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Abstract The construction of association schemes based on the subspaces of type
(2,0,1) in singular symplectic space over finite fields is provided in this paper.
Applying the matrix method and combinatorial design theory, all parameters of
the association scheme are computed.
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§1 Introduction

In this section, we shall introduce the concepts of singular symplectic geome-
try over finite fields and association schemes, then we will give our main results.
Notations and terminologies will be adopted from [1-2]. Now let us firstly intro-
duce the concept of singular symplectic spacelll over Fq.

Assume that [F, is a finite field with g elements, where ¢ is a prime power. Let

lF,(,zv”) be the (2v + !)-dimensional row vector space over [F;. Now let

0o IV K
k(o 0 ) m=("o0)

The set of all (2v+1) x (2v+1) nonsingular matrices T over IF, satisfying TK;T* =
K; forms a group, called the singular symplectic group of degree 2v 4! and

index v over F, and denoted by Spav+i,v(F,). It can be readily verified that

Spav+1,v(Fq) consists of all (2v +1) x (2v +1) nonsingular matrices of form

_{Th In
T= ( 0 Tn )
where 711 KT11* = K and T3; is nonsingular.

Let IF“(,2 "+ pe the (2v +!)-dimensional row vector space over ;. We have an
action of Spay41,v(Fy) on IFSZV'H) defined as follows:

ngv-l—l) x szV.,.]’V(]Fq) N IFSzV'l'l)
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((xlt-xZa v ’x2V+l)$T) = (xl 1 K2yt :x2V+l)T'

The vector space IF?VH) together with the action of Spay4,v(F,) is called the
singular symplectic space over IF,.

Lete; (1 <i <2v+1!) be the row vector in ]F‘,(IZV+') whose i-th coordinate is 1

and all other coordinates are 0. Denote by E the /-dimensional subspace of IFSZVH)

generated by e2y41,€2v+2,... ,€2v4+1. An m-dimensional subspace P of IFSZV“), is

called a subspace of type (m,s, k) if
(i) PK; P’ is cogredient to M(m,s).
(ii) dim(PNE) = k, where

0 IV
M(m,s) = ( 14 0

Denote the set of all subspaces of type (m, s, k) in IFSZV'H) by A (m,s,k;2v +
1,v). It can be verified that .# (m,s,k;2v +1, V) is non-empty if and only if 0 <
k<l,2s<m—k<Vv+s. LetN(m,s,k;2v +1,v) = |.# (m,s,k;2v +1,v)|, then

olm=2s)

@-1) N (d-1)

N(m,s,k;2v +1,v) = g?S(v+s—m+k)+(m—k)(i—=k) "j"””""*"“*;_k_zs ‘=""";“ ,
Il (¢%-1) I (¢-1 I (¢-1)
= = =

see the chapter 3 of reference [1].

Let P be an m-dimensional vector subspace of IF("), then we write dim P=
m. Let v,v,,...,vy be a basis of P. We notice that v;,v,,...,v, are vector of

i
(n) x !
Fy’. We usually use the m x n matrix . to represent the vector subspace
Vm
Vi
- V2 .
P, write P = . ,i.e., we use the same letter P to denote a matrix which
Vm

represents the vector subspace P, and call the matrix P a matrix representation of
the vector subspace P.

Next we will introduce the concepts of association schemes!2.

Let X be a set of cardinality n and R; (i =0, 1,---,d) be nonempty subsets of
X x X with the following properties that:

(1) Rp = {(x,x)|x € X};

@)X xX=RoU...URg and RiNR; = 0 for all i # j;
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(3) For any R; (0 < i < d), define ‘R; = {(x,y)|(y,x) € R}, then for any i €
{0,1,---,d}, thereis an i € {0,1,--,d} such that ‘R; = Ry;

(4) For any i, j,k € {0,1,---,d} and any pair (x,y) € Ry, the number of z € X
such that (x,z) € R; and (z,y) € R; is constant. This constant is denoted by p{‘ i
which is independent of the pair (x,y);

(5) pfj = pj;

Such a configuration I' = {X,{R;},0 < i < d} is called a commutative as-
sociation scheme of class d on X. The non-negative integers pf’ ; are called the
intersection numbers of T,

An association scheme with the additional property:

(6)i=1iforalli€ {0,1,---,d} is called symmetric or Bose-Mesner type.

It can be readily verified that a symmetric association scheme is also a commu-
tative one. There are some parameters in an association scheme I' = {X, {R;},0 <
i<d}.ie.,d, v, n, pf‘,l

(a) d is called the class of the association scheme.

(b) v is called the size of X.

(c) For a fixed x € X, n; is the number of y satisfying (x,y) € R;, that is to say,
n; = |{y|x € X,(x,y) € Ri}|.

(d) The non-negative integers pﬁ‘, j are called the intersection numbers of I'.

Furthermore, we will give some parameter relational expressions in an com-

mutative association scheme:
d 5 ) )
_ ol
E bij = ni, NiPjg =NiPjirs
j=0

V=n+n+--+ng+1, Pj’.k=pi,j‘
where i, j, k=1, 2,---, d.

Dual polar schemes are well-known as association schemes. Applying the ma-
trix method, Wan and Dail® computed all parameters of dual polar schemes. As
a generalization of dual polar schemes, Rieck!¥ constructed association schemes
by the subspaces of a given dimension in a finite classical polar space; Guo, Wang
and Lil5~¢l constructed association schemes in singular classical spaces and sin-
gular pseudo-symplectic spaces. As a generalization of bilinear forms schemes,
Wang, Guo and Lil"~% constructed association schemes in attenuated spaces and
singular general linear space. As a generalization of symmetric schemes, Gao
and Hel'% constructed association schemes based on singular symplectic geome-
try over finite fields.

In this paper, we provide a new symmetric association scheme based on singu-
lar symplectic geometry over finite fields. This paper is organized as follows. In
Section 2, an association scheme is constructed by the subspaces of type (2,0,1)
in singular symplectic space. In Section 3, all preliminaries of the association
schemes are computed.
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§2 The construction of association schemes

Assume that v > 2, I > 3. Suppose that X be the set of all subspaces of type
(2,0,1) in (2v + I)-dimensional singular symplectic space ]ngwl) . For the ele-
ments X;, Xz of X, consider the type of the subspace X; + X>.

Define Ro = {(X,,Xz)|X1 =X2}.

If X) # X3, since both X; and X; are the set of all subspaces of type (2,0, 1) in
(2v + 1)-dimensional singular symplectic space I[",(,zv+'). Suppose that

_( n x2 xp3 = x'“ "’12 x’3
% (0 om)’ xz(o Ox;)'
v v I v v |

where both (x); x12) and (x'“ x'lz) are 1-dimensional subspaces in 2v-dimensional
symplectic space lF‘(,zv), both x33 and x'23 are 1-dimensional subspaces in the I-
dimensional row vector space lF,(,').
(i) Ifdim (X; 4+ X;) =3, then we discuss the following two cases:
(1) Ifdim (X; NX,NE) =1, then there are the following three subcases to
be considered:
(a) Ifrank ?l ?2 ) = 1, then X) 4 X; is a subspace of type (3,0,2).
1 %2
In this case, the 1-st association relationship is defined by (X;,X5) € R;.
(b) IHrank ( mox ) =2and [ "M TR ) is a subspace of type
. 2 11 *12
(2,0) in 2v-dimensional symplectic space IFSIZV) , then X) + X is a subspace of type
(3,0,1). In this case, the 2-nd association relationship is defined by (X;,X;) € R.
(c) Ifrank ( X ) =2 and ( o ) is a subspace of type
n %2 n X2
(2,1) in 2v-dimensional symplectic space IFSZV), then X) 4-X is a subspace of type
(3,1,1). In this case, the 3-rd association relationship is defined by (X; ,X2) €Rs.
(2) Ifdim (X; NX, NE) =0, then there exists the unique case:
(d) Thatis to say, X; + X3 is a subspace of type (3,0,2). In this case, the
4-th association relationship is defined by (X1,X2) € Rs.

(i) If dim (X) +X;) = 4, then there are also the following three cases to be
considered:
x,] 1 x,|2

(e) Ifrank (
X1 %2
In this case, the 5-th association relationship is defined by (X;,X3) € Rs.

) = 1, then X) + X; is a subspace of type (4,0,3).
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Ifrank [ 51 ) =2 and ( T ) is a subspace of type

® (x” X12 X1 *p2 P P
(2,0) in 2v-dimensional symplectic space IF,(IZV), then X; + X; is a subspace of type
(4,0,2). In this case, the 6-th association relationship is defined by (X;,X>) € Re.
(g) Ifrank ( X ) =2 and ( mon ) is a subspace of type

X1 %12 *n %12

(2,1) in 2v-dimensional symplectic space I ((,zv), then Xj + X; is a subspace of type
(4,1,2). In this case, the 7-th asscciation relationship is defined by (X;,X2) € R7.
To sum up, I' = (X, {Ri}o<i<7) is an association classification of class 7 on X.

Next, we will show that I' = (X, {R; }o<i<7) is a symmetric association scheme
of class 7 on X.

Theorem 2.1 Suppose that X be the set of all subspaces of type (2,0,1) in
(2v 4+ I)-dimensional singular symplectic space IngV""), where v > 2, [ > 3. For
the elements X;, X5 of X, if X) and X; have the above 7 association relationships,
then I' = (X, {R;}o<i<7) is a symmetrical association scheme of class 7 on X.

Proof: Obviously, the association relations R; (0 < i < 7) is symmetric. We
only need to show that each R; (i =0,1,-+-,7) is an orbit of Spay4s,v(Fy) in a
natural action on X x X.

For i =0, i.e., X) = X. Since Spav.+1,v(Fy) acts transitively on each set of
subspaces of the same type in (2v + !)-dimensional singular symplectic space
IF',(,2V+’), Spav+1,v(IFg) acts transitively on Rp.

Fori =1, i.e., Xj +X; is a subspace of type (3,0,2) defined by the 1-st associ-
ation relationship. If (X;,X2) € Ry, (¥1,Y2) € R;. Pick four elements X;,X>,Y},Y>
of X. Without loss of generality, we can take

= Xi1 X12 X3 X, = X1 X2 -x,|3
X ( 0 0 xp ) ’ 2 ( 0 0 x5 )°
vV v ! vV v {
_(vyn 2 s _( vy vz ys
h ( 0 0 3 ) , & ( 0 0 y» )
v v ! v v Il

to be matrixes representation of the subspaces Xi,X3,Y; and ¥ respectively. Then
the subspaces Xj + X»,Y) +Y> can be represented by (2v +1) x (2v +{) matrices
of the form

X11  X12 x13 yn Yz y13
0 0 X23 , 0 0 y23
0 0 -—-xi3+x; 0 0 -—y3+y;

respectively. Since both (xj; x12) and (y11 y12) are subspaces of type (1,0) in
2v-dimensional symplectic space IF,(,zv), there exits a 77 € Spay(F,) such that
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(x11 x12) = (Y1 y12) T (2.1)

Additionally, because both ( *23 ) and ( Y3 ) are 2 x |

—X13 +x'13 —)13 +y'13
matrixes with rank 2, there exists a T53 € GLi(IF,) such that
Xx23 y23
, =[ ) . 2.2
( —x13+ X3 ) ( =Y13+¥3 ) 2 (2.2)

We can find a 2v x ! matrix X such that (y1; y12)X = x13 — y13722. Suppose that

T X
T= ( (l)l T ) € Spav+t,v(Fg),

X111 X12 X13 yu 2 Y13
0 0 X23 , = 0 0 y23 , T. (2.3)
0 0 —x3+xp 0 0 -yi3+y3

From (2.1), (2.2) and (2.3), it can be readily verified that

then

Xi =%T, X, =T
Hence, Spay+1,v(Fy) acts transitively on Ry. Similarly, Spay1,v(F,) acts transi-
tively on R2,R3,-++, Ry.

According to the above statements, I' = (X, {R;}o<i<7) is a symmetrical asso-
ciation scheme of class 7 on X.

§3 The computation of the preliminaries

Theorem 3.1 The preliminaries d, v,n;(1 < i < 7) of the association scheme
I'=(X,{Ri}oci<7) are

d=1, v =gt U, m=g"1-1,

(v-1)_) = -1
"2=ﬂ%]'—ly n3=q2v+l 21 n“:ﬂgqltr_l’

2 -2_1 -l—l +2 (v-l)_l ~l_l vl -l_l
ns = a—1 =1 ) ng = 22" (q_l)g(‘l‘ )y ny = -1 )

respectively.

Proof: From the construction of section 2, we have known d = 7. In order to
prove Theorem 3.1, we also need to prove Propositions 3.1-3.8.
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Proposition 3.1 The size of X is
S (@ -1 -1)
v=g-! L

Proof: Since X is the set of all subspaces of type (2,0,1) in (2v+1)-
dimensional singular symplectic space ]F?V”), we have

-1 (@ = 1)g' - 1)
(g-1?

Proposition 3.2 For a fixed subspace V € X, the number of subspaces V| € X

v=|X|=N(2,0,1;2v+1,v)=q

satisfying (V,V]) € Ry is
n = ql_l -1

Proof: Let V be a fixed subspace of type (2,0,1) in F . From dim
(VNVy NE) =0, we can assume that the subspaces V and V; have the matrix

representation of the forms

(2v+i)
9

a: {1 0 0 0 0 0
V‘(em,) ‘(o 0 0 0 1 o)’ (3.1)
1 v=-1 1 v=1I 1 -]
V= €v+1 =( 0 0 0 0 1 0 ) (3.2)
x i oxi2 x13 xs 0 x6 )7
1 v=1 1 v=1 1 -1

respectively. Then the subspace V + V) can be represented by the matrix of the
form

e 1 0 0 0 0 0
€v+1 = 0 0 0 0 1 0 . (3.3)
x xn x2 X3 x4 0 xg

Since
rank( 1 0 0 o0 )= 1
X1 X312 X13 X14

we can assume that (xj; x12 x13 x14) = (1 00 0). Additionally, we can deduce that
x16 is nonzero from dim (V + V) = 3. Thus, the number of x¢ is ¢'~! — 1.

Hence, for a fixed subspace V € X, the number of subspaces V| € X satisfying
(V\V1) €Ryisny =g~ — 1.

Proposition 3.3 For a fixed subspace V € X, the number of subspaces V; € X
satisfying (V,V1) € Ry is
_ ql(qZ(V—l) _ 1) ‘

n q_]
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Proof: Suppose that the choices of subspaces V, Vi, V +V; are as same
. . 1 0 0 o0
as (3.1), (3.2), (3.3), respectively. Since rank ( X X2 X3 X ) =2 and
1 0 0 O
( X1 X2 X13 X14
plectic space IF‘(,ZV), then xy; is arbitrary, x;3 = 0 and (x)2 x14) are a 1-dimensional
subspace in 2(v — 1)-dimensional symplectic space 11«‘3‘"‘”. Additionally, we can

deduce that xj¢ is arbitrary from dim (V + V) = 3. Therefore, the number of
subspaces V| is g -1

Hence, for a ﬁxe?i subspace V € X, the number of subspaces V) € X satisfying
VW) ERyis
_q@ -
g-1

) is a subspace of type (2,0) in 2v-dimensional sym-

ny

Proposition 3.4 For a fixed subspace V € X, the number of subspaces V| € X
satisfying (V,V}) € R3 is
fying (V,V1) € R3 o L

Proof: Suppose that the choices of subspaces V, Vi, V + V) are as same
1 0 0 o ) =2 and

as (3.1), (3.2), (3.3), respectively. Since rank ( x X2 X3 X

1 0 0 0 ). . . .
( M X2 ms3 % ) is a subspace of type (2,1) in 2v-dimensional symplec-

tic space IFSIZV), then x13 # 0, x11, x12 and x4 are arbitrary. Additionally, we can
deduce that xy¢ is arbitrary from dim (V +V)) = 3. So the number of subspaces
. —1)2(v=1)41
Viisq'4 lq)_tﬁ_ = gvHi-2,
Hence, for a fixed subspace V € X, the number of subspaces V; € X satisfying
(V,\V1) €R3 is

n3 = q2v+l—2‘

Proposition 3.5 For a fixed subspace V € X, the number of subspaces V; € X
satisfying (V,V1) € R4 is
g’gd~'-1)

g-1

Proof: Suppose that the choice of subspace V is as same as (3.1) and the
subspace V) has the matrix representation of the form

v,=(i)=(x° 0 0 0 ns yw), (3.4)
noxiz2 X3 X4 x5 X6

I v=-1 | v-1 1 -1

ng =

then the subspace V + V) has the matrix representation of the form
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1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 ws ys | (3.5)
X1t X12 X13 X14 X5 Xi6

From dim (VNV; NE) =0 and dim (V +V;) = 3. We can deduce that x); #
0, x13 =0, x12, x14 and x| are zero vectors, x5, y)s are arbitrary and y;¢ is a
1-dimensional subspace in (I — 1)-dimensional row vector space IF',(,l_'). So the

2 -1 2(,0-1
L gig-)(g -1 _ ¢%(g =1)
number of subspaces V is a-1)2 ===

Hence, for a fixed subspace V € X, the number of subspaces V| € X satisfying
(V,\V1) €R4 is
2 -1

g—1
Proposition 3.6 For a fixed subspace V € X, the number of subspaces V| € X
satisfying (V,V;) € Rs is

n4

ns= @207 1)
(g—-1)(g*-1)

Proof: Suppose that the choices of subspaces V, V}, V +V are the same as

1 0 0 O
X111 X12 X13 X4
assume that (x1; xj2 x13 x14) = (1 0 0 0). As a result of dim (V +V}) =4, we
Y16
X16

(3.1), (3.4), (3.5), respectively. Since rank ( ) =1, we can

can deduce that both x5 and y;s are arbitrary and is a 2-dimensional

subspace in (I — 1)-dimensional row vector space lFf,’_l). Thus, the number of

subspaces V) is
E [1—1 _2@?-nE@ -1
2 ], (a-1)(¢>-1)
Hence, for a fixed subspace V € X, the number of subspaces V| € X satisfying
(V, Vl) €Rs is

_ @@= -
ns = 5
(g-1)(¢*-1)
Proposition 3.7 For a fixed subspace V € X, the number of subspaces V; € X
satisfying (V, V1) € Re is

e ql+2(q2(v—-l) - l)(q”l _ 1)
¢ (g—17? '

Proof: Suppose that the choices of subspaces V, V;, V + V| are as same

. . 1 0 0 O
3.1), (3.9, (3.5), tively. S k =2
as (3.1), (3.4), (3.5), respectively. Since ran (x“ X2 X3 Xia ) and
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1 0 0 O
( XN X2 X3 X4
plectic space F‘(lzv), we can deduce that xy; is arbitrary, x;3 = 0 and (x12 x14)
is a 1-dimensional subspace in 2(v — 1)-dimensional symplectic space ]Fg(v_l).
Additionally, from dim (V +V;) = 4, we can deduce that x5, x)¢ and y;5 are
arbitrary, y)e is a 1-dimensional subspace in (I — 1)-dimensional row vector s-
pace F{ ") So the number of subspaces V; is q2+("‘)q("2(‘;’:;)") i )

gq-1
ql+2(q2(v(-l) __)lz)(ql—l -1)
q-1 )
Hence, for a fixed subspace V € X, the number of subspaces V| € X satisfying

(V,V1) € Rg is
' _ PPV -1 - )

(g—1)?
Proposition 3.8 For a fixed subspace V € X, the number of subspaces V; € X
satisfying (V,V}) € R7 is

) is a subspace of type (2,0) in 2v-dimensional sym-

ne

_ q2v+l(ql-l _ 1)
n = —m—m=,
g-—1

Proof: Suppose that the choices of subspaces V, Vj, V + V) are as same

. . 1 0 0 o0
as (3.1), (3.4), (3.5), respectively. Since rank ( X X2 X3 X ) =2 and

1 0 0 0 . . . .
( X1 %y X3 Xie ) is a subspace of type (2, 1) in 2v-dimensional symplec-
tic space ngv)’ we can deduce that x;3 % 0, x11, x12 and x)4 are arbitrary. Addi-
tionally, from dim(V +V;) = 4, we can deduce that x;5, xj¢ and y;s are arbitrary,

16 is a 1-dimensional subspace in (! — 1)-dimensional row vector space IF,(,I_’).
So the number of subspaces V is

alg=1Dg*H1 (¢1-1) _ @M -1

g—1 qg-1 g—1
Hence, for a fixed subspace V € X, the number of subspaces V) € X satisfying
(V\V1) €Ry is
v+l -1
n7 = u—g_
q—1

Theorem 3.2 The intersection numbers pj.,k( 1<, j,k £7) of the association
scheme I" = (X, {R;}o<i<7) are listed as follows in the Table 1:

Table 1: The Intersection Numbers p' (1 < i, j,k < 7)
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Pl =4g(d2-1) pl2=0 Pl3=Pla=pis=Pig =Pl =0
1 _ (-1 1 _pl —pl _pl _pl g
P == PB=Pu=Ps=P6=Pn=
Pi3=q"" vy | PP =Ph=pi =0
Pia=d , 1"5s=5"£yqfl_l Pig = Piy =0
Pis= - (_ll) " P3s =Py =0
- —1)(g 21 1
Pés = L {12 q-z-l)z( : Per =0
p.ln= vi=l (=2 1
e
2 _ ¢@d-1 2 _ 2vH-3 2 _p2 —p2 —p2 _Q
ryp = = P33 =q P2 =Pys =P =P =Y
Pl =(g- 1)g2v+i-3 Py = P3s » P§6 =p}h =0
2 _ g1
P44—P45—P47=° P = -] \
2 _ “=1)(g*-1
Pis =P -(0 e P56 = gD
2 _ ¢MPV-R-1)(¢ 1) 2 _ g -1
Peg = -1 Per = gz_‘T(—"I;—_z
p% = gvH=l(gl=1 _1)
P33 =(g-1)g?*=3 Pla=Pls = Pls=Ph =0
= 3 _ glg='-1
P44 P45—P45—0 P47_ﬂglq_—'!_z( .
-1_1)(g-%-1
1’55 Pl =0 Ps7 = ﬂ%'u_l
p - g (PN =1)¢'-1) P _ @ -1)(gt 1)
66 R &1 T
ph=a"*""(¢d"'-1)
e —1 -
Pls = D= Pis=al@™'=1) pl=pl =0
=3_1)(¢ 21
pg5=u¢73)s‘__l Pl =p =0
+3 v-1)_1
p66 lqj( qul ' p‘é—, =0
2v+i+ -2_1
Ph= g;'—é-gr—‘z
-1 4-1 S . p3 —
P55 = - Pss=P5;=0
+5( 2(v=1) _ —-3_
_d @ s 1)(4' -1) Pl =0
5 2Vl 0=3 l
p77 — +4 2 2) ' ¥]
T} v_l)_ vH (=2} —
3 _Z T (L)(qz‘ DIy iéér_l 8 = VH(g 2 1)
P77 2v+l(ql-2

To prove Theorem 3.2, we have to prove the following propositions 3.9-3.15
in the following part. In this part, we only enumerate several classical intersection

numbers pf (1 <i,j,k < 7).

Proposition 3.9 Suppose that V and W are two fixed subspaces of X with
(V,W) € R,. Then the number of subspaces U € X satisfying (V,U) € R, and
(U,W) € Ry is

h=q@?-1).
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Proof: Suppose that the matrix representation form of the subspace V is as

same as (3.1). Assume that W is a fixed subspace of type (2,0,1) in lF‘(,z"H) with
the matrix representation of the form

_{ ewn {0 0 0 0 1 0 0
W= ( e1+exvs2 ) —( 1 0 0 0 0 1 0)° (3-6)
Lv=l 1 v=1 1 1 -2

then (V,W) € R;.
Suppose that the subspace U has the matrix representation of the form

_ezv+1_0000100) ;
U—( * ) _(x“ x12 x13 x4 0 xi6 x17 . (3)

I v=1 1 v=-11 1 (-2

nk( 1 0 0 0 )=1’
X1 X2 X3 X4

we can assume that (x1; x12 13 x14) = (1 000). Additionally, we can deduce that

(x16 x17) a 1-dimensional subspace in (I — 1)-dimensional row vector space IF‘(,’_I)
from dim (V + U) = 3. Then the subspace U +W has the matrix representation of

the form
1 0 0 0 O 1 O
o 0 0 o 1 0 0 |.
0
1

Since

1 0 0 O Xj6  X17
Pov-l 1 v-l 1 1-2
Furthermore, from dim(U + W) = 3, we can deduce that x,¢ is arbitrary and
x17 is nonzero. So the number of subspaces U is

a(¢72-1).
Hence, for (V,W) € Ry, the number of subspaces U € X satisfying (V,U) € R,
and (U,W) €R; is
P =q(g2-1).

Similarly, suppose that the matrix representation forms of the subspaces V, W,
U are as same as (3.1), (3.6), (3.7), respectively, it can be readily verified that
Pl =pi3=0.

Furthermore, suppose that the matrix representation forms of the subspaces
V, W are as same as (3.1), (3.6), respectively. Suppose that the subspace U has
the matrix representation of the form

U__,()‘)=(0 0 0 0 xs e )’17)' (3.8)

x X1r X112 X13 X4 X5 X6 X)17
I v=1 1 v=-1 1 1 (-2
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It can be readily verified that p}4 = p} 5= P}s = P{7 = 0 and the value of P},k(z <
J £k <7) as listed in the table 1.

Proposition 3.10 Suppose that V and W are two fixed subspaces of X with
(V,W) € R;. Then the number of subspaces U € X satisfying (V,U) € R, and
(U,W)€eR,is
- g (@D - 1)

P = _—q 1 .
Proof: Suppose that the matrix representation form of the subspace V is as

same as (3.1). Assume that W is a fixed subspace of type (2,0,1) in 11",(,2"""') with
the matrix representation of the form

(e Y _(0 1 0 0 0 0 0
W_(e2v+|) '(o 0 0 0 0 1 o)’ (3.9)
1 1 v=-2 1 v-1 1 [-]

then (V,W) € R,.
Suppose that the subspace U has the matrix representation of the form

U=(e2v+1)=(0 0 0 0 0 0 1 0).(3.10)

x X x2 xi3 x4 xs xe 0 xig
11 ov=2 1 1 v=2 1 I-1

Then the subspaces V + U, U + W can be represented by the following matrixes
of the forms

1 0 0 0 0 0 0 O
0 0 0 0 0 0 1 0 , (3.1 1)
X X12 x13 x4 x5 X6 0 xg
11 v=2 1 1 v=2 1 I-1
0 1 0 0 0 0 0 0
o 0 o o o0 o0 1 0 |, (3.12)
xn X2 x3 x4 xs xe 0 xg
1 1 v=2 1 1 v=2 1 I
respectively.

We can assume that the subspace U € X satisfying (V,U) € R; and (U, W)
€ R, must be like that

xj4=x15=0

X11, X12, Xig are arbitrary )
: : . . 2(v—

(x13 x16) is a 1-dimensional subspace in IF q(v 2

. +1(52(v=2) _
Therefore, the number of subspaces U is i—ﬁ‘H.
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Hence, for (V,W) € R, the number of subspaces U € X satisfying (V,U) € R,

and (U,W) eR; is
) _ @D )
2= q_l *

Similarly, suppose that the matrix representation forms of the subspaces V, W,

U are as same as (3.1), (3.9), (3.10), respectively, it can be readily verified that
p%3 = g?vH-3,

Furthermore, suppose that the matrix representation forms of the subspaces
V, W are as same as (3.1), (3.9) respectively. Suppose that the subspace U has the

matrix representation of the form

U=(y)=(o 0 0 0 0 0 ypy yls)_ (3.13)

x X1l X122 X13 X14 X15 X16 X17 X8
1 1 v=2 1 1 v=2 1 -1

It can be readily verified that p3, = p3s = p}¢ = p%, = 0 and the value of Pik (3<
J £k < 7) aslisted in the table 1.

Proposition 3.11 Suppose that V and W are two fixed subspaces of X with
(V,W) € R;. Then the number of subspaces U € X satisfying (V,U) € R3 and

(U,W)eR;is
Ph=(g- 1)+
Proof: Suppose that the matrix representation form of the subspace V is as

same as (3.1). Assume that W is a fixed subspace of type (2,0,1) in ngv“) with
the matrix representation of the form

[ esn) (0 0 1 0 0 0
W—<e2v+| ) ‘(0 0 0 0 I o) (319
I v=11 v=-l 1 -]

then (V,W) € R3.
Suppose that U has the matrix representation of the form

U=(e2v+| ) =( 0 0 0 0 1 0 ) . G15)
x x1 Xz x3 x4 0 x6
1 v-1 1 v=-1 1 1I-1
Sincerank( ! 0 0 0 )=2and( ! 0 0 0 )isa
X1 X1z X3 X4 X1 X122 X13 X4

subspace of type (2,1) in 2v-dimensional symplectic space Il"‘(,zv), it follows that
x13 # 0, x11, X12 and x)4 are arbitrary. Additionally, to make sure that (U, W) €
Rs3, we also need x11 # 0. Therefore, the number of subspaces U is

)22V +-3 .
(q q)_‘]l = (g=1)v*H-3.
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Hence, for (V,W) € R3, the number of subspaces U € X satisfying (V,U) € R3
and (U,W) €R3is \
ph=(9— 1)

Similarly, suppose that the matrix representation forms of the subspaces V, W,
U are as same as (3.1), (3.14), (3.15), respectively, it can be readily verified that
3
p34 =0.
Furthermore, suppose that the matrix representation forms of the subspaces of
V, W are as same as (3.1), (3.14), respectively. Suppose that the subspace U has

the matrix representation of the form
U=(y) =( 0 0 0 0 s )'16) . (3.16)
x X X1z X13 X4 X15 X6
1 v-l 1 v=l 1 -1

It can be readily verified that pgs = pgs = p§7 =0 and the value of pik 4<j<
k < 7) as listed in the table 1.

Proposition 3,12 Suppose that V and W are two fixed subspaces of X with
(V,W) € R4. Then the number of subspaces U € X satisfying (V,U) € R4 and

(U,W) € Ry is
Y e
44 q_l *

Proof: Suppose that the matrix representation form of the subspace V is as
same as (3.1). Assume that W is a fixed subspace of type (2,0,1) in IFS,ZVH) with
the matrix representation of the form

& {1 06 0 0 0 0 O
W= ( €v+2 ) _( 0 0 0 0 0 1 0 ) ! (3.17)
I v=1 1 v-1 1 1 (=2

then (V,W) € R4.
Suppose that U has the matrix representation of the form

_(yY_[{0 0 0 0 yi5s yi6 »7
U‘(e,)‘(l o 0 0 0 0 o)' (3.18)
1 v=l 1 v=1 1 1 [-2
Since dim (VNUNE) =0 and dim (V +U) = 3, we can deduce that y;s is
arbitrary and (y16 y17) is a 1-dimensional subspace in (I — 1)-dimensional row

vector space IFg_l). Additionally, to make sure that (U,W) € R4, we also need
y16 # 0 and y;7 is a 1-dimensional subspace in (I — 2)-dimensional row vector

space ]Ff,'_z). Therefore, the number of subspaces U is

(g2 -1)
g-1

115



Hence, for (V W) € Ry, the number of subspaces U € X satisfying (V,U) € Ry
and (U,W) €Ryis
i

4 T e—————
Similarly, suppose that the matrix representation forms of the subspaces V, W

are as same as (3.1), (3.17), respectively. Suppose that the subspace U has the
matrix representation of the form

U___(y) ____( 0 0 0 0 »ns ylG) . (3.19)
x X1l X122 X13 X14 X15 X6

b v—-l 1 v-1 1 (-1
It can be readily verified p45 =q(g'-1), p46 = p47 = 0 and the value of

pjk(S < j £k < 7) as listed in the table 1.

Proposition 3.13 Suppose that V and W are two fixed subspaces of X with
(V,W) € Rs. Then the number of subspaces U € X satisfying (V,U) € Rs and

(U,W)€Rsis
K, (@3 -1)(g"*-1)
N R [

Proof: Suppose that the matrix representation form of the subspace V is as

same as (3.1). Assume that W is a fixed subspace of type (2,0,1) in IF‘(ZV'H) ith
the matrix representation of the form

_{ ertews2 (1 0 0 0 0 1 0 O
W= ( €2v4+3 ) '—.( o 0 0 0 0 O0 1 O ) » (3.20)

then (V,W) € Rs.
Suppose that the subspace U has the matrix representation of the form

U= ( y ) =( 0 0 0 0 Jis Yie Y17 )18 ) . (3.21)

X X1 X122 X13 X14 X|5 X6 X17 X)18
I v-1 1 v=-1 1 1 1 (-3

To make sure that (V,U) € Rs, (U,W) € Rs, we can assume that

X15, X16, X17, Y15, Y16, Y17 are arbitrary
(x11 x12 x13 x14)=(1 0 0 0)

i :8 ) is a 2-dimensional subspace in n«‘},"”

Therefore, the number of subspaces U is

6[1-3] _ @ 3-1)(¢"*-
7 [ 2 L“ @- D@1
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Hence, for (V,W) € Rs, the number of subspaces U € X satisfying (V,U) € Rs
and (U,W) € Rs is
s _g%(d'3-1)¢'4-1)

P = g=1)(¢?-1)
Similarly, suppose that the matrix representation forms of the subspaces V, W,
U are as same as (3.1), (3.20), (3.21), respectively. It can be readily verified
pi. = p3, =0 and the value of p> (6 < j < k < 7) as listed in the table 1.
56 = P51 ok

Proposition 3.14 Suppose that V and W are two fixed subspaces of X with
(V,W) € Rs. Then the number of subspaces U € X satisfying (V,U) € R¢ and

(U,W)€Rgis
o _ a1V P -1
Pes (g-1)? '
Proof: Suppose that the matrix representation form of the subspace V is as

same as (3.1). Assume that W is a fixed subspace of type (2,0,1) in ]FSZV'”) with

the matrix representation of the form
[ e (0 1000000
W_<82v+2)—(00000010)’ (3:22)
1

then (V,W) € Rs.
Suppose that the subspace U has the matrix representation of the form

U=<)’)=(0 0 0 0 0 0 y7 s )'19).(3.23)

x X1 X12 X13 X4 X15 X6 X17  X18  X19
1 1 v=2 1 1 wv=2 1 1 (=2

To make sure that (V,U) € Rg, (U,W) € R¢, we can assume that

X11, X12, X17, X18, X¥19 , Y17, Y18 are arbitrary
x14 =x15=0

. . . : m2(v=2)
(x13 x16) is a 1-dimensional subspace in Fj

y19 is a 1-dimensional subspace in ng_z)

Therefore, the number of subspaces U is

114 @V-D-1 4721 _ gH(g 2121
q -1 ¢T1 @12 '

Hence, for (V,W) € Rg, the number of subspaces U € X satisfying (V,U) € R¢
and (U,W) € Rg is

g = I 1@ - 1)
o (g-1)7? '

Similarly, suppose that the matrix representation forms of the subspaces V, W,
U are as same as (3.1), (3.22), (3.23), respectively. We can get
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vl -2 _
Po ==~  Ph=a""d?-1).

Proposition 3.15 Suppose that V and W are two fixed subspaces of X with
(V,W) € Rq. Then the number of subspaces U € X satisfying (V,U) € R; and

(U,W) € Ry is
Ph=4"*"(¢d2-1).

Proof: Suppose that the matrix representation form of the subspace V is as

same as (3.1). Assume that W is a fixed subspace of type (2,0,1) in ]F‘(,ZV"") with

the matrix representation of the form
[ ev:1 Yy (1 O 0 O O O O
W—(e2v+2)—(0 0 0 0 0 1 0)’ (3.24)
1

then (V,W) € R;.
Suppose that the subspace U has the matrix representation of the form

U= ( y ) ___( 0 0 0 0 x5 y y7 ) . (3.25)
x X1l X2 X3 X4 X5 Xi6 X17
I v=1 1 v-1l 1 1| [-2

To make sure that (V,U) € Ry, (U,W) € R7, we can assume that

xn #0, x13#0
X12, X14, X15, X165 Y15, Y16 are arbitrary

Fi-»

y17 is a 1-dimensional subspace in Fy

~1)2,2 -2 _
Therefore, the number of subspaces U is 4= (q:') D = g2vH(gl-2 1),

Hence, for (V,W) € Ry, the number of subspaces U € X satisfying (V,U) € Ry
and (U,W) €Ryis
Pr=¢""q"-1).
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