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Abstract. In this paper we study the metric dimension of the
generalized Petersen graphs P(n,3) by giving a partial answer to
an open problem raised in [8]: Is P(n,m) forn > 7and 3 < m <
["T‘lj, a family of graphs with constant metric dimension? We
prove that the generalized Petersen graphs P(n,3) have metric di-
mension equal to 3 for n =1(mod 6), n > 25, and to 4 for n =
O(mod 6), n > 24. For the remaining cases only 4 vertices appro-
priately chosen suffice to resolve all the vertices of P(n,3), thus
implying that dim(P(n,3)) < 4, except when n = 2(mod 6), when
dim(P(n,3)) < 5.

Keywords: Metric dimension, basis, resolving set, generalized Petersen
graph

1 Notation and auxiliary results

If G is a connected graph, the distance d(u,v) between two vertices u,v €
V(G) is the length of a shortest path between them. Let W = {w;, wy, ...,
wi } be an ordered set of vertices of G and let v be a vertex of G. The rep-
resentation r(v|W) of v with respect to W is the k-tuple (d(v, w1), d(v, ws),
d(v,w3),...,d(v,wx)). W is called a resolving set [4] or locating set [12] if
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every vertex of G is uniquely identified by its distances from the vertices
of W, or equivalently, if distinct vertices of G have distinct representations
with respect to W. A resolving set of minimum cardinality is called a basis
for G and this cardinality is the metric dimension of G, denoted by dim(G).
The concepts of resolving set and metric basis have previously appeared in
the literature (see [1, 4, 5, 7, 9, 11-13]).

For a given ordered set of vertices W = {wy, w2, ..., wk} of a graph G, the
ith component of r(v|W) is 0 if and only if v = w;. Thus, to show that W
is a resolving set it suffices to verify that r(z|W) # r(y|W) for each pair of
distinct vertices =,y € V(G)\W.

A useful property in finding dim(G) is the following:

Lemma 1. Let W be a resolving set for a connected graph G and u,v €
V(G). If d(u,w) = d(v,w) for all vertices w € V(G) \ {u, v}, then {u,v}N
W # 0.

Slater refereed to the metric dimension of a graph as its location number
and motivated the study of this invariant by its application to the place-
ment of a minimum number of sonar/loran detecting devices in a network
so that the position of every vertex in the network can be uniquely de-
scribed in terms of its distances to the devices in the set ([12], (13]). These
concepts have also some applications in chemistry for representing chem-
ical compounds ({4], [9]) or to problems of pattern recognition and image
processing, some of which involve the use of hierarchical data structures
(11].

By denoting G + H the join of G and H a wheel W, is defined as W,, =
K, +C,, forn >3, afanis F, = K; + P, for n > 1 and Jahangir graph
Jon, (n = 2) (also known as gear graph) is obtained from the wheel W;,, by
alternately deleting n spokes. Buczkowski et al. [1] determined the dimen-
sion of wheels W,,, Céceres et al. [3] the dimension of fan F}, and Tomescu
and Javaid [14] the dimension of Jahangir graph J3,,. The size of a smallest
resolving set for the hypercube @, is known only for small n and it can
take 'laborious computations’ to find [3]. The metric dimension of all these
graphs depends upon the number of vertices in the graph.

On the other hand, we say that a family G of connected graphs is a family
with constant metric dimension if dim(G) is finite and does not depend
upon the choice of G in G. In [4] it was shown that a graph has metric
dimension 1 if and only if it is a path, hence paths on n vertices constitute
a family of graphs with constant metric dimension. Similarly, cycles with
n(n > 3) vertices also constitute such a family of graphs as their metric
dimension is 2 and does not depend upon the number of vertices n.

In (8] Javaid et al. proved that some regular graphs namely generalized Pe-
tersen graphs P(n,2), antiprisms A, and Harary graphs Hy, are families
of graphs with constant metric dimension and raised an open problem.
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Open Problem [8]: Is P(n,m) for n > 7 and 3 < m < | 251, a family
of graphs with constant metric dimension?

Note that the problem of determining whether dim(G) < k is an N P- com-
plete problem [6]. ‘

In this paper we give a partial answer to this open problem and we show
that the generalized Petersen graphs P(n,3) constitute a family of regu-
lar graphs having bounded metric dimension and only 4 vertices appropri-
ately chosen suffice to resolve all vertices of the generalized Petersen graphs
P(n, 3) except n = 2(mod 6), when this number equals 5. For n = 1(mod
6) a minimal resolving set has cardinality equal to 3.

In what follows all indices i which do not satisfy inequalities 1 < i < n will
be taken modulo n.

2 Upper bounds for metric dimension of generalized
Petersen graphs P(n, 3)

The generalized Petersen graph denoted by P(n,m), where n > 3 and
1 <m < |251], is a cubic graph having vertex set

V= {ul’u2w- 1 Un, V1, V2, . --;'Un}
and edge set
E = {uiu,-H,uivi,v.-vi.,.m 1< < n}

Generalized Petersen graphs were first defined by Watkins [15]. For m = 1
the generalized Petersen graph P(n,1) is called prism, denoted by D,. In
[2] it was shown that

2, if n is odd;
3, if n is even.

dim(Pp x 0,,)={

Since the prism D, is actually the cross product of P, with a cycle Cj,, this
implies that

2, if n is odd;

3, if n is even.

dim(Dn)={

So, prisms constitute a family of 3-regular graphs with bounded metric
dimension. In (8] it was proved that dim(P(n,2)) = 3 for every n > 5.
Now we will find the metric dimension of the generalized Petersen graphs
P(n,3) when n = 0 or 1(mod 6) and an upper bound in the remaining
cases.
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When m = 3, {u,u2,....,un} induces a cycle in P(n,3) with u;u;3; (1 <
i < n), as edges. If n = 3! (I > 3), then {v,v,,...,v,} induces 3 cycles of
length [, otherwise it induces a cycle of length n with v;vi13 (1 £ ¢ < n),
as edges. For example, P(8,3) is the Mobius-Kantor graph [10].

Since generalized Petersen graphs P(n,3) form an important class of 3-
regular graphs with 2n vertices and 3n edges, it is desirable to find their
metric dimensions. For our purpose, we call the cycle induced by {u,, us, ...,
un }, outer cycle and cycle(s) induced by {v1,vs, ..., vn} inner cycle(s). Note
that the choice of appropriate basis vertices (also referred to as landmarks)
is core of the problem.

Theorem 1. For the generalized Petersen graph P(n,3) we have

(a) dim(P(n,3)) < 3 for n = 1(mod 6) and n > 13;

(b) dim(P(n,3)) < 4 forn =0,3,4,5(mod 6) and n > 17.

(c) d&im(P(n,3)) <5 for n = 2(mod 6) and n > 8.

Proof. We denote W = {v;,vs,v3,u4} for n = 0,3,4,5(mod 6) and W =
{v1,v3k—1,v6k} for n = 1{mod 6), n = 6k + 1. We show that the set W
distinguishes the vertices of P(n,3) for n # 2(mod 6). For this purpose, we
give the representation of V(P(n, 3)) in these cases.

Case (i) n = 6k,k € Z*,k > 2. For every n > 12, the representations of

vertices on the outer cycle are
r(w|W) = (1,2,3,3), r(u2|W) = (2,1,2,2), r(us|W) = (3,2, 1,1).

r(ug43:|W) =
(352’3v1)1 1=1;
(i+2,i+1,i+2,71+2), 2<i<k;

(2k—-i+2,2k—-i+1,2k—i+2,2k—i+4), k+1<i<2k-1.
r(us43:|W) =

(4,3,2,2), i=1
(i+3,i+2,i+1,i+3), 2<i<k-1;
(2k—i+1,2k—i+22k—i+1,2k—i+3), k<i<2%-1

r(ugqa:|W) =

(i42,i+3,i +2,i +2), 1<i<k-—1;
(2k—i,2k—i+1,2k—i+2,2%k—i+2), k<i<2%k—2

Representations of vertices with respect to W on the inner cycles are
r(v4a:|W) =

(4,1 + 3,5+ 2,1), 1<igk
(2k —i,2k —i+3,2k—i+4,2k—i+2), k+1<i<2k-1.
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r(vo4a:|W) =

(i+3,i,i+3,i+1), 1<i<k;
(2k—i+3,2k—i,2k—i+3,2k—i+3), k+1<:<2k—-1.
r(v343:|W) =
(i+4,i+3,4,i+2), 1<i<k-1
(2k—i+22%—i+3,2%-i,2k—i+2), k<i<2%—1.

Case (ii) n =6k +1,k € Z*, k > 2. For every n > 13, the representations
of vertices with respect to W are the following:
Representations of vertices on the outer cycle are

(G+2,k—i+2,i+2), 1<i<k-1;
. _ ) (k+2,2,k+1), i=k;
r(uailW) =\ (ok—i43i— k42,2 —i+1), k+1<i<2%—1;
3,k+1,1), i=2k.
_ [+ Lk -+ 1,5+ 1), 1<i<k
T(u31—1|W)_{(2Ic—-i+2,z’—k+1,2k—i+2),k+15i52k.
J(z’,k—i+2,i+2), 1<i<k;
) _ ) (k+1,3,k+2), i=k+1;
r(usialW) =4 (op i1 3i k+2,2k—i+3), k+2<i<2k;
[ 2,k +2,2), i=2k+1.
Representations of vertices with respect to W on the inner cycle are
[ (i +2,k —1,1), 1<i<k-1;
' _ ) (k+1,0,k), i=k;
’I'('U3t—l'W)—J (k,l,k+1), P=k+1;
| (2k —i+1,i—k,2%k—i+3), k+2<i<2k.
(i+3,k—i+3,i+3), 1<i<k-—2
(t+3,k—i+3,2k-1), k-1<i<k
r(va|W)=¢ (2k—i+4,i—k+3,2k—1), k+1<i<2k-—2;
(5,k+1,1), i=2k-1;
(4,k,0), i=2k.
(O,k+1,4), ’L=0,
(i, k —i+2,i +4), 1<i<k-—1;
‘ _ ) (k, 4,k +3), i=k;
r(v3‘!+1|W) - (k+ 1’5,k+2), 1'= k+ 1,
(2k—i+3,i—k+4,2k—i+3), k+2<i<2%—1;
(3,k +3,3), i = 2k.

Case (iii) n = 6k + 3,k € Z*. For P(9, 3), the representations of the ver-
tices are r(u; |W) = (1, 2,3,3), r(ue|[W) = (2,1,2,2), r(us| W) = (3,2,1,1),
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r(us|W) = (3,2,3,1), r(ug|W) = (3,3,2,2), r(u7]W) = (2,3,3,3),
T(USIW) = (3’ 2) 31 4)7 T(UQ|W) = (2)3, 2a 4): T(’U4|W) = (1)47 3a 1):
r(vs|W) = (4,1,4,2), r(vs|W) = (4,4,1,3), r(v7|W) = (1,4,4,2),

r(vs|W) = (4,1,4,3), r(vo|W) = (3,4,1, 3). For every n > 15, representa-
tions of vertices with respect to W are the following:

Representations of vertices on the outer cycle are
r(w|W) = (1,2,3,3), r(u2lW) = (2,1,2,2), r(us| W) = (3,2,1,1).

r{uz43:|W) =
(3,2,3,1), i=1;
(F+2,i+1,i4+2,i+2), 2<i<k;
(k+2,k+1,k+2,k+3), i=k4+1;
(2k —i+3,2k—i+2,2k—i+3,2k—-i+45), k+2<i<2k.
T(uz43:|W) =
(473$ 212)1 i=1;
(i +3,i+2,i+1,i+3), 2<i<k-1;
(k+2,k+2,k+1,k+3), i=k;
(2k-—i+2,2k—i+3,2k—i+2,2k—i+4), k+1<i<2k.
r(uas3i|W) =
(E+2,i+3,i1+2,i+2), 1<i<k-1;
(k+1,k+2,k+2,k+2), i=k;

(2k—i+1,2k—i+2,2k—i+3,2k—i4+3), k+1<i<2k-1

Representations of the vertices with respect to W on the inner cycles are

m(vi43i|W) =
(4, +3,i +2,1), 1<i<k;
(kk 4+ 3,k + 3,k + 1), i= k41
(2k—i+1,2%k—i+4,2%k—i+52k—i+3), k+2<i<2%k
r(vetai|W) =
(i+3,i,i+3,i+1), 1<i<k
(k+3,k k+3,k+2), i=k+1;

(%k—i+4,2k—i+1,2k—i+4,2k—i+4), k+2<i<2k
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r(v343:i|W) =

(k+3,k+3,kk+2), i=k;
(2k—i+3,2k—i+4,2k—i+1,2k—i+3), k+1<i<2k.

Case (iv) n = 6k+4,k € Z*. For every n > 10, the representations of the

vertices on the outer cycle are
r(u1|W) = (1,2,3,3), r(uz]W) = (2,1,2,2), r(us|W) = (3,2,1,1).

T(uz43i|W) =
(3,2,3,1), i=1;
(142,54 1,i4+2,i+2), 2<i<k;
(2k —i+2,2k —i+3,2k—i+4,2k—i+4), k+1<i<2k.
r(uzai|W) =
(473:272)5 i=1
(i+3,i+2,i+1,i+3), 2<i<k
(2k—i+4+3,2k-i4+2,2k—-i+3,2k—i+5), k+1<i<2k.
r(ugq3:|W) =
(i +2,i+3,i+2,i + 2), 1<i<k
(2k~i4+2,2k—i+3,2k—i+22~i+4), k+1<i<2k.

Representations of vertices on inner cycle are

r(vi4s:|W) =
(k+1,k+4,k+1,k+1), i=k+1;
(2k—i+4,2k—i+5,2k—i+2,2k—i+4), k+2<i<2k+1.
T(v243i|W) =
(t+3,4,i+3,i+1), 1<i<k~-1;
(k+1,k,k+3,k+1), t=k;
(kk+1,k+4,k+2), i=k+1;

(2k—i+1,2k-i+4,2k—i+5,2k—i+3), k+2<i<2k
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T(va43i|W) =

(f+4,i+ 3,41+ 2), 1<i<k-—1;
(k+4,k+1,k,k+2), i=k;
(k+3,k,k+1,k+3), i=k+1;

2k —-i+4,2k—i+1,2k—i+4,2k—i+4), k+2<i<2k.

Case (v) n = 6k + 5,k € Z*. For every n > 17, the representations of

vertices on the outer cycle are
r(u1|W) = (1’2131 3)’ 7'('“'2“/‘/) = (2’ 172’2): r(u3|W) = (3’ 2,1, 1)‘

r(uz43:i|W) =
(312s37 1)1 1= 1
(i4+2,i+1,i+2,i4+2), 2<i<k
(k+2,k+2,k+2k+3), i=k+1;

(2k—i+3,2k—i+4,2k—i+3,2k—i+5), k+2<i<2k+1.
r(ua4ai|W) =

(4,3,2,2), i=1;
(i+3,i+2,i+1,i+3), 2<i<k-1;
(k+2,k+2,k+1,k+3), i=k;
(k+1,k+2,k+2k+3), i=k+1;

(2k—i4+2,2k—1+3,2k—i+4,2k—i+4), k+2<Li<2k.
r(ugqai|W) =

(F+2,i+3,i4+2,i+2), 1<i<k-1;
(k+2,k+2,k+2,k+2), i=k;
(k+2,k+1,k+2,k+3), i=k+1;

(2k—i+3,2k—i+2,2k—i+3,2k—i+5), k+2<i<2k.

Representations of vertices with respect to W on inner cycle are

r(vi+a|W) =
(i, 43,1+ 2,1), 1<i<k-1;
(k,k+2,k+2,k), i=k;
(k+1,k+1,k+3,k+1), i=k+1;
(k+2,kk+3,k+2), i=k+2

(2k—i+52k—i+2,2k—i+52k—-i+5), k+3<i<2k+1
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r(ve43:|W) =

(i43,4,i+3,i +1), 1<i<k-1;
(k+3,k, k+2,k+1), i=k;
(k+3,k+1,k+1,k+2), i=k+1;
(k+2,k+2,kk+2), i=k+2

(2k —i+4,2k—i+5,2k—i+2,2k—i+4), k+3<i<2k+1

T(v343:|W) =
(i 44,1+ 3,4, + 2), 1<i<k-—2:
(k+2,k4+2,k—1,k+1), i=k—1;
(k+1,k+3,k,k+2), i=k;
(k,k+3,k+1,k+2), i=k+1;
(k—1,k+2,k+2,k+1), i=k+2
((2k—i+1,2k—i+4,2k—i+5,2k—i+3), k+3<i<2k

We note that there are no two vertices in the inner cycle(s) with same rep-
resentations. Also, there are no two vertices in the inner cycle(s) and outer
cycle having the same representations and no two vertices on outer cycle
having the same representations. This implies that W = {v1, v, v3,us} is
a resolving set for V(P(n,3)) when n = 0, 3, 4, 5(mod 6) implying that in
these cases dim(P(n,3)) < 4. Also W = {v1, vax_1,vex} is a resolving set
for n = 6k + 1, when dim(P(n,3)) < 3.

Case (vi) n = 6k + 2,k € Z*. It is straightforward to verify that W; =
{v1,v2,v3,us} and Wy = {v1,v9,us,u10} are resolving sets for P(8,3) and
P(14, 3), respectively. For every n > 20, we show that W = {vy, v, U3, u4, usk+s}
is a resolving set. For this, we first give representations of vertices with re-
spect to W’ = {v1,v2,v3,us}. The representations of the vertices on the
outer cycle are

r(w|[W') = (1,2,8,3), r(uz|W') = (2,1,2,2), r(us|W') = (3,2,1,1).
r(ug43i|W') =

(3,2,3,1), i=1;
(G+2i+1,i+2i+2), 2<i<k;
(2k—i+2,2%—i+3,2%—i+22%—i+4), k+1<i<?2k
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r(uz4ai|W') =

(4,3,2,2),
(i+3,i+2i+1,i+3),
(k+1,k+2,k+1,k+3),
(2k—i+1,2k—i+2,2k—i+3,2k—i+3),

7"(“4+:4n‘|I’V') =

(i+2,i+3,i+2i+2),
(k+2,k+1,k+2,k+2),
(2k —i+2,2k —i+1,2k —i +2,2k — i +4),

i=1;
2<i<k-1;
i=k;

k+1<i<2k-1

1<i<k—1;
i=k;
k+1<i<2k-1.

Representations of vertices with respect to W’ on inner cycle are

r(vi43:|W') =

(i,i+ 3,5 +2,1),
(k. k + 1,k +2,k),
(k+1,kk+3,k+1),

1<i<k-1;
i=k;
i=k+1;

(2k—i+4,2k—i+1,2k—i+4,2k—i+4), k+2<i<2k.

r(v243:|W') =

((i+3,4,i+3,i+ 1),
(k+3,k,k+1,k+1),
(k+2,k+1,kk+2),

T(Us+3i|W') =

(i +4,i+3,i,i +2),
(k+1,k+2,k—1,k+1),
$(k,k + 3,k k+2),
(k—1,k+2,k+1,k+1),

| (2k —i,2k — i+ 3,2k — i +4,2k — i +2),

1<i<k-1;
i=k;
i=k+1;

((2k—i+3,2k—i+4,2k—1+1,2k-1i4+3), k+2<i<2k.

1<i<k-2;
i=k-1;

i=k;

i=k+1;
k+2<i<2k-1.

Consequently, r(ug43x|W’) = r(ugsa|W’) = (k+ 2,k + 1,k + 2,k + 2);
r(us4ak|W') = r(uaax|W') = (b + 1L,k + 2,k + 1,k +3);

r(ugk|W') = r(vs4ax|W') = (k + 2,k + 1, k, k 4+ 2);

r(vgpak|W') = r(vak|W') = (k + 1,k + 2,k — 1,k + 1).
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The vertex uay4s distinguishes these pairs of vertices with same represen-
tations as d(usk+s,usk+2) = 3, d(usk4s, uskta) = 1, d(uskss,usk) = 5,
d(u3k+5, V3k+5) = 1, d(usk4s, Vskss) = 2 and d(uak4s, var) = 4. This sug-
gests that W = {v1,vs,v3,u4, usks5} is a resolving set for V(P(n, 3)) in
this case implying that dim(P(n,3)) < 5.

D

3 Metric dimension of P(n,3) for n = 0,1(mod 6)

In this section we will prove that dim(P(n,3)) > 3 for n = 1(mod 6) and
n 2> 25 and dim(P(n,3)) > 4 for n = 0(mod 6) and n > 24, yielding exact
values of dim(P(n,3)) in these cases by Theorem 2.1. For this purpose
we need some more notations and definitions. Without loss of generality
we can suppose that the vertices of the outer cycle are u;,us,...,u, in
the clockwise direction. For two vertices u; and u; (i # j) we shall define
the ”clockwise distance” from wu; to u;, denoted by d*(u;,u;) the distance,
measured in clockwise direction, from u; to u;, in the subgraph induced
by the outer cycle. For example, d*(u1,u,) = n — 1 and d*(un,u;) =
1; in general we have d*(ui,u;) + d*(uj,u;) = n. This definition can be
extended to any two vertices of P(n, 3) for ¢ $# j by: d*(u;, v;) = d*(vi, uy) =
d*(vi,v;) = d*(us, uj).

Consider a vertex on the outer cycle, say u;. A vertex u; is called a good
vertex for u; if u; and u;;, have equal distances to u,, i. e., d(u;,u;) =
d(u1,ui42); otherwise u; is called a bad vertex for u;. This definition can
be extended to vertices of the inner cycle: u; is a good vertex for v, if
d(v1,u;) = d(vy, ui42) and bad otherwise.

In figure 1 we have represented by black dots all good vertices for u; when
n=6k+12>25.

It is important to note that the set of good vertices for v, is deduced from
the set of good vertices for u; by adding 4 new vertices, namely uz, 13, ugk—1
and ugk-2. Similarly, a vertex u; is said to be good for the pair {u,u;} if
d(uy,u5) = d(u1,u542) and d(ui, u;) = d(ui, ujp2). If ug is a good vertex
for the pairs {u;,u;} and {uj,u;} then ui is also a good vertex for the
triplet {uy,u;, u;}, i e, d(uy,ur) = d(ug, urs2), d(us, ur) = d(u;, ugss)
and d(u;, ur) = d(uj, uks2)-

Due to the rotational symmetry of P(n,3) we deduce
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Figure 1: Good vertices for u;(n = 6k +1).

Lemma 2. For any two vertices u; and u; on the outer cycle of P(n,3)
we have d(ui, u;) = d(Uigr,Uj4r) foranyl1 <r <n-—1.

In order to find good vertices for pairs of vertices belonging to the outer
cycle the following lemma will be useful.

Lemma 3. Let 1 < i < n—2. Ifu; is good for uy and u;_; is also good
for uy, then u; is good for the pair {uy, uiy1}.

Proof: By hypothesis we can write d(uy,u;) = d(u1,u;42) and
d(uy,uj—i) = d(uy,uj—i+2). By Lemma 3.1 the last equality is equivalent to
d(uit1,45) = d(uit1, Uj+2)- O

Theorem 2. dim(P(n,3)) =3 if n=6k +1 and n > 25.

Proof: We shall prove that dim{P(n,3)) > 3 in this case, by showing
that there is no resolving set of V(P(n,3)) consisting of two vertices, X
and Y. If both vertices X and Y belong to the outer cycle, we can suppose
that X = u;. We distinguish three cases:

1)d*(u;,Y) = 0(mod 3). We choose vertex ugk-4. Since vertices ugx-7,
UGk—10, « - + » UBk4+5s UBk+2, UBk—1, U3k—4, - - - , US, Us are good vertices for u,
but ug, ugr and ugr_3 are bad vertices for u; (see fig. 1), applying Lemma
3.2 we find that ugx_4 is a good vertex for any pair {u;,Y} such that
Y ¢ {uek—5,Uek—2, Usk+1}-

But in this case us is a good vertex for the pairs {v;, ugk—2} and {uy, ugk+1}
if k > 4 and for {u1, uek—s} if k > 5; for k = 4 we have that uz; = u;2 is not
a good vertex for ;. It remains to consider the pair {u1,ugx—s5} = {u1,u19}
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when &k = 4. In this case ug is a good vertex for this pair. It follows that
any pair {u;,Y} cannot be a resolving set having two vertices.

2)d*(u1,Y) = 1(mod 3). We consider vertex us. By starting from us
and going in the counter-clockwise direction at distances 1,4,7,... the only
bad vertices encountered are uy, u; and ugx—;. By Lemma 3.2 we deduce
that us is a good vertex for any pair {u1,Y} such that Y ¢ {u2,us,ug}. In
a similar manner we get that ugx_4 is a good vertex for the pairs {u;,uz}
and {u1,us} if k > 4 and for {u;,ug} if k > 5. For k = 4 the vertex u;¢ is
a good vertex for {u;,ug}.

3)d*(u1,Y) = 2(mod 3). In this case in order to minimize the number
of bad vertices for the pairs {u1,Y} we choose vertex ug. This vertex is a
good vertex for any pair {u,,Y} such that Y’ ¢ {u3,ue, ug}. Vertex ugr_s
is a good vertex for all pairs {u1,u3}, {u1,u6} and {u1,ue} for any &k > 4.
If both X and Y belong to the inner cycle we can consider that X = v,
and Y = v; (i > 1); this case can be reduced to the case when X = u, and
Y = u; since the set of good vertices for v, includes the set of good vertices
for u, for every 1 <p <n.
If X =u; and Y = v; then any good vertex for u; is also a good vertex for
v, hence for the pair {X,Y}. The remaining case when X = u;,Y = v;
and © # j can also be reduced to the case X = u;,Y = u;. It follows that
there is no resolving set containing two vertices, which concludes the proof.

O

Theorem 3. Ifn = 6k and n > 24 then dim(P(n,3)) = 4.

Proof: By Theorem 2.1 it is necessary only to show that dim(P(n, 3)) >
4, or that there is no resolving set of V' (P(n, 3)) consisting of three vertices,
X,Y and Z. By the same reasoning as in the proof of Theorem 3.1 it is
sufficient to consider only the case when X,Y, Z belong to the outer cycle
since the set of good vertices for v; can be deduced from the set of good
vertices for u; (represented in figure 2) by adding vertices us, us, ugx_2 and
ugk-3. As in the case n.= 6k + 1 we shall see that for any three vertices
X,Y, Z such that d*(X,Y) < d*(X, Z) it is possible to find a pair of ver-
tices at distance 2 on the outer cycle, {;, ui+2} having equal distances to
X,Y and Z, respectively. If n = 6k and X,Y, Z are on the outer cycle, we
can suppose that X = u;. By denoting (z,y) = (a,)(mod 3) if = a(mod
3) and y = b(mod 3), the following 9 cases can occur: (d*(u,Y),d*(uy1, Z))
is congruent modulo 3 to:
1)(0,0); 2)(1,1); 3)(2.2); 4)(0,1); 5)(0,2); 6)(1,0); 7)(L,2); 8)(2,0); 9)(2.1).
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Figure 2: Good vertices for u; (n = 6k).

Some of these cases can be reduced to another cases. For example, from
case 2 by permutation X — Y,Y — Z,Z — X we obtain case 5 and by
permutation X — Z,Y — X,Z — Y we get case 8.

The graph of reducibility between cases is illustrated in figure 3.

2{ f f ?8 3(‘ f j )6
5 4
Figure 3: Reducibility between cases.
It follows that it is sufficient to consider only cases 1,2,3,7,9.
Case 1. If we choose good vertex ug and we go in the counter-clockwise
direction, reaching vertices us, ugk,usk—s,--.,us We encounter only two

bad vertices, uz and uek—3 (see figure 2). By Lemma 3.2 it follows that
ug is a good vertex for all pairs {u;,Y} where d*(u;,Y) = O(mod 3)
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and Y ¢ {ug,u10}. This implies that ug is a good vertex for all triplets
{v1,Y,Z}, unless Y = uy and Z € {ur,u10,%13,...,uex—2}; Y = ujo and
Z € {u7,u13,u16,...,usk—2}. For these triplets we must find other good
vertices on the outer cycle. Similarly, usk6 is a good vertex for u; since 6k—
6 > 3k + 6 and for all pairs {u;,Y} where d*(u;,Y) = O(mod 3) and Y ¢
{u3k+4, usk+10}. Consequently, we have found a good vertex (us or uskts)
for all triplets {u1,Y, Z} such that {Y, Z} # {u4, usksa}, {uq, U3k+10
{10, u3k44}, {10, Usk+10}. Finally, ug is a good vertex for all pairs {u,, Y},
where d*(u;,Y) = O(mod 3) and Y ¢ {uz,u;3}. Since k¥ > 4 we have
3k +4 > 13 and ug is a good vertex for the remaining triplets {u;,Y, Z},
where Y € {uq,u10} and Z € {usi+4, usk+10}-

Case 2. In a similar way we get that ugr_s is a good vertex for
all pairs {u;,Y}, where d*(u;,Y) = 1(mod 3) and Y ¢ {ugk—7,u6k-1},
therefore ugr—s is a good vertex for all triplets {u;,Y,Z }, unless YV =
ugk—7 and Z € {ug,us,...,Usk—10, Usk—4,Uek-1}; ¥ = ugk—1 and Z €
{u2,us, ..., ugk—10, Usk—4a}. Since 6k — 8 > 3k — 2 it follows that ugx_g is
a good vertex for u; and for all pairs {u1,Y}, where d*(u;,Y) = 1(mod 3)
and Y ¢ {uek—10, uek—a}. We have found a good vertex (ugr—s or ugr—sg) for
all triplets {u1,Y, Z} such that {Y, Z} # {uek—7,u6k—-10}, {U6k—7,Usk—1},
{u6k-1,usk—10}, {U6k—1, Uek—a}-

Since k > 4 we find for triplets {u;, uek—7, Uek—10}, {¥1, Uek-7, Usk—a},
{u1, ugk—1, usk—10} and {u;, uek—1, Uek—a} good vertices uzk_a, Usk—4,
ugk—11 and uax_j, respectively (e. g., using Lemma 3.2).

Case 3. We deduce that us is a good vertex for all pairs {u;,Y}, where
d*(u1,Y) = 2(mod 3) and Y ¢ {u3, ug}. It follows that us is a good vertex
for all triplets {u1,Y,Z}, unless Y = u3 and Z € {ug,ug,...,usx}; ¥ = ug
and Z € {ug,u12,u15,...,usk}. Also ugk_; is a good vertex for u; and for
all pairs {u;,Y}, where d*(u;,Y) = 2(mod 3) and Y ¢ {usk_3,usk+3}-
It follows that there exists a good vertex (us or ugk_;) for all triplets
{u'l’ Y; Z} such that {1,1 Z} 75 {u31u3k—-3}’ {u3a u3k+3}7 {Ug, ng_a},

{ug, usk+3} (note that for k = 4 the third triplet must be eliminated from
the list).

Now ug is a good vertex for all pairs {u1,Y}, where d*(u;,Y) = 2(mod 3)
and Y ¢ {us, u12}. It follows that ug is a good vertex for all four remaining
triplets, except {uj,us,u12} for ¥ = 5 and n = 30. For this last triplet
Usk4+1 = Uy IS a good vertex.

Cases 7 and 9 can be reduced to the case 7 without imposing any in-
equality between the distances d*(X,Y) and d*(X, Z).

Let A = {ug,us,us,...,uek—1} and B = {ug, us,uo,...,usk}. It is nec-
essary to prove that for any triplet {u,,Y,Z}, where Y € A and Z € B
there is a good vertex on the outer cycle. From the previous case we have
seen that us is a bad vertex for pairs {u1,Z}, where Z € B if and only if
Z € {u3,ug} and a bad vertex for pairs {u;,Y}, where Y € A if and only

127



if Y € {ug2,us, us, usk+8, Usk+11, . - - , Ugk—1}. 1t follows that us is a good
vertex for all triplets {u;,Y,Z}, whereY € Aand Z € B, unless: Y € A
and Z € {us,ue}; Y € {u2,us,us,usk+s, Usk411,---,Usk-1} and Z € B
(these sets of pairs {Y, Z} will be denoted by o and B, respectively). For
the remaining triplets {u,,Y, Z}, where {Y, Z} € U § we must find other
good vertices on the outer cycle. Consider now vertex uaxs1. This vertex
is a good vertex for all pairs {u;,Y}, where Y € A\{uak_1,usk+s5}. Since
3k —7 > 5 it follows that u3k4 is also a good vertex for all pairs {uy, Z},
where Z € {us,ug}. Therefore the set o is reduced to the set o of pairs
{Y,Z} such that Y € {uak_1,uax45} and Z € {us,ug}. Now ug is a good
vertex for all pairs {u1,Y}, where Y € {u14,u17,...,usk48} and all pairs
{u1, 2}, where Z € {us, ug,u1s,%18,---,Uek}. Since 3k —1 > 14 for k > 5
it follows that ug is a good vertex for all pairs in oy if K > 5 and for k =4
we must consider only the pairs {u3;,u3} and {u11,u9}. From figure 2 we
deduce that usr4+3 = u1s is a good vertex for {u1,u11,u3} and uzr4q = w16
is a good vertex for {u,u11,ue}.

It remains to find good vertices for pairs in 8. Since ugx—s is a good vertex
for all pairs {u;,Y}, where Y € A\{ugk—7,uex—1} and a good vertex for
all pairs {u;, Z}, where Z € {uak—3,usk,...,usk—9}, B is reduced to yU 4,
where 7 consists of all pairs {Y,Z} with Y € {ugk—7,uek—1} and Z € B
and 6 of {Y, Z} with Y € {ua, us, s, usk+8, U3k+11, - - - » U6k—10, Usk—a} and
Z € {u3, us, .. ., U3k—6, U6k—6) Usk—3, Uok }-

uak—1 is a good vertex for all pairs {u;,Y}, where Y € {uakys, uskqs, ...,
ugk—1} and all pairs {u;,Z}, where Z € B\{uax-3, uak+3}. Therefore v is
reduced to &, consisting of all pairs {Y, Z} such that Y € {uex—7,usr—1}
and Z € {uak—3,usk+3} and § is reduced to p, which consists of {Y, Z}
with Y € {u2, us,us} and Z € {us, us, Uak—6, U6k—6, Usk—3, Uek }-

ug is a good vertex for all pairs {u;,Y}, where Y € {u2, uskis, usk+11,...,
ugk—1} and all pairs {u1, Z}, where Z € {u12,u1s,. .., Usk+6}

If £k > 5 then 6k — 7 > 3k + 8 and 3k — 3 > 12; therefore ug is a good
vertex for all triples {u;,Y, Z}, where {Y, Z} € €. If k = 4 the pairs in ¢ are
{ui7,ug}, {17, u1s}, {uas, uo} and {ug3,u15}; good vertices for these pairs
are vertices ugq,us, u1g and ug, respectively, which also are good vertices
for u,.

It remains to study the pairs from p. ugx is a good vertex for all pairs
{u1,Y}, where Y € {uz,us,...,usk—4} and all pairs {u;,Z}, where Z €
{u3k+6, Usk+9, - - -, Uek }. Since 3k — 4 > 8 and 6k — 6 > 3k + 6 it follows
that u is reduced to the set v of pairs {Y, Z}, where Y € {u2,us,us} and
Z € {u3,ue, usk—6}-

Finally, usx4; is a good vertex for all pairs {u1,Y}, where

Y € A\{usk-1,usk+5} and for all pairs {u;, Z}, where

Z € {'LL3, Ug, . - - ,U3k_3}.

Consequently, usk4; is a good vertex for #; and all pairs from v. ]
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4 Concluding remarks

In this paper we have studied the metric dimension of the generalized Pe-
tersen graphs P(n,3) by giving a partial answer to an open problem raised
in [8]. We proved that the metric dimension of the generalized Petersen
graphs P(n,3) is bounded and determined exact value of the metric di-
mension when n = 0 or 1(mod 6). In the remaining cases we showed that
dim(P(n,3)) < 4 when n = 3, 4, 5(mod 6), n > 9 and dim(P(n,3)) < 5
when n = 2(mod 6) and n > 26. In the same way as for the case n = 1(mod
6) it is not difficult to show that dim(P(n,3)) > 3 when n = 2, 3, 4, 5(mod
6). We close this section by raising a question as an open problem.

Open Problem: Find the exact value of the metric dimension of P(n,3)
when n = 2, 3, 4, 5(mod 6).
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