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Abstract. Given a graph G and a non-negative integer g, the g-extra-
connectivity of G (written x4(G))is the minimum cardinality of a set of vertices
of G, if any, whose deletion disconnects G, and every remaining component has
more than g vertices. The usual connectivity and restricted vertex connectivity
of G correspond to ko(G) and x;(G), respectively. In this paper, we determine
kg(FQn) for 0 < g < n—4, n > 8, where FQy denotes the n-dimensional folded
hypercube.
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1 Introduction

The traditional connectivity(denote by « the connectivity), is an important mea-
sure for the networks, which can correctly reflects the fault tolerance of sys-
tems with few processor, but it always underestimates the the resilience of large
networks. The discrepancy incurred is because events whose occurrence would
disrupt a large network after a few processor/link failures are highly unlikely,
therefore, the disruption envisaged occurs in a worst case scenario. With the
development of multiprocessor systems, improving the traditional connectivity is
necessary. Motivated by the shortcomings of the traditional connectivity, Harary
[5] introduced the concept of conditional connectivity. Here, we consider the ex-
traconnectivity which was defined by Fabrega and Fiol [3]. The extraconnectivity
corresponds to a kind of conditional connectivity introduced by Harary [5].

Let G be a connected undirected graph, and P a graph-theoretic property.
Harary (5] defined the conditional connectivity £(G; P) as the minimum cardinal-
ity of a set of vertices, if any, whose deletion disconnects G and every remaining
component has property P. Let g be a non-negative integer and P, be the
property of having more than g vertices. Fabrega and Fiol (3] defined the g-
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extraconnectivity k,(G) of G as x(G;P,). However, we have not yet known if
the problem determining x,(G)(g > 1) is NP-hard for any graph as there is no
known polynomial-time algorithm to find x4(G) for any graph even if g = 1.

An n-dimensional hypercube is an undirected graph Q. = (V, E) with |V| =
2™ and |E| = n2"~!. Each vertex can be represented by an n-bit binary string.
There is an edge between two vertices whenever their binary string representation
differs in only one bit position. Following Latifi {6], we express Q. as Do (® D,
where Do and D, are the two (n—1)-dimensional subcube (called (n—1)-subcube)
of Qn induced by the vertices with the ith coordinate 0 and 1 respectively. Some-
times we use X*~10X™"% and X*~'1X™"* to denote Dy and D;, where X € Z,.
Clearly, the vertex v in one (n — 1)-subcube has exactly one neighbor v’ in the
other (n—1)-subcube, we call v’ the out neighbor of v. Letu = z122---2; -+ 2, €
V(Qn), we use ui,i,...;, to denote a vertex whose i1th,isth,- - ,isth coordinates
are different from u's, and @ denotes a vertex such that all coordinates of @ are
different from u's. We use P, to denote a path with n vertices, dg(u, v) to denote
the distance of u, v, diam(G) = maz{dc(u,v)|u,v € G} to denote the diameter
of G. It well known that dg,, (u, &) = n, see [8].

Folded hypercube F'Qy is superior to @ in some properties, see [2, 7]. Thus,
the folded hypercube F'@Q,, is an enhancement on the hypercube Q.. FQ, is ob-
tained by adding a prefect matching M on the hypercube where M = {(u,%)| u €
V(Qx)}. In addition, denote by M; the edgeset {(z1z2 - Tic1ZiTis1 -+ - Tn,
T1Z2 -+ Ti—1FiTi+1 * - Tn)|F: represents the complement of z;}. Fu in [4] showed
that E(Qn) = Ui=1 M; and E(FQ,) = E(Q)U M.

Similarly, we express F'Qr as Do @ D1, where Do and D, are the two (n—1)-
subcubes of @ induced by the vertices with the ith coordinate 0 and 1 respec-
tively. It was known that Ko(FQn) = n+ 1, £1(FQs) = 2n for n > 4, and
K2(FQn) = 3n — 2 for n > 8, see (10, 11, 12]. In this paper, we show that
#g(FQn) =(n+1)(g+1)—2g~ () forn>80<g<n—4

Let A C G, v € V(G). We use Ng(v) to denote the set of the neighbors of
v in G, N¢(A) to denote the set (UueV(A) Ng(v))\ V(A), Cs(A) to denote the
set Ng(A) U V(A). We follow Bondy [1] for terminologies not given here.

In [9], we verified the following result.
Theorem 1.1. Ifn >4, then kg(Qn) =(g+1)n—29— () for0<g<n—4.
In this paper, we shall verify the similar result of folded hypercubes as follows.

Theorem 1.2. Ifn > 8, then kg(FQn) = (g+ 1)(n+1)~2g9— (§) for0< g <
n-—4,

2 Preliminaries

Before discussing the «4,(FQn), we review some results of hypercubes which can
be found in [9].
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Lemma 2.1. Assume n > 4 and A C Q.. If |[V(A4)] = g+ 1, then
INg.(A)] 2 (g+1)n 29 - (5)-

Remark 2.2. Note that hn(g) = (g + 1)n — 2g — (§) is increasing when
g < n— 2, the maximum of ha(g) is An(n —2) = (n - 1)n —2(n —2) — (") =
ha(n—1) = n?=2(n—1)—(";1) = 22=U 41 and hn(n—1) = hn(n-2) > ha(n) >
(g+1)n—2g— (%) for 0 < g < n—4. In particular, hn_1(g1)+hn-1(g2) > hn(g)+1
when0<gi,g2<n-land g1 +1+g2+1>g+1.

Lemma 2.3. Assume n > 4, B C Qn and |V(B)| 2 n. If [V(Qn)\
Ca, (B)| 2 n, then {Nq,(B)| 2 ﬂ£n2—12.

Lemma 2.4[12). Any two vertices in V(Q,) have exactly two common
neighbors for n > 3 if they have any.

Lemma 2.5. Let 0 < g<n(n>3),AC Qnand A= K, Then
INg, (A)| = (g+1)n—2g — (%) and Qn — Cq.(A) is a connected subgraph of Qn
with proper P,.

Lemma 2.6. Assume A C Qn, |V(A)|=g+1and 0< g <n—4(n 2 4),
then Q, — Cq, (A) is a connected subgraphs of @, with property P,.

Similarly, we give some useful results of folded hypercubes in the following
arguments.

Lemma 2.7. Let FQ, = Do @ D) and A be a connected subgraph of D;.
If diamg,, (A) < n — 1, then |[Npy(4)| = 2|A|.

Proof. Let A C D, and u,v € V(A). Clearly, if u, v have common neighbors
in Dy, then v = %’. For any u € V(A), since diamg,(A) < n—~1and A is
connected, u’ is not in V(A). That is, any two distinct vertices of V(A) have no
common neighbors in Dy. Therefore, |Np, (A4)| = 2|V (A)|. O

Lemma 2.8. Let FQ, = Do®@ D1, 0 < g<n-4(n>8), AC Dy, and
A = K g, then |Nrg,(A) = (g + 1)(n + 1) — 2g — (§) and FQn. — Crq,(A) is
connected with property P,.

Proof. By Lemmas 2.5 and 2.7, we have |Nrq, (A)| = |[Npy(A)|+|Np, (A)] =
AV +(g+1)(n-1)-2¢- () =(9+D(n+1)-2g - ().

By Lemmas 2.5 and 2.6, we have that Do — Np,(A) and D, — Cp, (A) are
connected. Note that |V(D;) — Cp, (A)| =2""1 - ((g+ 1)(n —1) — 2g — o -
(9+1)>2(g+1) = |Npy(A)| for n > 8, we have that Do — Np,(A) connects to
D, - Cp,(A). Since 2" —|Crq, (A)| =2" —((g9+1)(n+1)—2g—(§)) > g+1 for
n > 8, we have that |V(FQ.—Crq,(A))| > g+1forn > 8. Thus FQ,—Crq, (A)
is connected with property P,. (]

Lemma 2.9. Let A be a connected subgraph of Qn with [V(A)| < n - 1.
Then there exists a decomposition @» = Do (® D; such that V(A) c V(D) or
V(Do).

Proof. Let T4 be a spanning tree of A. Clearly, |E(T4)| € n — 2. Thus
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there exists an integer ¢ such that M; N E(T4) = 0. Let Do = X*~'0X"~%, D, =
X*=11X"~. Then V(A) C V(Dy) or V(Do). 0

Lemma 2.10. Let A be a connected subgraph of FQ, with |[V(A4)| <n—1
and T4 be a spanning tree of A. Then there exists an integer ¢ such that T4 C

FQ. — M;.
Proof. Clearly, |E(Ta)| £ n — 2. Thus there exists an integer ¢ such that
M;NE(T4) = 0. The result is clearly true. O

Lemma 2.11[4}. FQ, — M; is isomorphic to Q, for all i.

Lemma 2.12. Let FQn = Q, + M and A be a connected subgraph of Q,,.
If diamgq, (A) < n — 2, then |Nrq, (4)| = [V(A)| + |Nq. (4)|-

Proof. Foranyv € V(A). Note that diamq,, (v,7) =nand A C Qn, diamq, (A)
n —2, we have 9 ¢ Cq, (A). We thus have |[Nrq, (A)| = |Ng, (A) U Nm(A4)| =
{V(A)| +|Nq.(4)|. O

‘Corollary 2.13. Let A be a connected subgraph of FQ, with |V(4)| =
g+1<n—1 Then |Npq,(A)| 2 (¢ +1)(n+1)—2g — ().

Proof. This result follows immediately from Lemmas 2.10, 2.11, 2.12 and
Lemma 2.1. ]

lemma 2.14. Let FQn = Do@ D1, n > 8, A be a connected subgraph of
Dy. If [V(A)| 2 n - 1, then |Npg, (A)| > 2&H) o,

Proof. Let T4 be a connected subgraph of A and |V(T4)| = n —1. If
[V(D1)\Cp, (4)| 2 n—1, by Lemma 2.3 and 2.7, we have [Np, (4)| > {2=1n=2)
and |[Npo(Ta)| = 2(n—1). Thus [Nrq,(A)| = |[Nb, (A)|+|Np,(A)| 2 |Np, (A)|+
INDo(Ta)| 2 2=HE=2 4 2(n — 1) = 2 1 I£[V(D1) \ Cp, (A)| < n - L,
then |Cp, (4)| > 2"~! — (n—1) > 224U _ 3 for n > 8. For any z € Cp, (A), at
last one of {z,2/} in Nrq,(A), then |Nrq, (4)| > 2&FL _ 2, O

3 Main result

In the following, we shall determine x4 (FQy).

Theorem 3.1 If n > 8, then ko(FQn) = (9 + 1)(n 4+ 1) — 2g — (3) for
0<g<n-—4.

Proof. We first show that £g(FQa) < (9 + 1)(n + 1) — 29 — (§). Let
FQn=Do@ D1, u € V(D1), ui € Np,(u),0<i< g, A= FQnlu,u1, - ,ug
and F = Nrq,(A). By Lemma 2.8, we have £4(FQn) < (9+1)(n+1)—2g— (2).

Next we verify that x4(FQn) > (g +1)(n + 1) — 2g — (3). By contradiction.
Suppose that F is a vertex cutset such that every component of FQ, — F has
property Py and |F| < (g+1)(n+1)—2g— () — 1. Assume that A is the smallest
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component of FQ, — F.

If |V(A)] € n—1, the theorem follows immediately from Corollary 2.13. Next
we assume that |V (A)] 2> n.

We can decompose FQn = Do ® D such that |V(A)NV(D1)| 2n—1 (or
[V(A) N V(Do)| > n — 1) since Lemma 2.9, 2.10, 2.11. Let Fo = F n V(Do)
and F} = FNV(D,), then we have either |Fo| < (9"'1)("“);29‘(3)‘1 or |[F| £
(g+1)(n+1)~29—(§) -1

5 .

(9+1)(n+1)—2g~(§) -1
|Fol < T —.

Case 1.

Assume that Gy, Gz, - -+ , G, are all components of Do—Fp such that |V(G;)| <
% and G* denotes Do — FoUV(G1U---UG,). We obtain two claims as follows.

Claim 1. Y i_,|V(Gy)| < 3

Clealy, Fo < &Xmt=20-()=1 _ n(,_1)_9(2-1)—(¥;7) forn > 8. By
Lemma 2.1, we have that Do— Fo has no component C such that § < [V(C)| < n.
If 2 <Y i, [V(Gi)| £ n, by Lemma 2.1, we have [Npo (G1U- - -UG,)| > |Fol,

i=1
a contradiction.
If i, IV(Gi)| > n, we can find a subgraph S consisting of G; such that
2 <|V(S)| £ n. By Lemma 2.1, we have |Np,(S)| > |Fol, a contradiction. Thus
L V(G < 3.

Claim 2. G" is connected.

Since |V (Do) \ (FoU (V(G1U---UG,))| > 2" = |Fy| — 2 > 0for n > 8,
thus G* is not an empty graph.

Suppose that G* is disconnected, then every component of G* has order at
least n. By Lemma 2.3, we have |[FoU(V(G1U---UG,))| 2 5"—'1).%"—_22 However,
IR U(V(GIU--UG,))| < |Fo| + 3 < ErXmt=20m ()71 4 o o (oiind) o
n > 8, a contradiction. Thus G* is connected.

Let 31, IV(Gi)| = N and Cy,Cz, -+ ,Cm are all components of D1 — Fy
such that |[V(Ci)|]<n—-1,1<i<m.

Clearly, if N = 0, then G* = Dy — Fp is connected, that is, A C D;. By
Lemma 2.14, we have |F| > 1("2—'“1—2 > (g+1)(n+1)-2g—(§) for0 < g <n—4,
a contradiction.

Next we derive the contradictions when N > 1 by considering two cases.

Subcase 1.1. V)l zn-1.
i=1
n — 1, by },emma 2.3, we have the result immediately; if n?ot, and we suppose
|Fi| < 2= ?"'2 s then 3572, [V(Ci)l = V(D) =R |=(IV(D)I-3Z, [V(Co)l-
|F]) > 2" — |Fi| = (n — 1) > 4n for n > 8. Note that |V(C:)| < n — 1, there

We claim that [Fy| > &=1=D In fact, if |V(D1)| - 0, IV(C)| - || >
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exists an integer j such that Z;l [V(C)l2n—-1and 37, [V(Ci)| 2n—1.
By Lemma 2.3, we have |[Np, (U, (C))| > =222 that is || > 2=lin=2)

It is not difficult to see that |F| = |Fo|+|Fi| 2 N(n—-1)-2(N~1) - (N;‘) +
5—";%"——21 > -'31'5"'—11 -3>(g+1)(n+1)-29—-(§)—1for N>2,g<n—-4,a
contradiction.

Next we verify the results when N = 1.

If N = 1, then Do — Fp has a isolated vertex v. Assume that Gy, -- , G, are all
the components of D; — Fy such that |V(G;)| > n — 1. By Lemma 2.14, we have
that G; connects to G*(otherwise |[Nrq, (G:) \ v| > |F|). Clearly, v disconnects
to Gi(otherwise, v connects to G*, that is, A C Dy — Fy. But |V(4)| > n, By
lemma 2.14, we have that |Nrq, (A)| > |F|, a contradiction). Since |[V/(A)| > n
and |V(C:)| < n — 1, we have that v has two neighbors in Dy — Fy, that is
A = FQq[{v} U V(Ckx) U V(C)] where Ci,C; are two components of D; — Fy
such that v/ € V(Cy), 0 € V(Ci). Clearly, Cr and C; disconnects to G*(in fact,
D; — F) has exactly two components with order less than n — 1 and disconnect
to G*, that is, {k,1} = {1,2}).

If Cp,(C1)NCp,(C2) = @. Assume |[V(C1)| = My, |V(C2)|] = Na. Clearly,
N1+ N2 > n— 1. By Remark 2.2, we have |Np, (C1)| + |Np, (C2)| > n(n —2) -
2(n—3)—("3°). Thus |F| > |Np, (v)|+|Np, (C1)|+|Np, (C2)| > n=14n(n-2)-
2(n-3)-("3%) = (n=2)(n+1)-2(n—3)— (";°) +1 > (g+1)(n+1) - 29— () -1
for n > 8, a contradiction.

If Cp, (C1)UCp, (C2) # 0. Let z € Cp, (C1)NCp,(C2) and S = D1 [V(C1)U
V(C2) U z](induced connected subgraph). Let P be the shortest (v/,)-path of
S. Clearly, |V(P)| > n. By lemma 2.7, we have [Np,(P — v/)| = 2|V(P -
o) 2 2(n — 1), that is, |[Npy(P — v/ — z)] = 2|V(P — w/)| — 2. We have that
IF U {}] 2 |Fi| + |Npy(P — v — z)| 2 2=Ha=D) 4 g(n — 1) — 2 > 25l _ 3,
but |F| < ﬂ';—“l — 6, a contradiction.

Subcase 1.2, |Y 7 V(Ci)|<n-1.

We claim that A C (UG;:) U (UC;).

We first assume that G* = D, — F{UV(C1 U---UC\») is connected. We shall
show that G* connects to G*. In fact, it is sufficient to show that |Np, (G*)|(>
|D1 - FLUV(UC;)|) > |FoUV(UG;)|. Since |Dy| — |Fy| - |Fo| = |V(UC:)| =~ |Fo U
V(UG > 2" —|F|-(n—1) -2 22" 220 4§ (n—1) = 2 > 0 for
n > 8, we have that G* connects to G*. A similar count as above clearly implies
that [V(G* UG™)| > M@, thus A C (UG;) U (UC;) since A is the smallest
component of FQ, — F.

If G* is disconnected. Clearly, each component of G* has order at least n — 1,
then we have [Fy| > {2=(=2) by Jemma 2.3. Assume that Gj, .- ,Gt, are
all the components of Dy — Fy such that |V(G7)| > n — 1. By the argument of
Subcase 2.1, we have that N = |U(V(G:))| =1 and G},i=1,2,.--,t;, connect
to G*. Clearly, |V(G"UG*)| > MEQ—Q—"M, thus we have A C (UG;) U (UC;).
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Note that [V(A) NV (D1)| < |[V(UCi)l < n—1and [V(A)NV(D1)| 2 n -1,
a contradiction.

+1)(n+1)—2g~(3)-1
|Fl' S (g+1)(n )2 g (21 .

Case 2.
By a similar argument of Case 1, It is not difficult to this case is imposable
since A is the smallest component.

Thus ko(FQn) = (¢ + 1)(n+1) — 20 (). O
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