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Abstract

In this paper we investigate the number of rooted loopless unicursal
planar maps and present some formulae for such maps with up to three
parameters: the number of edges and the valencies of the two odd vertices.
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1. Introduction

Throughout this paper we consider the rooted maps on the plane. Def-
initions of terms not given here may be found in [22].

The concept of a rooted map was first introduced by W.T. Tutte. His
series of census papers [29-31] laid the foundation for the theory. Since
then, the theory has been developed by many scholars such as Arques [1],
Brown (7,8], Mullin et al. [26], Tutte [32], Bender et al. 5\24—4 , Liskovets
et al. [16-19], Bousquet-Mélou et al. [5,6], Walsh [33,34}, ednykh et al.
(27,28}, Gao [13,14], Liu [20-22) and Cai et al. [9-12]. In this article we
consider one type of planar maps: loopless unicursal maps and discuss the
enumerative problem of loopless unicursal planar maps with the valencies
of the two odd vertices and the number of edges as three parameters.

A sun-free formula for the number of rooted unicursal planar maps with
a given numnber of edges first appeared in [17]. In that paper, Liskovets and
Walsh had also found a sum-free formula for the number of unicursal maps
rooted in a vertex of odd valency and a formula for the number of rooted
unicursal maps as a function of the odd vertex valencies. Several years later
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the enumeration of rooted unicursal planar maps with the valencies of the
two odd vertices and the number of edges or the number of inner faces,
the number of nonrooted vertices and the valencies of the two odd vertices
of maps as parameters was investigated by Long and Cai [23,24]. Two
sumination-free were obtained. In 2013, Long and Cai [25] treated the enu-
meration of 4-regular unicursal planar maps with the number of nonrooted
vertices and the valencies of the two odd vertices as three parameters and
obtained two sum-free formulae.

Now, we define some basic concepts and terms. A map on an orientable
surface is a connected graph cellularly embedded on the surface. A map
M is said to be rooted if an edge with a direction along the edge, and a
side of the edge is distinguished. We denote the root-edge of M by e.(M)
and its tail vertex is chosen to be the root-vertez of this map; the face on
the right-hand side of the root-edge is called the root-face. Without loss of
generality, the root-face may be chosen as the infinite face.

A map is called eulerian if all the valencies of its vertices are even and
a map is to be unicursal if it has exactly two vertices of odd valency. An
endpoint is a vertex of valency 1; a unicursal map evidently can have at
most two such vertices. A map is said to be loopless if it has no edge which
is a loop. A nearly loopless planar maps is a planar map in which only the
root-edge is a loop. A map with its root-face boundary consisting of only
one edge (which is the loop) is called an inner map.

For any map M in a set of maps .#, let M —e,(M) and Mee.(M) be the
maps obtained by deleting e,(M), the root-edge, from M and contracting
e-(M) into a vertex as the new root-vertex, respectively.

For the power series f(z), f(z,y)and f(z,y, z), we employ the following
notations:

opf(z), Omf(z,y) and O f(z,y,2)

to represent the coefficients of z™ in f(z), z™y" in f(z,y) and z™y"2° in
f(z,y, z), respectively.

In what follows we will enumerate loopless unicursal planar maps rooted
in a vertex of odd valency. Several explicit expressions of its enumerating
functions will be derived.

2. Functional equations

In this section we will set up the functional equations satisfied by the
enumerating functions for loopless unicursal planar maps rooted in a vertex
of odd valency.

We first introduce some operations on the maps in .#.

For any two maps M; and M, whose respective roots are ry = r(Mj)
and 7, = r(M>), let M be the map obtained by identifying the root-vertices
vy, of My and v,, of M; into a single vertex v,, the only vertex of M
be’longing to both M, and My, where e, = e,, and M is inside one of faces
incident to v,,. The operation of getting M from M; and M is called
v,-addition and the resulting map is written as M = M; + M. Further,
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for two sets of inaps #; and .#5, the set of maps
./ﬂ]@./ﬂ2={M1-i-M2|MiE./ﬂi,i=l,2} (1)

is said to be v,-production of .#; and .#,.
Furtherinore, for any sets of maps .#), #5,-- - , #k, we define a set of
maps as

MO O M= (MO O Mi—y) O M. (2)
When A = Moy = --- = My, = M, we have
MO O My = MO (3)

For any two maps M; and M,, whose respective roots are r; = r(M;)
and 7o = r(My), let M be the map obtained by identifying the root-edges
er, of M; and e,, of M; into a single edge e,, the only edge of M belonging
to both M) and M;, where the root-face is as same as that of My and M,
is inside the inner face on the rooted edge of M,. The operation of getting
M from M, and M, is called e,-addition and the resulting map is written
as M = M;+M,. Further, for two sets of maps . and .#,, the set of
maps

M D My = {M+M2 | M; € M;,i=1,2} (4)

is said to bhe the e,-production of .#; and ..

Furthermore, for any sets of maps .#1, .#5, - , . #)., we define a set of
mnaps as

MDD M= (MDD M) D M. (5)
When A = Mo = = My = M, we have
MDD My = MO, (6)
Let

Vot = Y {ViM |i=1,2,-- ,val(M) - 1};

Men (7)
VA = Z {ViM|i=031321"’ ,val(M)},

Mes#

where V;M is the map obtained by splitting the root-vertex of M into two
vertices v/ and v} with a new edge < v.,v! > as the root-edge of the new

map V;M such that the valency of its root-vertex val(V;M) =i + 1.
Further, we define the following two subsets of a set .:

{ M ={M € A |val(M) = 0(mod 2)}; (8)
M° ={M e A |val(M) = 1(mod 2)}.
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Let & and % be the sets of all rooted loopless Eulerian planar maps
and loopless unicursal planar maps rooted in a vertex of odd valency, re-
spectively. Suppose that their enumerating functions are

feo(z,y) = Z 22mWyn@) | £ (2.y,2) = Z Z2M(M)+1yn(M) j25(M)+1
Uee Mew

where 2m(U) and n(U) are, respectively, the root-vertex valency and the
number of edges of U, 2m(M)+1,n(M) and 2s(M)+1 are, respectively, the
root-vertex valency, the number of edges and the valency of the nonrooted
odd-valent vertex of M.

Let &, and %;,, denote the sets of all inner Eulerian planar maps and
inner unicursal planar maps rooted in a vertex of odd valency, respectively.
Lemma 2.1. Let &ins = {M —e,(M) | M € &in}, Ucin> = {M —
er(M)| M € %n}. Then,

Ecin> =&, %<in> =%. (9)

Proof. The proof of the former formula is similar to that of the latter,
so we only prove the latter formula.

For any M € %;n>, since there is an M’ € %;,, such that M = M'—a’,
a’ is the rooted edge of M’ and M’ has only one loop which is a’, it follows
that M € % . On the other hand, for any M € %, we may always construct
a map M’ by adding a loop @’ as the outer-face boundary of M’ from M.
It is clear that M = M’ — a’. We see that M € %<in>. This proves the
formula. 0O

The family % can be partitioned into two parts, i.e.,

U = U + U, (10)
where % = {M | M € %, the nonrooted end of e,.(M) is an odd-valent
vertex}.

Further, we have

U= % (11)

izl

in which %;; = {M | M € %, e,(M) is in a j-ulti-edge}.
Lemma 2.2. Let %) = {M ee.(M) | M € %;},i=1,2and j > 1.
Then,

%(11) =(’?,‘-?‘(j_l) O gv

%,->=éz‘;2”"’®%+( > é’;‘s’o%no«s:‘;”)oé” (12)
r+s=j—2

where é}?l(o) is as a vertex map.
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Proof. For any map M € %;,e.(M) contains the only two vertices of
odd valency. Therefore the contracting of e,.(M) will lead to a map M e

e-(M) € (é:‘;?"' e &). On the other hand, by splitting the root-vertex

into two, a map in é’l%(’ =Y © & may produce any one of elements in % -
This proves the first relation.

Let the set on the right hand side of the second part of (12) be denoted
by M for convenience. For any map M € %;, the nonrooted end of e, (M)
is an even-valent vertex. Therefore the contracting of e.(M) will lead to
a map M e e.(M) € M. On the other hand, by splitting the root-vertex
into two, a map in M may produce any one of elements in %;. Thus, the
second relation holds. a

Let
Ty =(98,)°90 & (Vé),
My =(VE)®~V @ (V)
+[ T Faere a0 @0 ve)

r4s=j—2
T =Y Ty, H=Y (13)
j21 j21

It is clear that
My =Me; + My (14)

fori=1,2and j > 1.
Lemma 2.3. For %; and %;, we have

%j = -/%a, U = %o- (15)

Proof. From Lemma 2.2, by splitting the rooted vertex of maps in ijy,
for i =1,2 and j > 1, the lemma follows. 0

Theorem 2.1. The enumerating function f = fo (z,y,z) satisfies the
following equation:

{ 1 4 T+ 2%f0)? + 22(1 + yho)® — 22%(1 + yho)(1 + 2%y fo)] } fe
[(1 + 22y fo)? — 22(1 + yho)?]?
zy[(1 + 2%y fo) + 22(1 + yho)® — 22%(1 + yho)(1 + 22y fo)]k
[(1 + 22y f0)? — 22(1 + yho)?)?
+ zyz(2%fo(2,y) — 2% fo(z, y)] (16)
221 + 22y fo(z, y))? — z2[1 + 22yfo(z, )]’
where fo = fe(z,y), ho = fe(1,y) = he(y) and h = fo (1,y,z) = hg (y, 2).

Proof. Let fo, be the enumerating function of %;. We are now going to
evaluate the contributions fz, of %; to f (i =1,2).
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By Lemina 2.1, we have
o = T°Yfo,  faun =2%yf. (17)
By (11), (13), (14), (15) and (17), we have

2m(M)—1 )j—l

' =xyzz ( Z Z ghyn(M) J2m(M) =k

izl “Me&in k=1

2m(M)
(Z Z gy (M) 2m(M)= k)

Me& k=0
_ zyz(zfo(z,y) — zfo(z, y)]
2[1 + 22y fo(z, y) -zl + 22y fo(z,9)]
_ zyz[2 fo(2,y) — 22 fo(z, y)] + foe
2[1 + 22y fo(z, v)]2 — 22[1 + 22yfo(z,y))2 "4

2m(M)—1 j=1
(T x Hve)

j21 *Meéin
2m(M)+1
( ) Z k(M) 23(M)+1)
Me% k=0
2m(M)
-I-xy( Z Z :1:"’ n(M) 2s(M)+1)
Me%, k=1
2m(M)—1 2m(M)
[z e ) T](x X )
izl “Me&in k=1 Me& k=0

- zy(l —z)(h — zf)
[1 -z —zy(ho — zfo)]?
_ zy(h — zf)
(1 + 2%y fo)? — 22(1 + yho)?|?
x [(1+ 22y fo)? + 22(1 + yho)? — 22%(1 + yho)(1 + 2y fo)] + <,
fQ/ - :cyz[zzfo(z,y) - xzfo(a:, y)]
22[1 + z2yfo(z,y)|2 — z2(1 + 22y fo(z,y)]*’
fue = _zy(h — zf)[(1 + 22y fo)? + T2(1 + yho)? — 222(1 + yho)(1 + 2y fo)]
’ (1 + 22y fo)? — 22(1 + yho)?)? '

Since f = fa, + fa,, the theorem follows. 0
Let z =1 in (16). Then we have
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Theorem 2.2. The enumerating function g = go (z,vy) = fo(z,y,1)
satisfies the equation as follows:

{ 1 4 U+ 2%yfo)? + 2%(1 + yho)® — 22%(1 + yho) (1 + 2%y fo)] } -
(1 + 22y fo)? — 22(1 + yho)?)? g
zy[(1 + 2%y fo0)? + 2%(1 + yho)? — 222%(1 + yho)(1 + 2y fo)|H
[(1 + 22y fo)? — z2(1 + yho)?|?
zy(ho — 2 fo)
+ (1 + $2yfo)2 - x2(1 + yho)z, (18)

where fo = fe(z,y),ho = fe(1,y) = he(y) and H = go (1,y) = ha(y,1) =
fa(1,4,1) = Ho (y).

3. Enumeration

In this section we present the explicit formulae for enumerating func-
tions f = fo(2,y,2), ¢ = gu(z,y),h = ha(y,2) and H = Hay(y) by
using Lagrangian inversion. Before stating our main results we will use the
following well-known results coming from (1), (5) and (7) in [11] by taking
fo= fé'(-’li,y) = hé'nx (‘T’y):

The enumerating function fy = fg(z,y) satisfies the following quadratic
equation:

Y2 f§ + 222y fE + (1 — 2%y — 2%(1 + yho)? fo
+2%(1 4+ yho) -1 =0, (19)

where ho = fe(1,y) = he(y) and

y=n(1-n)(1-n%?2 yho=n(l-n-177), (20)
{ y=£61-n(1-en? y=nl-nl-n"% (21)
z?yfo(z,y) = €(1 —n —&n).

Let @ be the root of characteristic equation of (18). Then we get

1+ y
{[1 + 6%y fo(6,y)]? — 62(1 + yho)?}?
x {[1 +6%yfo(8,y))* + 6%(1 + yho)? — 26%(1 + yho)[1 + 6%y fo(8, )]} =0,
8y{[L + 6%y fo(8, y))> + 6%(1 + yho)? — 20%(1 + yho)(1 + 6%y fo(8, )|} H
{[; + 602y £o(0,y))? — 62(1 + yho)?}?
Oylho — 62 fo(8,
1+ Gzygflj((), y))? { (92 (!;)]4- vho)? O (22)

137



By (22) we have

62y[ho — 62 fo(6,y)] (23)

H=
[1+62yfo(8,y)]2 — 62(1 + yho)?’

By (20), §21 , the first part of (22) and (23), one may find the parametric
expression of Hgy = Hg (y) as follows:

y=nl-n)-7, H=g-o (24)

Theorem 3.1. The enumerating function H = Hg (y) has the following
explicit expression:

132

3 (2n + 3 +2)1(2n — 25 — 4)!Ra(4)
Ha () ’y+§2 ,go nl@n+ 2)in—2; 1)1 7 (25)

where R, (j) = (2n — 25 - 2)(2n —2j - 3) + 3(n— 25 — 1)(n — 25 — 2).
Proof. Applying Lagrangian inversion with one parameter [35] to (24),
we obtain

y" dn-t 1+ 372
HeW) =) T {(1 =i - P

n>1 n=0
I.zJ . .
-2 2n—~2j—-4 2n+3+2\ ,
_Z Z n— 2 —1 +3 n—25-3 ] y
n>1 j=0 J J J

Von +5+2)2n -2 - 9RA() .
=y+ ) Z v
55 5= n!(2n + 2)l(n - 25 — 1)!
where R,(j) = (2n—2j - 2)(2n —2j - 3) +3(n —2j — 1)(n — 25 — 2).
This completes the proof of Theorem 3.1. m)

Accordingly, one may count loopless unicursal planar maps rooted in a
vertex of odd valency by edges. For instance, there are 6 such maps with
3 edges as shown in Fig. 1.
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By substituting (20), (21) and (24) into Eq. (18) and regrouping the
terms, one may find the following parametric expression of the function

9w = ga (z,y):

Ly =1 -n)(1-£€n)? y=n1-n)01-7%?
n(lzln n)—ﬁn) 2[Er1’+(1+25)(5n-f-n—1)]
-1 _ - (1-%)(1-¢n)*
9= €(En’+(l+2€)(En+n—1)l : (26)
(1-%)(1-¢n)?

T

According to (26), we obtain

1-3. 2
_|T=¢ * | _ (-3 -n-6n°)
Aem=|"g" =g e S @)

Theorem 3.2. The enumerating function g = g (z,y) has the following
explicit expression:

n—1

g (z,y) = zy + Z Z Im a2 ly", (28)
n>2m=0

where

min(| 2 | | 2tbrbiom=2 |} g 1) mebg—2 maj—2i—t [ ZEEL

mas T LSS S

=0 r=0j=0 =0 i=0

y (’;) (2" ~amt ") Qrnly7s 8,1, 5, K), (29)

in which

Qman(l,r,t,4,5,k) =

2m+ 20— 2p+3 l+t—1 l r+1 2m+2+p+2
2m+ 20+ 3 T P

» n+g—j—-p-2k-—-1 6n+q j—-p—2k-2

g—p—2k+1 g—p—-2k-1

2m+21—-2p+1 l+t——1 NN2m+2l+p+3
2m+214+3 T p+1

+2m+2l—2p+4 [+t +1 2m+21+p+3
2m+ 21+ 4 t T j

x[(n-}-q j—p—2k— 3) 6(n+q j—p~—~2k— 4)}’ (30)

g—p—2k-1 p—2k—-3
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wherep=m+j—-2l—-t—i-1l,g=n+t+r+j—m—-20-3.
Proof. By employing Lagrangian theorem with two variables [15], from
(26) and (27) one may find that

m,n (1-3¢n)(1 —n—67°)
gW(z! y) = a( o m+n m n
m,;zo (&) (1 —n)ymtn(1 “‘571)2 +1(1 —772)2 F1

n(1—n~n’=€n) _ n?[€n’+(1+26)(En+n—1)]
(1-¢&9)° (1-%)(1-¢n)4 om+1, mn
1— E[En2+(1+26) (En+n—1)] z y
(1-%£)(1-¢n)?

- m,n—m) (1 — 367’)(1 Il 67’2)
Z Z a((ﬁ,n) (1 _ 77)"(1 — &n)2m+1(1 _ n2)2n—2m+1

n>0 m=0
n(d—n-n’=£n) _ n*[en®+(1+26)(En+n-1)|
(1=¢n)” (1_%)(1"5'1)‘ 2m+1, n
1 — El€n?+(+20)(En+n—1)] T y

(1-%)(1—€n)?

n—-1 m
m-tmn-m-1) (1 —3&n)(1 —n—69%)
S5 e o1 o

n>2m=0 =0 & (1 —m)n(1 — &n)2m+2i+4

L (A=n—n —&n)gn® + (1 +26)(gn+n - 1]
(1= 72)2n-2m1( - £

_ a(m—l,n—m—Z) (1 — 3577)(1 —n- 6772)
&m (1 —n)n(1 — £n)2m+20+5

e+ (4 20En+n - DI oy
(1 —n2)2n-2m+1(] — %)H-l z y

n—1
=Y+ ) gmaz” Y

n>2m=0

where

_ — (m—-l,n-m-1) (1 — 3577)(1 /B 6772)
gmin = é a(f,n) (1 —n)n(1 — €n)2m+21+4

o A= —n —&n)gn® + (1 +28)(n+n - DI
(1 — n2)2n-2m+1(1 — %)z

_ a(m—l,n—-m—?) (1 - 367’)(1 —nN— 67’2)
(&) (1 = )»(1 — £n)2m+20+5
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o [6n* + (1 +26)(n + 7 — D"
(1 —n2)2n—2m+1(] — §)1+1

..i”i [(l +t— 1) gim=t-tm-m+t-1) (1~ 3€n)(1 —n — 67°)

(X)) — _ 2m+20+4
2.2 " -1 —enr

o (L=n—n*—£&n)len® + (1+26)(¢n+n - ]!
(1 — n2)2n—2m+1

I+t Gim=1-tin—m+t-2) (1—3€n)(1 —n—67°)
T\t e (1 — )" (1 — €n)2m+2i+s

e+ 1+ 2)(En+n - 1)1’“}

(1 — p2)2n—2m+1

mm{quJ [BEAETEI=mo2 1} g4y rgl mAj—2 mAj—20—t

> >y Y X ()

=0 r=0j=0 t=0 i=0

w [(FHE DY (B (7 + 1) gwasn) (1 - 3¢n)
t r j @&m (1~ p)n=i(1 - £n)2m+2l+d

A ()

« P+ (1 =3¢n)(1 ~n—6n%) L+t\ (141
&m (1 —n)n—i(1 — gn)2m+2+4(1 — n2)2n-2m+1 t r
« (T\o®a-1 (1-3¢n)(1 —n —6n%)
i) &m (1 —p)n-i(1 - £n)2m+2+5(1 — n2)2n-2m+1 |’

inwhichp=m+j—-20-t—i-1l,g=n+t+r+j—~m-—2l—3. Thus,
min{| 2F |, | ZEEIRISRI3 |} gy ) mei—20 mAj—2l—t

D M 5 3 M Dl C (¢

=0 r=0 j=0 t=0 i=0

141



r44!

omgeurered ayy puy Aeur suo ‘(1g) pue (1g) ‘(02) ‘(91) Aq ‘A(zequng
*z 03 Surpuodsal1oo I19jaurered mair e SI Y aIaym

fuy —b—1)x = (B'2)0ffi,2
(1e) G- DlU-e=Aa ‘(Uy—-1)L-1)X= ﬁzz }

aaey am (1g) 4
‘uraloay? ayj o} juareainba st yorym

‘ g—yg-d->b o— I—-3g—d-b »
v-yg—d-(-b+u g~yg—d—L~b+u
@] i) (o) *
£+d+iz+wz +1/\2+1/)v+dg—15+wg
( 1+d )(J( )g+zz+wz ]+
g+d+g+wg/\1/\1—-2+1/1+dg— 12 +wg

I-3yg—d-b _

Z—3yg—d—-f—-b+u 9

( I+yz—-d-b )( d )x
1—-3g—-d-(—-b+u/|\g+d+ 1z +wg

()OGS | (g vo)
T+«/\1/\1—2+1/e+dg—1g+wg | \y+wg—ug

0=y 0= 0=1 0=fo0=4 0=1

( )181+f Z z z ZZ Z =

[ +ug—ug(gl I)t—u(a - I)
A9—L—1 1—d-

5@
(v +dzg - 1iz(1+u1§):r(: f)ciid+ 1T + wg) \4 <[) (I + 2) (1 1) i
)
+d—50

X

+

(1+dg iigz: lsz;l:(ze) iJildidz)z + wg) ([) ( ) (I - ; +

1ug—ug(zlh — 1) c—u(lt — I)

Mo —l—1 X

i(e + 12 + wg)id ( 4 )(
(e+dg — 12+ wy)i(z+d+ 15+ wg) \1++ 1-—:+z



expression of h = h_4(y, z) as follows:

y=n(1-n)Q1-7%?% 2%y=x1-7n)(1-x?

-—lh — Ui 32
from which we get
Lpert 0 | _ (1-n-67%)(1-3ip)
— |- - . 33
B = T | = o T (5)

Theorem 3.3. The enumerating function h = hg (y, z) has the following
explicit expression:

LEIEE a3s £ 1)12n 25 +4)!
ha (y,2) =yz + Z Z Z s!(2s + 2)!(2n — 2s)!(n — 1)!

n>2 s=0  i=0
(2n — 25 — 2i — YW, 5(3) , 2241,
il(n—2s—2i—1)! v

where J, 5(i) = (n — 1) + (n — 25 — 2i — 2)(12s — 5n + 12i + 5).
Proof. By using Lagrangian theorem with two variables [15], from (32)
and (33) one may find that

(34)

(n—1,s) (1 —n—6n%)(1 -3\ s, 2541
har(:2) _;:1 ;)6(7’ NI =g (l — 22 rI(L — Ap)zersY

(n—s— ls) (1 — 1~ 67%)(1 — 3An)y"z2+!
=yz + 7]
7; 82_% (n.2) — ) (1 — n2)2n=2s+1(1 — \p)2s+3

tTJ | e 2y, n,2s84+1
—yz+ 3 Y 2Bs +1)! pnoey (1 —7—67°)y"2

— — 2)2n—2s+1
5 = sl2s+2)1 7 (1 —n)7(1 —n2)2n-2s+

lMJ ln —28— l .

_ 2(3s+1)! 2n—2s+1

xan—2s 21-—11 —n— 677 nz2s+1
(1—mn

ln_—lJ Ln—zs-IJ '
- DU 2(3s+1)1(2n — 25 + i)t
EAPPDIEDY sI(2s + 2)1(2n — 28)(n — 1)!

n>2 s=0 =0
(2n — 25 — 2i — 4)1J,, 4(3) g2t
i(n—2s—-2i—1)!
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where J, 5(i) = (n — 1)2 + (n — 25 — 2i — 2)(12s — 5n + 12i + 5).
This completes the proof of Theorem 3.3. o

By substituting (20), (21), (31) and (32) into Equ. (16), one may find
the following parametric expression of the function f = fo (z,y, 2):

w2y =€ -n)(1-£&n)?, y=nl-n)1-7"?
2y =A1-n)(1-An)?

1—n—nA— _ _ nlén®+(1+2€)(Entn—1)]
1-m)(1=2An)*(1-€n)*(1-€A (1-7)(1-5)(1—€n)4(1-xn)?

-1, -1_-1p _
A 1 _ SerF(F20)Enin=1) -+ (35)
(1-£)(1-¢n)?
According to (35), we get
1=38n * 0
1-¢n . o
Agan=| 0 2+ 0
0 * 1-3Mg
1-An
- — 1 —6n2)(1 — 3\
_(1—3¢n)(1 —n —69°)(1 — 3An) (36)

(1 —&n(1-7?)(1-An)

Of course, the parametric expressions given by (35) and (36) allow us
to employ Lagrangian inversion with three variables for finding an explicit
expression of the enumerating function fe (z,y,z). But that would take
up too much space in this article; so we leave it for a forthcoming article.
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