A NOTE ON BI-NORMAL CAYLEY GRAPHS

JING JIAN LI, ZAI PING LU, AND GAIXIA WANG

ABSTRACT. The aim of this paper is to answer a question proposed by Li [2] and prove that no connected bi-normal Cayley graph other than cycles of even length is 3-arc-transitive.

KEYWORDS. Cayley graph, bi-Cayley graph, s-arc-transitive graph.

1. Introduction

Let Γ be a graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$. We use $\operatorname{Aut}(\Gamma)$ to denote the automorphism group of Γ . The graph Γ is said to be s-arc-transitive if it has at least one s-arc and $\operatorname{Aut}(\Gamma)$ is transitive on both the vertices and the s-arcs of Γ , where an s-arc means a sequence v_0, v_1, \cdots, v_s of s+1 vertices such that $\{v_{i-1}, v_i\} \in E(\Gamma)$ for $1 \le i \le s$ and $v_{i-1} \ne v_{i+1}$ for $1 \le i \le s-1$. A graph is said to be s-transitive if it is s-arc-transitive but not (s+1)-arc-transitive.

Let G be a finite group and S be a subset of G with $1 \not\in S = S^{-1} := \{s^{-1} \mid s \in S\}$. The Cayley graph $\operatorname{Cay}(G,S)$ of G with respect to S is defined as the graph with vertex set G and edge set $\{\{x,y\} \mid yx^{-1} \in S\}$. Then $\operatorname{Cay}(G,S)$ admits a group $\hat{G} := \{\hat{g}: x \mapsto xg, \ x \in G \mid g \in G\}$ acting regularly on the vertices. The Cayley graph $\operatorname{Cay}(G,S)$ is said to be normal if \hat{G} itself is normal in $\operatorname{Aut}(\operatorname{Cay}(G,S))$, or bi-normal if \hat{G} has a subgroup of index 2 which is normal in $\operatorname{Aut}(\operatorname{Cay}(G,S))$.

The aim of this paper is to answer a question posed by Li [2]. For $s \ge 2$, Li [2] gave a characterization of s-transitive Cayley graphs. He proved that each connected s-transitive Cayley graph is normal with s=2, or binormal (so bipartite) with $s\le 3$, or a normal cover of one of finite number of graphs. Then the following interesting question was proposed:

Question 1.1. Do there exist 3-transitive bi-normal Cayley graphs?

Date: September 24, 2009.

The second author was partially supported by the NSF and the 973 program of China.

E-mail address: ljj@cfc.nankai.edu.cn(J.J. Li),
lu@nankai.edu.cn(Z.P. Lu),
wgx@cfc.nankai.edu.cn(G.X. Wang).

In this paper, we shall prove the following result.

Theorem 1.2. Let Γ be a connected bi-normal Cayley graph of valency at least 3. Then Γ is not 3-arc-transitive.

2. BI-CAYLEY GRAPHS

Note that a bi-normal Cayley graph is a bipartite graph admits a group acting regularly on both of the bipartition subsets. It is easily shown that such a graph is isomorphic to a bi-Cayley graph defined in the following.

Let G be a finite group and $S \subseteq G$ which possibly contains the identity element of G. The bi-Cayley graph, denoted by $\mathrm{BCay}(G,S)$, is defined to be the graph with vertex set $G \times \{l,r\}$ and edge set $\{\{(x,l),(y,r)\} \mid x,y \in G,yx^{-1} \in S\}$. Then $\mathrm{BCay}(G,S)$ is a well-defined bipartite graph with two bipartition subsets $G \times \{l\}$ and $G \times \{r\}$.

Let $\Gamma = \mathrm{BCay}(G, S)$ be a bi-Cayley graph. It is easily shown that $\mathrm{BCay}(G, S)$ is connected if and only if $G = \langle SS^{-1} \rangle$ (if and only if $G = \langle S^{-1}S \rangle$), see [1] for example. For each $g \in G$, we define

$$\hat{g}: G \times \{l,r\} \rightarrow G \times \{l,r\}, (x,i) \mapsto (xg,i) \text{ for } i = l,r.$$

It is easy to see that \hat{g} is an automorphism of $\mathrm{BCay}(G,S)$. Set $\hat{G}=\{\hat{g}\mid g\in G\}$. Then $g\mapsto \hat{g}$ gives an isomorphism from G to \hat{G} , and \hat{G} acts regularly on both $G\times\{l\}$ and $G\times\{r\}$. In the following we shall consider the normalizer $N:=\mathbf{N}_{\mathsf{Aut}(\Gamma)}(\hat{G})$ of \hat{G} in $\mathsf{Aut}(\Gamma)$.

Let $N^+ = N_{G \times \{l\}}$, the set-wise stabilizer of $G \times \{l\}$ in N. Then $N^+ = N_{G \times \{r\}}$, and either $N = N^+$ or N is transitive on $G \times \{l, r\}$. Noting that \hat{G} is normal in N, it is easily shown that N^+ has index no more than 2 in N. Further, $N_{(1,i)} \leq N^+$ for i = l, r, where $N_{(1,i)}$ is the stabilizer of (1,i) in N.

Now we consider the point-wise stabilizers of (1,l) and of $\{(1,l),(1,r)\}$ in N. For $\sigma \in \operatorname{Aut}(G)$ and $h \in G$, we define $\hat{\sigma}$, \tilde{h}_l and \tilde{h}_r as follows:

$$\begin{split} \hat{\sigma}: G \times \{l,r\} &\rightarrow G \times \{l,r\}; \quad (x,l) \mapsto (x^{\sigma},l), \quad (x,r) \mapsto (x^{\sigma},r), \\ \tilde{h}_l: G \times \{l,r\} &\rightarrow G \times \{l,r\}; \quad (x,l) \mapsto (h^{-1}x,l), \quad (x,r) \mapsto (x,r), \\ \tilde{h}_r: G \times \{l,r\} &\rightarrow G \times \{l,r\}; \quad (x,l) \mapsto (x,l), \quad (x,r) \mapsto (h^{-1}x,r). \end{split}$$

Then $\hat{\sigma}$, \tilde{h}_l and \tilde{h}_r are well-defined permutations on $G \times \{l, r\}$ and fix $G \times \{l\}$ set-wise. Further, we have the following lemma (see also [3, 4]).

Lemma 2.1. Let $g, h, k \in G$, $\sigma, \tau \in Aut(G)$ and $\Gamma = BCay(G, S)$. Then

- (1) $\widehat{\sigma}\widehat{\tau} = \widehat{\sigma}\widehat{\tau}$, $\widehat{\sigma}^{-1}\widehat{g}\widehat{\sigma} = \widehat{g}^{\widehat{\sigma}}$, $\widetilde{h}_l\widehat{g} = \widehat{g}\widetilde{h}_l$, $\widetilde{h}_r\widehat{g} = \widehat{g}\widetilde{h}_r$ and $\widetilde{h}_l\widetilde{k}_r = \widetilde{k}_r\widetilde{h}_l$;
- (2) $\hat{\sigma} \tilde{h}_l \tilde{k}_r$ is an isomorphism from BCay(G, S) to $BCay(G, k^{-1}S^{\sigma}h)$;
- (3) $\hat{\sigma}\tilde{h}_l\tilde{k}_r \in N^+$ if and only if $S = k^{-1}S^{\sigma}h$;
- (4) $\hat{\sigma}\tilde{h}_l\tilde{k}_r \in N_{(1,l)}$ if and only if h=1 and $S=k^{-1}S^{\sigma}$;
- (5) $\hat{\sigma} \tilde{h}_l \tilde{k}_r \in N_{(1,r)}$ if and only if k = 1 and $S = S^{\sigma} h$;

(6) $\hat{\sigma}\tilde{h}_l\tilde{k}_r \in N_{(1,l)(1,r)}$ if and only if h = k = 1 and $S^{\sigma} = S$.

Proof. For any $x \in G$ and i = l, r, we have

$$\begin{array}{l} (x,i)^{\widehat{\sigma}\widehat{\tau}} = ((x^{\sigma})^{\tau},i) = (x^{\sigma},i)^{\widehat{\tau}} = (x,i)^{\widehat{\sigma}\widehat{\tau}}, \\ (x,i)^{\widehat{g}\widehat{\sigma}} = (xg,i)^{\widehat{\sigma}} = ((xg)^{\sigma},i) = (x,i)^{\widehat{\sigma}\widehat{g}^{\widehat{\sigma}}}. \end{array}$$

It follows that the first equation in (1) holds. One may easily check the other three equations in (1).

Set $\omega = \hat{\sigma} \tilde{h}_l \tilde{k}_r$. For $x, y \in G$, we have

$$\begin{aligned} & \{(x,l)^\omega,(y,r)^\omega\} = \{(h^{-1}x^\sigma,l),(k^{-1}y^\sigma,r)\} \in E(\mathrm{BCay}(G,k^{-1}S^\sigma h)) \\ \Leftrightarrow & k^{-1}y^\sigma(x^\sigma)^{-1}h \in k^{-1}S^\sigma h \Leftrightarrow (yx^{-1})^\sigma = y^\sigma(x^\sigma)^{-1} \in S^\sigma \Leftrightarrow yx^{-1} \in S \\ \Leftrightarrow & \{(x,l),(y,r)\} \in E(\varGamma). \end{aligned}$$

It implies that ω is an isomorphism from Γ to BCay $(G, k^{-1}S^{\sigma}h)$.

Note that ω fixes $G \times \{l\}$ set-wise and that ω normalizes \hat{G} by (1). Then $\omega \in N^+$ if and only if $\omega \in \operatorname{Aut}(\Gamma)$. If $S = k^{-1}S^{\sigma}h$ then, by (2), ω is an automorphism of Γ . Assume $\omega \in \operatorname{Aut}(\Gamma)$. Then ω maps the neighborhood $S \times \{r\}$ of (1,l) onto the neighborhood $Sh^{-1} \times \{r\}$ of $(1,l)^{\omega} = (h^{-1},l)$. Noting $(S \times \{r\})^{\omega} = k^{-1}S^{\sigma} \times \{r\}$, we get $Sh^{-1} = k^{-1}S^{\sigma}$, and so $S = k^{-1}S^{\sigma}h$.

Note that $\hat{\sigma}$ fixes both (1,l) and (1,r), \tilde{h}_l fixes (1,r) and \tilde{k}_r fixes (1,l). Then (4), (5) and (6) hold.

Remark 2.2. By Lemma 2.1 (2), we get $BCay(G, S) \cong BCay(G, k^{-1}S) \cong BCay(G, Sh)$ for any $h, k \in G$. In particular, $BCay(G, S) \cong BCay(G, s^{-1}S)$ for any $s \in S$. Thus, for a bi-Cayley graph BCay(G, S), one may assume that S contains the identity element of G.

Theorem 2.3. (1) $N^+ = \{\hat{\sigma}\tilde{h}_l\tilde{k}_r \mid h, k \in G, \sigma \in \text{Aut}(G), S = k^{-1}S^{\sigma}h\}$;

- (2) $N_{(1,l)} = {\hat{\sigma} \tilde{k}_r \mid \sigma \in Aut(G), k \in G, S = k^{-1}S^{\sigma}};$
- (3) $N_{(1,r)} = {\hat{\sigma}\tilde{h}_l \mid \sigma \in \operatorname{Aut}(G), h \in G, S = S^{\sigma}h};$
- (4) $N_{(1,l)(1,r)} = {\hat{\sigma} \mid \sigma \in Aut(G), S^{\sigma} = S}.$
- (5) If $\Gamma = \mathrm{BCay}(G, S)$ is connected, then $N_{(1,i)}$ acts faithfully on the neighborhood of (1,i) in Γ , where i=l,r;

Proof. Let $\nu \in N$. Then ν normalizes \hat{G} and so, for any $x \in G$, we have $\nu^{-1}\hat{x}\nu = \widehat{x'}$ for some $x' \in G$. Define $\sigma : G \to G$; $x \mapsto x'$. It is easily shown that σ is a well-defined bijection on G. For $x, y \in G$, we have

$$\begin{aligned} &((xy)^{\sigma},l) = ((xy)',l) = (1,l)^{\widehat{(xy)'}} = (1,l)^{\nu^{-1}\widehat{x}\widehat{y}\nu} \\ &= (1,l)^{\nu^{-1}\widehat{x}\widehat{y}\nu} = (1,l)^{\widehat{x'}\widehat{y'}} = (x'y',l) = (x^{\sigma}y^{\sigma},l), \end{aligned}$$

and so $(xy)^{\sigma} = x^{\sigma}y^{\sigma}$. It implies $\sigma \in Aut(G)$.

Assume $\nu \in N^+$. Then we may set $(1,l)^{\nu} = (h^{-1},l)$ and $(1,r)^{\nu} = (k^{-1},r)$ for some $h,k \in G$. Then $\nu = \hat{\sigma}\tilde{h}_l\tilde{k}_r$ follows from

$$(x,l)^{\hat{\sigma}\tilde{h}_l\tilde{k}_r} = (h^{-1}x^{\sigma},l) = (h^{-1},l)^{\hat{x'}} = (h^{-1},l)^{\nu^{-1}\hat{x}\nu} = (1,l)^{\hat{x}\nu} = (x,l)^{\nu},$$

$$(x,r)^{\hat{\sigma}\tilde{h}_l\tilde{k}_r} = (k^{-1}x^{\sigma},r) = (k^{-1},r)^{\hat{x'}} = (k^{-1},r)^{\nu^{-1}\hat{x}\nu} = (1,r)^{\hat{x}\nu} = (x,r)^{\nu}.$$

By Lemma 2.1 (3), we have $S = k^{-1}S^{\sigma}h$, and so (1) of the present theorem holds. Recall that $N_{(1,i)} \leq N^+$ for i = l, r. Then (2), (3) and (4) of the present theorem follow from (1) and Lemma 2.1.

Now, by Remark 2.2, we may assume that S contains the identity element of G. Thus (1,j) belongs to the neighborhood of (1,i), where $\{i,j\} = \{l,r\}$. Since $1 \in S$ and Γ is connected, we have $G = \langle S^{-1}S \rangle = \langle S \rangle$. Noting that $S \times \{r\}$ is the neighborhood of (1,l) and $S^{-1} \times \{l\}$ is the neighborhood of (1,r), it follows from (4) that the stabilizer $N_{(1,i)(1,j)}$ of (1,j) in $N_{(1,i)}$ acts faithfully on $S \times \{r\}$ for i = l and on $S^{-1} \times \{l\}$ for i = r. Thus $N_{(1,i)}$ is faithful on the neighborhood of (1,i).

Note that $(s,r)^{\hat{\sigma}}=(s,r)$ implies $s^{\sigma}=s$ and $(s^{-1})^{\sigma}=s^{-1}$ for $s\in S$ and $\sigma\in \operatorname{Aut}(G)$ with $S^{\sigma}=S$. We have the following corollary.

Corollary 2.4. Assume that $|S \cup \{1\}| \ge 3|$. If $1 \ne s \in S$, then $N_{(1,r)(1,l)(s,r)}$ is not transitive on $S^{-1} \times \{l\} \setminus \{(1,l)\}$. In particular, if $1 \in S$, then $N_{(1,r)(1,l)}$ is not transitive on the 3-arcs in BCay(G,S) which contains the arc ((1,r),(1,l)).

3. Proof of Theorem 1.2

Let Γ be a connected bi-normal Cayley graph. Then $\operatorname{Aut}(\Gamma)$ has a normal subgroup, say G, which is semiregular and has exactly two orbits on $V(\Gamma)$. Note that these two G-orbits give an $\operatorname{Aut}(\Gamma)$ -invariant partition of $V(\Gamma)$. It follows that either Γ is not arc-transitive, or Γ is a bipartite graph and those two G-orbits are the bipartition subsets of Γ . Then the following argument completes the proof of Theorem 1.2.

Now let Γ be a connected bipartite graph with $G \leq \operatorname{Aut}(\Gamma)$ acting regularly on both two bipartition subsets U_l and U_r of Γ . Then it is easily shown that Γ is a regular graph. Let $\{u_l, u_r\} \in E(\Gamma)$ with $u_l \in U_l$ and $u_r \in U_r$. Then each vertex in U_i can be written uniquely as u_i^x for some $x \in G$, where i = l, r. Define

$$\phi: V(\Gamma) \to G \times \{l, r\}; u_i^x \mapsto (x, i), i = l, r.$$

Then ϕ is a bijection. Set $S = \{s \in G \mid \{u_l, u_r^s\} \in E(\Gamma)\}$. Then $1 \in S$ and, for $x, y \in G$, we have

$$\{u_l^x, u_r^y\} \in E(\Gamma) \Leftrightarrow \{u_l, u_r^{yx^{-1}}\} \in E(\Gamma) \Leftrightarrow yx^{-1} \in S.$$

Thus ϕ is an isomorphism from Γ to the bi-Cayley graph $\mathrm{BCay}(G,S)$. Further, $\phi^{-1}g\phi=\hat{g}\in\hat{G}$ for all $g\in G$, and $X\leq \mathrm{N}_{\mathrm{Aut}(\Gamma)}(G)$ implies $\phi^{-1}X\phi\leq \mathrm{N}_A(\hat{G})$, where $A=\mathrm{Aut}(\mathrm{BCay}(G,S))$. Assume further that Γ is not a cycle. Then $|S|=|S\cup\{1\}|\geq 3$. It follows from Corollary 2.4 that X is intransitive on the 3-arcs of Γ for $X\leq \mathrm{Aut}(\Gamma)$ (with $G\leq X\leq \mathrm{N}_{\mathrm{Aut}(\Gamma)}(G)$). In particular, Γ is not 3-arc-transitive if it is a connected bi-normal Cayley graph. This completes the proof of Theorem 1.2.

The following result is a consequence of the above argument.

Theorem 3.1. Let Γ be a connected bipartite graph with $G \leq \operatorname{Aut}(\Gamma)$ acting regularly on both two bipartition subsets of Γ . If $X \leq \operatorname{N}_{\operatorname{Aut}(\Gamma)}(G)$, then X is intransitive on the 3-arcs of Γ except that Γ is a cycle of even length.

REFERENCES

- S.F. Du and M.Y. Xu, A classification of semisymmetric graphs of order 2pq, Com. in Algebra 28(2000), 2685-2715.
- [2] C. H. Li, Finite s-arc transitive Cayley graphs and flag-transitive projective planes, Proc. Amer. Math. Soc. 138 (2004), 31-41.
- [3] Z.P. Lu, On the automorphism groups of biCayley graphs, Beijing Daxue Xuebao Ziran Kexue Ban 39(2003), 1-5.
- [4] Z.P. Lu, Semisymmetric cubic graphs constructed from bi-Cayley graphs of A_n, Ars Combinatoria 80(2006), 117-187.

CENTER FOR COMBINATORICS, LPMC, NANKAI UNIVERSITY, TIANJIN 300071, P. R. CHINA

E-mail address: ljj@cfc.nankai.edu.cn

CENTER FOR COMBINATORICS, LPMC, NANKAI UNIVERSITY, TIANJIN 300071, P. R. CHINA

E-mail address: lu@nankai.edu.cn

CENTER FOR COMBINATORICS, LPMC, NANKAI UNIVERSITY, TIANJIN 300071, P. R. CHINA

E-mail address: wgx@cfc.nankai.edu.cn