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Abstract

For positive integers 7 and ki, k2, - -+, ky, the van der Waerden num-
ber W(ky, k2, ..., k;7) is the minimum integer N such that whenever set
{1,2,...,N} is partitioned into r sets Sy, S, ..., S, there is a k;-term
arithmetic progression contained in S; for some i. This paper establishes an
asymptotic lower bound for W(k, m; 2) for fixed m > 3 which improves the
result of T.C. Brown et al’s in [Bounds on some van der Waerden numbers.
J. Combin. Theory, Ser.A 115 (2008), 1304-1309]. Some lower bounds on
certain van der Waerden-like functions are also proposed.
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1 Introduction

The theorem of van der Waerden [1, 2] asserts that for all positive
integers r and ky, ko, ..., k,, there exists a minimum positive integer N =
W (ky, ka, ..., k- 7) such that for every r-coloring of set [1, N] = {1,2,..., N}
(i.e. [1, N]is randomly partitioned into r sets), there is a k;-term arithmetic
progression of color ¢ for some i, here 1 <i <.
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The best known lower bound on W (k, k; 2) is W (k, k; 2) > (k—1)2¢—1
for k — 1 is prime, which is due to Berlekamp [3]). The best upper bound
for W(k,k;2) is

22("+9)

Wk, k;2) < 22 ,

which is a striking result of Gowers [4]. Recently, Brown et al [5] propose
an asymptotic lower bound on Wk, m;2), that is,

W(k,m;2) > k™~ Taler,

for fixed m > 3 and all sufficiently large k, where logz is the natural
logarithmic function.

On the other hand, Graham [6] and Brown et al [5] also investigate the
bounds on van der Waerden-like function % (k, m;2), which defines as the
least n such that every 2-coloring of [1,n] (i.e. [1,n] is randomly parti-
tioned into 2 sets) gives either a k-term arithmetic progression in the first
color or m consecutive integers in the second color. Clearly, W(k,m;2) <
#(k,m;2). Graham [6] gives m¢18™ < #/(3,m;2) < m®™ for all m and
suitable constants ¢,d > 0. Brown et al prove #(4,m;2) < e™ '™ for all
m > 2 and a suitable constant ¢ > 0.

In this paper, we will prove an asymptotic lower bound for Wk, m; 2)
for fixed m > 3 which improves the result of T.C. Brown et ol in [5]. We
also give a general lower bound on #'(k, m;2).

2 Lower Bound for W(k,m;2)

Before proving Theorem 2.1, we state the form of Spencer local lemma
[7] we use. In fact, the probabilistic method we adopted is a modification
of the ingenious technique of Spencer [8]. By f(z) ~ g(z), we mean that
lim f(z)/g(z) =1 as z — o0.

Spencer Local Lemma Let A, Az,...,A, be events in a probability
space (Q, F, Pr). If there exist positive numbers yy,y2,--+ ,Yn Such that
fori=12,---,n,

wPr(4) <1

and
logy: > — Y log(1-y;Pr(4;)),
ijEE(D)

then Pr(NA;) > 0, where D is the dependency graph for events Ay, As, ..., Ap.
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Theorem 2.1 Let m > 3 be a fized integer, for sufficiently large k,
W(k,m;2) > (2mklogk)™.

Proof Let us 2-color the set [1,N] = {1,2,...,N} randomly and in-
dependently, where each integer between 1 and N is colored red or blue
with probability p or ¢ = 1 — p, respectively. For each k-term arithmetic
progression S in 1, N], let As be the event that S is a monochromatic red
arithmetic progression. For each m-term arithmetic progression T in (1, N],
let By be the event that T is a monochromatic blue arithmetic progres-
sion. Then Pr(As) = p* and Pr(Br) = (1 — p)™. Obviously, two events
are dependent if and only if the corresponding subsets in [1, N] have some
integers in common.

Take any event Ag or B, and let z be any integer in the corresponding
subset S C [1 N)or T C [1,N]. The number of k-term arithmetic pro-
gressions % in [1, N] that contain z is bounded by kr, since there are
k posxtlons that z may occupy in & and the gap size in % is no greater
than k ;- Similarly, the number of m-term arithmetic progressions  in
[1, N] that contain z is bounded by mm—-_l. Hence, each Ag event is de-

pendent of at most k - k = 7’5_—" other Ags events and dependent of

at most k- m-L= = T ""‘N of the By events; each By event is dependent

of at most m - kk_ L‘kﬂ of the As events and dependent of at most

m- m—N—l- = —— other Br events.

We aim to prove that there exist positive numbers a and b satisfying
the form of Spencer local lemma, namely, ap* < 1 and bg™ = b(1—p)™ < 1
hold with y; = a for each As event, y; = b for each Br event,

2
loga 2 -2 _]\g log(1 — ap”) - ml 7 log(L — bg™) 1
kmN k N
> — — — - m
logh > Py} log(1 — ap”) —— log(1 — bg™) (2)

If such a and b are available, then there exists a 2-coloring of [1,N] in
which there is neither red k-term arithmetic progression nor blue m-term
arithmetic progression, that is, W(k,m;2) > N.
To this end, set 8= L and

k = 1Pt INB(log N)?

a =exp {cz[log(clN)] _B_IN"} ,

b = esN -1- ﬁ

p =1-g= 1 — e4[log(e1N)] ~P-lnB -1

=1-2¢"" c4[log aN)] - l(logN)
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where ¢, ¢2,¢3 and ¢4 are positive constants to be chosen.
Firstly, by 1 — z < exp(—z) for = > 0, we have
o= (1-g)f
exp(—kq)
-p-1
= exp {-04[Iog(c1N)] b Nﬁ} .

A

Thus
ap* < exp {(62 — ¢4) [log(c1N)] -ﬁ-lNﬂ} .

If we choose the constants c; and ¢4 such that c; — ¢; < 0, then ap* — 0
as k — oo hence as N — co. By the fact that log(l — =) ~ z as z — 0, the
first term in the right side of the inequality (1)

%_ﬁllog(l — ap*)
=rapt
< 2kNap*  (by k—1>k/2)

S {15 D)+ o))

= exp { (B +1)log(c1 V) [1 + %%‘Tl [Log(ex )] _ﬂ—ZNﬁ] }
0

as k — oo hence as N — oo. The first term in the right side of the
inequality (2)

"T"_'% log(1 — apk)

~ kmiN apk
-1
< 2mNap*  (by k—1>k/2)
< exp {log(2mN) + (cz — cs) [log(c; N)] "* 7' N8 }
= exp {log(2mN) [1 + (c2 — cq) [log(c1 N)] 1 log(2mN) 1 Nﬁ]}
as N — oo.
Similarly,

bl—p)™ = csN-1-F {2c1'ﬁ'IC4 [log(c1N)] —B_l(log N)}m
= 2™ 1" eaN~1F[log(ey V)] T ™ (log N)™

- 0
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as N — oo. Thus, the second term in the right side of the inequality (1)

kmN m kmN
——log(1-b¢™) ~ ——bg

< 2kNbg™  (bym—-1>m/2)
< 27 ™ey[log(erN)] T ™ (log N)™-1

— 0

as N — oo. The second term in the right side of the inequality (2)

m2N m m2N
——7loe(1-bg™) ~ ——

— 0

bg™

as N — oo.

Thus, (1) and (2) are satisfied for large k hence for all large N if 1, c3 are
any fixed positive constants and ¢, ¢4 are fixed positive constants satisfying
¢z — ¢4 < 0. We then conclude W (k,m; 2) > N for sufficiently large k.

Take ¢; = 1. Since k = 3¢,#*'NP(log N)~!, we have logk ~ Blog N.
Thus, by 8 = £,

N = (2logN)?
~ (2mklogk)™.

This completes the proof. ]

Remark 2.2 Theorem 2.1 improves the main result in (5], that is,
W(k,m;2) > k™~ Togleg*

for fized m > 3 and sufficiently large k.

3 Lower Bounds for # (k,m;2)
Let yx(n) = Frélﬁ”S; | {|F| : F has no k-term arithmetic progressmn}.

Lemma 3.1 (Rankin [9]) There exists a constant ¢ > 0 such that
Te(n) > nexp ( - c(logn)m'ﬁ),

for alln > 3.
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Lemma 3.2 (Brown et al [5]) Let k > 3 and t = |logy k|. There exists a
constant d > 0 such that

W(k,k,--- k;s) > s9losa)
N, e’

for all sufficiently large s.
Theorem 3.3 Letn > 1 and k > 3 be fized integers,

W (k,kn;2) > (k= 1) (W(k, k- ki7) = )n+n,

where, v = yx(n).

Proof Let & = W(k,k,---,k;v) — 1. Then there is a y-coloring of

1, 4],

X: [1,./1/] - [1’7]
in which there is no monochromatic &-term arithmetic progressions. By the
definition of v = yx(n), there also exists a subset F' = {f(1), f(2),---, f(7)}
C [1,n] in which there is no k-term arithmetic progressions.

Take 4 intervals {(k — 1)sn — (k—1)n +1,(k — 1)sn — (k — 1)n +
2, ,(k=1)sn — (k — 2)n} of [1,(k — 1)#'n + n], denoted as Z;, where
1< s< A Select £, = (k—1)sn — (k— 1)n + f(x(s)) from £,. We
will show that the subset L = {¢;,45, - ,£.4} has no k-term arithmetic
progressions.

Suppose that ¢;, , Eiz, «++,¢;, form a k-term arithmetic progression in L,
where 1 < z'1 <ig <.+ < <A Thus, (k—1)(iG+y —4j)n—n+1<
bijony —bi; S (k- 1)(1(,_,_1) —ij)n+n—1and ¢, —£; equals a nonzero
constant, where 1 < 7 < k—1. So we have {t1,32,- -+ ,ix} forms a k-
term arithmetic progression. Since ¢; ; &, = (k= 1)(ig41) — i4)n +

fx(G+n)) — F(x(i5)), we have {f (x(), f (X(i2)), -+ » f(x(ix))} form a k
term arithmetic progression or f(x(¢1)) = f(x(i2)) = --- = f(x(ix)). The
former contradicts with F' containing no k-term arithmetic progressions.
The latter implies x(i¢1) = x(i2) = - -+ = x(ix) which contradicts with the
definition of A", Thus L = {£;,£;,--- ,£_4} contains no k-term arithmetic
progressions.

Let {1, (k — 1).#'n + n] be partitioned into L and (1, (k — 1)#'n +n) —
L. Since there is no k-term arithmetic progression in L and there is no
consecutive kn integers in [1,(k — 1).#/'n 4+ n] — L, we have

W (k,kn;2) > (k—1)An+n.

This completes the proof. ]
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Theorem 3.4 Fork > 3, t = |log, k| and sufficiently large m, there exists
a constant 9 > 0 such that

¥ (k,m;2) > %exp (@ (log (%))H‘l) .

Proof By Lemma 3.1 and 3.2, we have there exist constants ¢,d > 0
and t = |log, k], for sufficiently large ¥ = yx(n) hence for sufficiently large
n’

W(ka kv Tt k; 7) > 'Yd(log“{)‘
= exp (d(log7)**?)

1
> exp (d (logn —c(log n)Th)H )
> exp (d (d'log n)t“)

- n@(logn)' (2 = ddlt+1)’

where the second last inequality comes from the fact that there must exist
a constant d’ > 0 such that logn — c(log n)?i'r > d'logn.

By Theorem 3.3 and take n = 3, for sufficiently m hence for sufficiently
n, we have

Wikm2) > (k-1) ((%) ?(los(2))" 1) % . %

> Tew(2(le(F)").

At last, we give a general lower bound for # (k, m; 2) using Lovédsz Local
Lemma [2].

Theorem 3.5 For fized k,m > 3, ¥ (k,m;2) > S&";ﬁg‘;ll +m(k —1).

Proof Let n(> k) be a fixed positive integer and & denote the set of all
sequences 3 = byby - - - b,, where b; € {(i—1)(m—1)+1,(i—1)(m—1) +2}
for 1 < ¢ < n. That is to say, each 8 in & contains exactly one of the
two elements in each of the intervals (1,2], [m,m + 1], [2m - 1,2m], ---,
[(n-=1)(m-1)+1, (n—1)(m — 1)+ 2]. Obviously, the common differences
of arithmetic progressions contained in every 8 of & must be greater than
m.
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For each k-term arithmetic progression S in [1,n(m — 1) + 1], let As
denote the event that there exists a 8 € & such that S C 8. Since |#| = 2"
and |8 € & : § C B] = 2", we have P(4s) = L= = & by classical
probability.

The event Ag is dependent of all of the other events Ay in which T
have at least a common interval {(i —1)(m —1)+1, (i —1)(m —1) + 2} with
S for some 1 < i < n. Since S meets k intervals in {[1 2], [m,m+1),[2m -

1,2m],--- ,[(n=1)(m-1)+1,(n-1)(m - 1)+2]},Tmust contain at least

one of these 2k elements, denoted this element as x. The number of k-term
arithmetic progressions T in (1, n(m — 1) 4 1] that contain z is bounded by
I‘:(ﬂ’—",‘-'_—llﬁ’—l — m), since there are k positions that = may occupy in T and

the gap size in T is between m + 1 and ﬁ%-:llﬂ Thus, As is dependent
of at most 2k2(2Z=1+L _ ) events Ar.

By Lovész Local Lemma, if ep (21‘:2("(Lk'_11M —-m)+ 1) < 1, then

P(nAs) > 0. Thus, there exists a § = byby---b, € & that does not
contain any k-term arithmetic progressions. Decompose [1,n(m —1)+1] as
{b1,b3,-- ,b,} which does not contain k-term arithmetic progression and
[1,n(m — 1) + 1] — {by,ba,- -+ ,bn} which does not contain m consecutive
integers. So we have #'(k,m;2) > n(m —1) + 1.

Take n < ﬁz—Eﬁ&ﬁz-*-Jk—_—l—ll, we have ep (21(:2(ﬂ";—'_11m -m) + 1) <
1 and #'(k,m;2) > gz_—z,:)’_gﬂ +m(k —1). ]
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