in terms
of e. They showed that v/8e < X(G) < 3(e + 1) and these bounds
are sharp.

Let G and H be two graphs. A homomorphism ¢ from a graph
G to a graph H is a map o : V(G) — V(H) such that uv € E(G)
implies o(u)o(v) € E(H). The set of all homomorphisms from G
to H is denoted by Hom(G, H). An isomorphism of G to H is a
homomorphism f : G — H which is a vertex and edge bijective
homomorphism. An isomorphism f : G — G is called an automor-
phism of GG, and the set of all automorphism of G is denoted by
Aut(G).

Suppose m > 2n are positive integers. We denote by [m] the set
{1,2,--- ,m}, and denote by ([':]) the collection of all n-subsets of

[m]. The Kneser graph KG(m, n) has vertex set (I™), in which A ~
B if and only if AN B = (. The graph KG(5, 2) is named Petersen
graph that is denoted by P. It was conjectured by Kneser in 1955
and proved by Lovész [8] in 1978 that x(KG(m,n)) =m — 2n + 2.

The fractional chromatic number of a graph G, denoted by x¢(G),
is the infimum of the ratios & such that there is a homohomrphism
from G to KG(m,n). It is known [9] that the infimum in the defi-
nition can be attained, and hence can be replaced by the minimum.
It is easy to see xf(G) < x(G). On the other hand, the ratio ;‘f c
can be arbitrary large, see [9].

In next section we present a necessary condition for existence of
graph homomorphisms in terms of chromatic sum. Next, we intro-
duce an upper bound for chromatic sum based on fractional chro-

matic number.
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2 Graph Homomorphism and Chromatic Sum

Graph homomorphism is a fundamental concept in graph theory,
where it is related to many important concepts and problems in the
field. It is well-known that in general it is a hard problem to decide
whether there exists a homomorphism from a given graph G to a
given graph H, and consequently, it is interesting to obtain necessary
conditions for the existence of such mappings. In this regard, we have
the following theorem.

Theorem 1. Let G and H be two graphs such that H is a verter
transitive graph. If o : G — H is a homomorphism, then

5(©) _ 5(H)
G| — |H|

Proof. Let Aut(H) = {f1,f2,...,f:} and G = |Ji_, G; that G;
is an isomorphic copy of G. Define & : G — H such that its
restriction to G; is f; o o. Since H is a vertex transitive graph, one
can easily show that for every v € V(H), |67}(v)| = tﬁﬁ and it is
independent of v. Now, suppose ¢ is a proper coloring of H such
that E.(H) = X(H). For any vertex v € V(G), set &(v) = ¢(d(v)).
Obviously, & is a proper coloring of G and also £5(G) = -tljgll x L(H).
Therefore, there is an 4 such that Lz, (G;) < f—gj, x L(H) and since
G=G;, L(G) < {% x Y(H) which is the desired conclusion. [ |

Theorem 1 provides a necessary condition for the existence of
graph homomorphisms. Here we show that the Petersen graph P
has the same chromatic number and circular chromatic number. To
see this, it is sufficient to show that there is no homomorphism from
the Petersen graph P to the circular complete graph K 5 One can
check that £¥(P) = 19 and £(K g) = 15. Therefore, as an application
of the previous theorem, there is no homomorphism from P to K 8-

It is well-known that the chromatic sum is an NP-complete prob-
lem [7]. In this regard, finding upper and lower bounds for chromatic
sum is useful. It was shown in [3] that (G) < (ﬁ%ﬁ)lGﬂ Since

S(Kn) = M%) if we set H = Kyc), then Theorem 1 implies this
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bound. Here we obtain an upper bound for the chromatic sum in
terms of fractional chromatic number.

For an independent set S in a graph G the following inequality
is an immediate consequence of the definition of the chromatic sum

(2,
I(G) £ |G+ E(G\ $). (1)

Theorem 2. For every graph G, we have
%(G) < xs(G)|G].

Proof. Assume that x7(G) = 2 and Hom(G’, KG(m,n)) # 0. In
view of equation 1, we have (K G(m,n)) < (T) +Z(KG(m—1,n)).
Hence T(KG(m,n)) < Y0521 (™) + Z(KG(2n,n)). On the
other hand, Y720~ (™) = (7)) — (3%) and B(KG(2n,n)) =
2(3"). Therefore, B(KG(m,n)) < () — (&% 25 (3"). Now, since
Hom(G, KG(m,n)) # 0, Theorem 1 implies that

2n
E(G)s(m“ (2t ())|G|.

n+1 2n+2°(T)
Furthermore, 22 +1 (22 _4_2)%—% < ;_,_Ll < Z = x5(G), as desired. W

In particular, if G is a vertex transitive graph, x;(G) = -J% and
hence X(G) < 1%125 Furthermore, e(G) = -AJQLG—[ Also, if xf(G) <
$A(G), then x4(G)|G| < 3(e(G) + 1). Therefore, 1n this case, the
bound in Theorem 2 is better than the upper bound 2(e(G) +1) (see
[11]).

On the other hand, in view of Theorem 1 we have
w(G)+1

£(6) > 4%

G|

where G is a vertex transitive graph and w(G) is the size of the
largest clique in it. c
. . . x .
Also, it is a known result that the ratio ﬁ@% can be arbitrary

large (see [9]). Let G = {Gi}ien such that " G" — 0o0. We can
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assume that G, is critical for all n (G is critical if x(G \ v) < x(G)
for every v € V(G)). Thus, e(Gp) > wf—"ﬂ and we also have

%%%;—?r — 00. It means the bound in Theorem 2 is better than
the upper bound %(e(G) + 1) for the graphs in G.
In Theorem 2 we used an upper bound of X(KG(m,n)), but we

do not know the exact value of £(KG(m,n)). The improvement of
this upper bound yields an improvement in Theorem 2.

Question 1 What is the exact value of S(KG(m,n))? Is it true
that (K G(m, m)) = (7) (28 - (F5) Y87
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