A NOTE ON BI-NORMAL CAYLEY GRAPHS
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ABSTRACT. The aim of this paper is to answer a question proposed
by Li [2] and prove that no connected bi-normal Cayley graph other
than cycles of even length is 3-arc-transitive.
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1. INTRODUCTION

Let I" be a graph with vertex set V(I') and edge set E(I'). We use
Aut(I") to denote the automorphism group of I'. The graph I' is said to
be s-arc-transitive if it has at least one s-arc and Aut(I") is transitive on
both the vertices and the s-arcs of I', where an s-arc means a sequence
vo,v1,- - ,Us of s + 1 vertices such that {v;_;,v;} € E(I') for 1 <i < s
and v;_) # viy for 1 <i < s—1. A graph is said to be s-transitive if it is
s-arc-transitive but not (s + 1)-arc-transitive.

Let G be a finite group and S be a subset of G with 1 ¢ § = §~! :=
{s7!| s € S}. The Cayley graph Cay(G,S) of G with respect to S is
defined as the graph with vertex set G and edge set {{z,y} | yz~! € S}.
Then Cay(G, S) admits a group G := {§:z— 29, € G| g € G} acting
regularly on the vertices. The Cayley graph Cay(G, S) is said to be normal
if G itself is normal in Aut(Cay(G, S)), or bi-normal if G has a subgroup of
index 2 which is normal in Aut(Cay(G, S)).

The aim of this paper is to answer a question posed by Li [2). For s > 2,
Li [2] gave a characterization of s-transitive Cayley graphs. He proved
that cach connected s-transitive Cayley graph is normal with s = 2, or bi-
normal (so bipartite) with s < 3, or a normal cover of one of finite number
of graphs. Then the following interesting question was proposed:

Question 1.1. Do there ezist 3-transitive bi-normal Cayley graphs?
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In this paper, we shall prove the following result.

Theorem 1.2. Let I" be a connected bi-normal Cayley graph of valency at
least 3. Then I' is not 3-arc-transitive.

2. Bi1-CAYLEY GRAPHS

Note that a bi-normal Cayley graph is a bipartite graph admits a group
acting regularly on both of the bipartition subsets. It is easily shown that
such a graph is isomorphic to a bi-Cayley graph defined in the following.

Let G be a finite group and S C G which possibly contains the identity
element of G. The bi-Cayley graph, denoted by BCay(G, S), is defined to
be the graph with vertex set G x {l,7} and edge set {{(z,!),(y,7)} | z,y €
G,yz~! € S}. Then BCay(G, S) is a well-defined bipartite graph with two
bipartition subsets G x {l} and G x {r}.

Let I' = BCay(G, S) be a bi-Cayley graph. It is easily shown that
BCay(G, S) is connected if and only if G = (§S~!) (if and only if G =
(S—18)), see [1] for example. For each g € G, we define

§:Gx{l,r} - G x {l,r}, (x,i) > (xg,i) for i = 1,7

It is easy to see that § is an automorphism of BCay(G, 5). Set G={glge
G}. Then g — § gives an isomorphism from G to G, and G acts regularly on
both G x {l} and G x {r}. In the following we shall consider the normalizer
N := Nayr)(G) of G in Aut(I').

Let N* = Ngyx{i}, the set-wise stabilizer of G x {{} in N. Then N* =
ch{r), and cither N = N+t or N is transitive on G x {l,r}. Noting that
G is normal in N, it is easily shown that N* has index no more than 2 in
N. Further, N(; ;) < N* for i = [,r, where N(; ;) is the stabilizer of (1, 1)
in N.

Now we consider the point-wise stabilizers of (1,{) and of {(1,{),(1,7)}
in N. For 0 € Aut(G) and h € G, we define &4, hy and h, as follows:

g:Gx{lir}-Gx{,r}; (z,0) (2°]), (z,7) — (2%,7),

hi:Gx{l,r} = Gx{l,r}; (z,0)— (h~'z,l), (z,7)+ (z,7),

by :Gx {l,r} = G x {l,r}; (z,1) = (z,0), (z,7) — (b~ tz,7).

Then &, by and h,. are well-defined permutations on G x {I,7} and fix Gx {I}
set-wise. Further, we have the following lemma (see also (3, 4]).

Lemma 2.1. Let g,h,k € G, 0,7 € Aut(G) and I' = BCay(G,S). Then
(1) o7 =6+, 6~ 156 = g%, hg = dhi, heg = gh, and Wik, = kohy;
(2) o‘hlk is an isomorphism from BCay(G, S) to BCay(G,k~157h);
(3) ahlk € N* if and only if S = k~1S%h;
(4) 6hik, € Ny ifend only if h=1 and S =k~ 180,
(5) Ghik, € Nury if and only if k=1 and S = S%h;



(6) Ghuiky € Niagy1ry if and only if h=k =1 and S° = S.
Proof. For any z € G and i = I, 7, we have

(:c,i)‘if = ((z7)7,1) = (z%,9)" = (m,i)‘:’i,
(,8) = (29,4)° = ((29)°,1) = (x,0)°%".

It follows that the first equation in (1) holds. One may easily check the
other three equations in (1).
Set w = dhik,. For 2,y € G, we have

{(z,0), (y,7)*} = {(h~12%,0),(k7'y,)} € E(BCay(G,k~'57R))
® k(%) thekTIS%h e (ym) =y (2) T €87 wyrTl € S
& {(z,0),(y,r)} € E(I).

It implies that w is an isomorphism from I to BCay(G, k~1S%h).

Note that w fixes G x {l} set-wise and that w normalizes G by (1). Then
w € N* if and only if w € Aut(Il’). If S = k=1S°h then, by (2), w is an
automorphism of I". Assume w € Aut(I"). Then w maps the neighborhood
S x {r} of (1,!) onto the neighborhood Sh~! x {r} of (1,1)* = (h~1,1).
Noting (S x {r})* = k=157 x {r}, we get Sh~! = k=157, and so S =
k~18%h.

Note that & fixes both (1,) and (1,r), h; fixes (1,7) and k, fixes (1,1).
Then (4), (5) and (6) hold. g

Remark 2.2. By Lemma 2.1 (2), we get BCay(G, S) = BCay(G,k~1S5) =
BCay(G, Sh) for any h,k € G. In particular, BCay(G, S) & BCay(G,s~15)
Jor any s € S. Thus, for a bi-Cayley graph BCay(G, S), one may assume
that S contains the identity element of G.

Theorem 2.3. (1) N* = {ghik, | h,k € G,0 € Aut(G), S = k~1S°R};
(2) Nuyy = {6k, | 0 € Aut(G), k € G, S = k~15°);
(3) Nuyy = {6k | 0 € Aut(G), h€ G, S = S°h};
(4) N(l,l)(l,r) = {6’ l g€ AUI(G), S% = S}
(5) If I' = BCay(G, S) is connected, then Ny ;) acts faithfully on the
neighborhood of (1,1) in I, wherei =1,7;

Proof. Let v € N. Then v normalizes G and so, for any z € G, we have
v~1&y = o’ for some z' € G. Define 0 : G — G; z — z'. It is easily shown
that o is a well-defined bijection on G. For z,y € G, we have

((z9)°, ) = (a9, 1) = (LOE = (1, 3w

—1a

= (L)Y 8 = (L,1)=Y = (2'y',1) = (27y°, 1),

and so (zy)? = zy°. It implies o € Aut(G).



Assume v € N*. Then we may set (1,!)” = (h~4,1) and (1,7)” =
(k=1,r) for some h,k € G. Then v = Ghik, follows from

(2, )7RF = (h=127,1) = (A7}, 1)F = (R4, 073 = (1,1 = (z,1)",

(l.’,,.)&iui:r = (k=129 r) = (k~1,r)® = (k~1,7)* % = (1,7)% = (z,7)".

By Lemma 2.1 (3), we have S = k~!5%h, and so (1) of the present
theorem holds. Recall that Ny ;) < Nt for i = ,7. Then (2), (3) and (4)
of the present theorem follow from (1) and Lemma 2.1.

Now, by Remark 2.2, we may assume that S contains the identity el-
ement of G. Thus (1,j) belongs to the neighborhood of (1,%), where
{i,7} = {l,7}. Since 1 € S and I is connected, we have G = (S~18) = (S).
Noting that S x {r} is the neighborhood of (1,!) and S~ x {{} is the neigh-
borhood of (1,7), it follows from (4) that the stabilizer Ni; ;)q1,jy of (1,7)
in N1,y acts faithfully on S x {r} for i = and on S~! x {l} for i = r.
Thus N(y ;) is faithful on the neighborhood of (1,3). O
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Note that (s,7)% = (s,r) implies s° = s and (s71)? = s~ ! for s € S and
o € Aut(G) with S? = S. We have the following corollary.

Corollary 2.4. Assume that |SU{1}| > 3|. If1 # s € S, then Nt ry(1ty(ar)
is not transitive on S~ x {I} \ {(1,1)}. In particular, if 1 € S, then
N@,7)(1,1) s not transitive on the 3-arcs in BCay(G, S) which contains the

are ((1,7), (1,1)).

3. ProoF oF THEOREM 1.2

Let I’ be a connected bi-normal Cayley graph. Then Aut(I") has a
normal subgroup, say G, which is semiregular and has exactly two orbits
on V(I'). Note that these two G-orbits give an Aut(I")-invariant partition
of V(I'). It follows that either I' is not arc-transitive, or I" is a bipartite
graph and those two G-orbits are the bipartition subsets of I"'. Then the
following argument completes the proof of Theorem 1.2.

Now let I' be a connected bipartite graph with G < Aut(I") acting
regularly on both two bipartition subsets U; and U, of I'. Then it is easily
shown that I' is a regular graph. Let {w;,u,} € E(I") with uv; € U; and
u, € U,. Then each vertex in U; can be written uniquely as uf for some
z € G, where ¢ = [, 7. Define

¢: V() = Gx{l,ry; uf — (z,i), i =17

Then ¢ is a bijection. Set S = {s € G| {w,ul} € E(I')}. Thenl € §
and, for z,y € G, we have

{uf, 0¥} € E(N) & {u,u?® '} e B(I) e yz' €S



Thus ¢ is an isomorphism from I" to the bi-Cayley graph BCay(G, S).
Further, ¢~'g¢p = g € G for all g € G, and X < Npy(r(G) implies
¢~ 1X¢ < N4(G), where A = Aut(BCay(G, S)). Assume further that I' is
not a cycle. Then |S| = [SU{1}| > 3. It follows from Corollary 2.4 that X is
intransitive on the 3-arcs of I for X < Aut(I') (with G < X < Naw(r)(G)).
In particular, I’ is not 3-arc-transitive if it is a connected bi-normal Cayley
graph. This completes the proof of Theorem 1.2.

The following result is a consequence of the above argument.

Theorem 3.1. Let I' be a connected bipartite graph with G < Aut(I)
acting regularly on both two bipartition subsets of I'. If X < Nauw(ry(G),
then X is intransitive on the 3-arcs of I except that I' is a cycle of even
length.
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