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Abstract. The Szeged polynomial of a connected graph G, is defined as
Sz(G,z) = zeGE(G) zhul(e)nu(e) where ny(e) is the number of vertices of G

lying closer to u than to v, n,(e) is the number of vertices of G lying closer
to v than to u and the summation goes over all edges e = uwv € E(G) of G.
Ashrafi et. al. (On Szeged polynomial of a graph, Bul. Iran. Math. Soc.
33 (2007) 37-46.) proved that if the number of the vertices of G is even, then
deg(52(G,z)) < $1V(G)|?, where V(G) is the set of vertices of G. In this paper
we study the structure of graphs, with even number of vertices, for which the
equality holds. Also we examine equality for the sum of graphs.
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Introduction

Let G be a connected finite undirected graph without loops or multiple
edges with vertex and edge sets V(G) and E(G), respectively. The distance
between two vertices u and v of G, denoted by dg(u,v) (or simply d(u,v)
when G requires no explicit reference), is defined as the number of edges
in a shortest path connecting u and v. For an edge e = uv of G let B,(e)
be the set of vertices closer to u than v,

By(e) = {z € V(G) | d(z,u) < d(z,v)}.

Also let n,(e) = |B,(e)|. The set B,(e) is an important concept in metric
graph theory (see for example (1, 2, 4, 5]). Ivan Gutman [3] defined the
Szeged index, Sz(G), of a graph G as

S2(G)= Y nule)n(e).

e€E(G)
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Recently Ashrafi et. al. [1] defined the Szeged polynomial, $z(G,z), of a
connected graph G as

G iC) Z xnu(e)nv(e)
e€E(G)

They proved that if |V(G)| is an even number, then deg(Sz(G,z)) <

2IV(G)|?. They characterized bipartite graphs with even number of ver-
t.lces for which the upper bound is attained and posed the following ques-
tion.

Question. Suppose that G is a graph with even number of vertices and
deg(Sz(G,z)) = ;';-|V(G)|2. What we can say about the structure of G?

For convenience we say that a connected graph G is an A-graph if
deg(Sz(G,z)) = 3|V(G)|*. In this paper we give an answer to the above
question and characterize A-graphs with even number of vertices. Also we
prove that the sum of two graphs with even number of vertices is an A-
graph if and only if one of them is an A-graph. We define a class A* of
graphs and prove that the sum of two graphs is an A*-graph if and only if
one of them is an A*-graph. Also present a sufficient condition so that the
composition of two graphs be an A*-graph.

Main results

Let G be a connected graph and v € V(G). The sum of distances
between u and vertices of G is denoted by dg(u) (or simply d(u) when G
requires no explicit reference), that is

Z d(u, z).

zeV(G)
First we state the following two results for the convenience of the reader.

Lemma 2.1. ({1, Theorem 4.4]) Suppose that G is a graph with even
number of vertices. Then deg(Sz(G,x)) < 3|V(G)|*.

Lemma 2.2. ([2, Lemma 2]) Let G be a connected graph and e = uv €
E(G), with u,v € V(G). Then n,(e) — ny(e) = d(v) — d(u).

By using the above Lemmas we can prove the main result of the paper
which improves the inequality in Lemma 2.1.

Theorem 2.3. Let G be a connected graph with n vertices. Then

deg(Sz(G, z)) < {n? — (nu(e) — ny(e))?}.

1
- max
4 e=uveE(G)
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Proof. Suppose that e = uv is an edge of G. Then
n 2 ny(e) +ny(e). (1)
Also by Lemma 2.2 we have
d(v) — d(u) = nu(e) — ny(e). (2)
Adding both sides of (1) and (2) we have
n + d(v) — d(u) 2 2n,(e)
and subtracting (2) from(1) we have
n+ d(u) — d(v) = 2n,(e).

Therefore
(n+d(v) — d(u)) 2 nu(e) >0

N =

and

%(n +d(u) = d(v)) = ny(e) > 0.

Multiplying above inequities we obtain that

(7 - @) - d0)?) 2 m(enate) 20 3)

But for computing Sz(G, z) we must calculate the sum of terms z™v(€}nu(e)
where the summation goes over e = wv € E(G). Thus from inequity (3)
we have

deg(S2(G,1)) < iwg%){n? — (d(w) - d(v))?}

and so by Lemma 2.2

deg(Sz(G,z)) < iw’é’%i‘a){"2 — (nu(e) = nu(€))?),

which completes the proof. |

Now we can determine the structure of A-graphs with even number of
vertices

Corollary 2.4. Let G be a connected graph with n vertices and n is
even. Then G is an A-graph if and only if there exists an edge e = uv such
that n,(e) = ny(e) = in.
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Proof. Suppose that G ia an A-graph. Then there exists an edge e = uv
such that n,(e)n,(e) = §n?. Also by (3) in Theorem 2.3 and Lemma 2.2

we have %(n2 — (nu(e) - nv(e))z) > nyu(e)ny(e). Therefore

1772 1 (7 - (0) = mfe)?) 2 mulelmle) = 3.

Thus n,(e) = ny(e) = in.

Conversely suppose that n,(e) = n,(e) = 4n, for some e = uv € E(G).
Then nu(e)n,(e) = in? and so by Theorem 2.3, deg(Sz(G,z)) = jn?.
Thus G is an A-graph. [ |

Now we investigate bipartite A-graphs
Recall that the sum G; + G», of two connected graphs G; and Gy, has
the vertex set V(G +G2) = V; x V2 and two vertices (u1,u2) and (v;,ve) of

G + G, are adjacent if and only if [u; = v and upvy € E(G2)] or [ug = vo
and u v, € E(Gl)}

Corollary 2.5. Let G and H be two connected graphs with even number
of vertices. Then G + H is A-graph if and only if G or H is A-graph.

Proof. Let X = G+ H. Assume X is A-graph and let e = uv be an
edge of X that n,(e) = ny(e) = §|X|. We may assume, without loss of
generality, that u = (uy,uz), v = (v, u2), where ujv; € E(G). According
to the proof of Theorem 1 in [6] for each (u1,u2), (z,y) € V(X) we have

dx ((z,y), (u1,u2)) = do(z,w1) + du (y, u2).
Hence

Bu(e)={(z,y) € V(G) x V(H) | dx((z,y), (u1,u2)) < dx((2,9), (v1,u2))}
={(z,y) € V(G) x V(H) | de(z,u1) < dg(z,v1)}-

Therefore
ny(e) = ny, (mn)|V(H)|.

By a similar argument we obtain that
ny(e) = ny, (wan1)|V(H)|.
Since ny(e) = ny(e) = §|V(G)||V(H), we have

1
Ty, (U101) = Ny, (U v1) = §|V(G)|,
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where u v; € E(G). Therefore by Theorem 2.3 G is A-graph.

Conversely, let G be A-graph and u;v; € E(G) that ny, (v1v1) = ny, (v1v1) =
2[V( ). Suppose that us is a vertex of H. Then by similar argument as
above we obtain that

Nuy,u) (U1, U2) (v1,u2)) = 7y, (w0n)|V(H)),
Nuyup) (U1, u2) (v1,u2)) = 7y, (uyo1)|V(H)).
Therefore Nuy, uz) (01, u2) (1, %2)) = Puy 1wy (11, u2) (v, u2)) = 2|G’ + H|
and G + H is A-graph.
We can extend the previous theorem to the sum of n connected graphs.

Corollary 2.6. Let G;,G,,...,G, be connected graphs with even num-
ber of vertices. Then G = @], G; is A-graph if and only if G; is an
A-graph, for some 1.

Now we extend the concept of A-graphs.
Definition 2.7. Let G be a connected graph. Then G is an A*-graph if
there exists an edge e = uv such that n,(e) = n,(e).

Note that, by Lemma 2.2, if there exists an edge e = uv such that
d(u) = d(v), then G is an A*-graph. Recall that if for each e = uv € E(G),
ny(e) = ny(e), then G is called a distance-balanced graph. (See for example
(4))

Proposition 2.8. Let G and H be two connected graph. Then G + H is
A*-graph if and only if G or H is A*-graph.
Proof. Let X =G+ H. Assume X is A-graph and let e = uv be an edge
of X that dx(u) = dx(v). We may assume, without loss of generality, that
u = (u,u2), v = (v1,u2), where ujv; € E(G). For each (u;,up),(z,y) €
V(X) we have

dx ((z,y), (u1,u2)) = de(z, u1) + du(y, ua).
Hence

dx((u,w2)) = > > dx((z,v), (u1,u2))

z€V(G) yeV(H)

= Z Z (dc(:c u +dn(y,u2))

zeV(G) yeV(H)

= Z Z de(z,u1) + Z Z du(y,u2)

z€V(G) yeV(H) zeV(G) yeV(H)

= ) VH)de(zm)+ Y. duluz)

zeV(G) z€V(G)
= |V(H)ldg(u1) + [V(G)|dn (uz).
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By a similar argument we obtain that
dx ((v1,u2)) = |V(H)lde(v1) + |V(G)|dn (u2).

Since dx(u) = dx(v), we have dg(u1) = dg(v1), where wyv; € E(G).
Therefore G is A*-graph.

Conversely, suppose that G is an A*-graph and dg(u;) = dg(v1), where
uyv; € E(G). Suppose that ug is an arbitrary vertex of H. Then by a
similar argument as above we obtain that

dx((u1,u2)) = |V(H)ldg(u1) +|V(G)|du(u2),
dx((vi,u2)) = |V(H)|dg(v)+|V(G)|du(u2)
Therefore dx (u) = dx(v) and G + H is A*-graph. [ |

Recall that the composition G,[G2] of two connected graphs G; and
G> has the vertex set V(G1[(G2]) = Vi x V3, and two vertices (u;,uz) and
(v1,v2) of G1[G2] are adjacent if and only if {u; = v; and uovy € E(G2))
or uiv; € E(Gy).

Proposition 2.9. Let G; and Gy be two connected graphs. If G, is

A*-graph or G2 has an edge whose ends points have the same degree, then
G1[G2] is A*-graph.

Proof. Let X = G,[G,). Suppose that u = (u1,u2) and v = (vy,v2) are
vertices of G1[G2). Then

dg,(u1,v1) if w # v
dx(u,v)=¢ 1 if w; =v; and uyvs € E(Gs)
2 if wp=v and UV ¢ E(Gg)

So
dx((u1,u2)) = > dx((ur,u2), (v1,v2))
(v1,v2)EV(X)
= > do,(ur,v1) + > 2+ > 1
v2€V2 vieV) v2E€V(G2),uv2€ E(G?) v2€V(G2),u2v2€ E(G2)
= |V(G2)ldg, (w1) + 2(|V(Gz)| - deg(uz)) + deg(uz)
= |V(Ga)ldg, (u1) + 2|V(G2)| — deg(u2). (4)

Suppose that G, is A*-graph and u v, is an edge of G| which dg, (u;) =
dg,(v1). Then for an arbitrary vertex us of G we have (uj,uz)(v1,uz) €
E(X) and by (4)

dx ((u1,u2)) [V(G2)ldg, (u1) + 2|V(G2)| deg(uz)
[V(G2)ldg, (v1) + 2|V (G2)| — deg(uz)

dx ((v1,u2)).

il
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Thus X is A*-graph.
Now suppose that uave € E(G2) which deg(up) = deg(vz). Then for an
arbitrary vertex u; of G; we have (uy, u2)(u;,v2) € E(X) and by (4)

dx((u1,u2)) = [V(G2)ldg, (u1) +2|V(G2)| — deg(uz)
[V(G2)lde, (u1) + 2[V(G2)| — deg(v2)

= dx((u1,v2)).
Therefore X is A*-graph. n

Let G be a bipartite connected graph with n vertices and n is even.
Then G is an A-graph if and only if G is an A*-graph. To see this fact we
argue as follows. If G is an A-graph, then by Corollary 2.4, G is an A*-
graph. Conversely if G is an A*-graph, then there exists an edge e = uv of
E(G) such that n,(e) = n,(e). But since G is a bipartite graph, it is easy
to see that n = ny(e) + ny(e). Therefore n,(e) = ny(e) = in and so G is
an A-graph, by Corollary 2.4. The following question naturally arises.

Question. Determine the class X of graphs such that for each G € K, G
is an A-graph if and only if G is an A*-graph.
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partitions. Consequently, enumeration results of non-crossing partitions
specified with several parameters are derived.

MSC: 05C05

Keywords: tree, bijection, non-crossing partition

1 Introduction

An ordered tree can be defined inductively as an unlabelled rooted
tree whose principal subtrees (the subtrees obtained by removing the root)
are ordered trees and have been assigned a linear order (from left to right)
among themselves. A bicoloured ordered tree is an ordered tree in which
even height vertices are assigned by one colour and odd height ones by the
other, where height of a vertex is the distance from it to the root ([3]).
Namely, the notion of “bicoloured ordered tree” is essentially the same as
the notion of “ordered tree”, with the only difference being that vertices in
the former shall be treated distinguishingly according to the parity of their
heights.

A partition of the set [n] = {1,2,...,n} is a collection 7 = {B,, Ba,...,
By} of non-empty disjoint subsets of [n], called blocks, whose union is
[n]. A partition is called non-crossing if there do not exist four numbers
a < b < ¢ < d such that a and c are in one block of the partition and b and
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d are in another block.

Bijections between non-crossing partitions of [n] into k blocks and or-
dered trees on n+1 vertices with k leaves were presented ([2, 4]), meanwhile
the number of such ordered trees equals that of bicoloured ordered trees
with n + 1 — k even height vertices and k odd height ones ([1, 3, 5]), which
implies that there could be a connection between bicoloured ordered trees
and non-crossing partitions. This paper was motivated by such observation
and aims to establish bijections between them. Consequently, enumera-
tion results of non-crossing partitions specified with several parameters are
obtained.

2 Bijections

In an ordered tree T, the number of subtrees of a vertex u is called the
degree d(u) of u. A vertex is called a leaf if its degree is 0, otherwise an
internal vertex. Suppose any edge in an ordered tree has a direction leading
away from the root. Then the in-degree of any vertex u is 1 (with the root
as exception) and the out-degree of u is d(u). We denote the directed edge
flowing from u to v by e =< u,v >. To a vertex u with linearly ordered
(from left to right) subtrees Ty,T3,...,Tn, whose roots are vy,v2,...,Un
respectively, we call u the parent of v;(1 < i < m), vi(1 < i < m) the
children of u and v; the leftmost child; define the claw subtree of T' centered
by u (denoted by CT(u)) to be the subgraph of T induced by the edge set
{<vo,u >}U{< u,n1 >, < u,v2 >,...,< u,vn >}, where < vo,u > is the
possible edge flowing to u, that is {< vo,u >} = @ when u is the root of T'.
Denote by T'(u) the subgraph of T induced by the vertex set {w|the path
from the root to w contains « }.

To a block B in a non-crossing partition m, we denote by |B| the
number of elements in B. B is called singleton if |B| = 1, otherwise
non-singleton. The smallest element in B is called the leader of B (de-
noted by I(B)) and let the leader set of a non-crossing partition = be
I(m) = {l(B;)|B; € wn}. Two different blocks B; and Bj; are said to
be adjacent if |I(B;) — I(B;)] = 1. A block run is a maximal sequence
of blocks B;,, Bi,,...,B; such that any two consecutive blocks are ad-
jacent, i.e. |{(Bj,) —I(Bi,,,)] = 1for 1 < p < t-1. For example,
n = {{1,2},{3}, {4,12,14}, {5}, {6,8,10}, {7}, {9}, {11}, {13}} is a non-
crossing partition of {14] into 9 blocks 3 of which are non-singleton, with 5
block runs.

In order to present bijections between the set of bicoloured ordered trees
and the set of non-crossing partitions, first we introduce labelling algorithms
which are different from that contained in [4].

Given a bicoloured ordered tree T' with n + 1 — k even height vertices
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and k odd height ones, two different ways to attach numbers 1,2,...,n
to the edges in T are described as follows, where consecutive numbers are
assigned to edges which may constitute a claw subtree.

Even-Height- Vertex-Centered-Labelling (E-Labelling): traverse the tree
in preorder (visit the root, then traverse its subtrees from left to right),
whenever encountering an even height vertex u the first time, we label the
edges in the claw subtree CT'(u) in a clockwise direction by beginning at
the edge flowing to u, with the smallest not yet used number consecutively.
That is, if the possible father of u is vp and the linearly ordered (from left to

right) children are v;,v,,...,vm, then first assign the smallest not yet used
number, say %, to edge < vp, u > and consequently assign i+1,i+2,...,i+m
to < u,vy >, < U, Vp-1 >,...,< U,V > respectively.

Obviously, d(u) + 1 labels are needed for the edges in CT(u) if u is a
non-root vertex, otherwise d(u) labels are needed.

Odd-Height- Vertex-Centered-Labelling (O-Labelling) can be defined al-
most similarly as the above, with the only difference being that: whenever
encountering an odd height vertex u the first time, we label those edges in
CT(u) in a clockwise direction.

Fig.1 is an illustration of the above two different labelling algorithms.

(a) E-Labelling {(b) O-Labelling

Fig .1. Two labelling algorithms on edges of a tree 7.

It’s worth noting a property of the above labelling algorithms that after
an E-Labelling (resp. O-Labelling) procedure having been finished, to any
even (resp. odd) height internal vertex u with linearly ordered (from left
to right) children vy, v3,...,vy, the number assigned to edge < u,v; >
(2 £ 7 < m) is smaller than that assigned to < u, v; > (1<j<i-1),
meanwhile the numbers assigned to edges in T'(v;) are bigger than those
assigned to edges in T'(v;), and to any odd (resp. even) height internal
vertex u with linearly ordered (from left to right) children v, vs,...,vm,
the number assigned to < u,v; > (1 < j < m — 1) is smaller than that
assigned to < u,v; > (j < i < m).
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Theorem 2.1 There is a bijection between the set of bicoloured ordered
trees with k odd height vertices r of which are internal and n+1 — k even
height ones s of which are internal and the set of non-crossing partitions of
[n) into k blocks r of which are non-singleton with s block runs.

Proof. We first give the procedure to construct a non-crossing partition =
from a bicoloured ordered tree T'.

(1) Label the edges in T with numbers 1,2,...,n by the E-Labelling algo-
rithm.

(2) To each odd height vertex u with degree ¢, let the set of labels of those
t + 1 edges in CT(u) be a block of the partition .

Since in T there are k odd height vertices r of which are internal, we
obtain a partition of [n] into k blocks r of which are non-singleton. To a
block {po,p1,---,pt} (Po < pr < --+ < pt) in the partition =, suppose the
edges in the corresponding claw subtree CT(u) are < vo,u >,< u,v >
,..., < u,v; >, where vy,...,v; are linearly ordered (from left to right)
children of u. Then < vg, u > must have been labelled by pg, < u,v; > (1 <
i < t) by p;, ;1 = po+1 if and only if u is the leftmost child of vp, and p;4; =
pi+1 (1 <i<t—1)if and only if v; is a leaf. When p; > po+1, suppose the
children of vg which locate on the left-hand side of u are uy,...,u;. By the
E-Labelling algorithm, we have that (i} numbers pp+1,...,p1 ~1 must have
been assigned to < vp,u; >,...,< v, > and edges in T'(u1),...,T(w);
and (ii) to each even height internal vertex v;, numbers p; +1,...,pi+1 — 1
must have been assigned to edges in T(v;). This means that any numbers
go and qy, satisfying p; < go < pj < a1 (4,5 € {0,1,...,t}), must belong
to different blocks in =, that is, 7 is a non-crossing partition. Moreover, to
an even height internal vertex u with linearly ordered (from left to right)
children v, vs, ..., ¥m, we have that if < u, v, > islabelled by some number
i, then < w,vm—1 >, < u,¥m—2 >,..., < u,v; > must have been labelled by
i+1,i+2,...,i+m— 1 respectively, which will be leaders of different blocks
Bj,,Bj,,...,Bj, respectively, which result in a block run. Therefore the
non-crossing partition obtained from T contains s block runs, which is the
desired.

Conversely, to each block B in a partition m, a claw tree centered by
some vertex (say u) with |B| edges (denoted by T’g) shall be constructed
where the edge flowing to u is labelled by {(B) and other edges are la-
belled by the left elements in B increasingly from left ro right. That is,
if B = {po,p1,---,pt}{(po < p1 < --- < p¢), a claw tree Tp centered by
u which has a father vy and linearly ordered (from left to right) children
v1,v2,...,v would be constructed, where < wvg,u > is labelled by po and
< u,v; > (1 €1 < t) by pi. These corresponded claw trees may be put
inductively in the suitable places to get the bicoloured ordered tree T' as
follows.
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(1) Find the block B; in 7 containing number 1 and construct the corre-
sponding claw tree Tg,. Let T, be a claw subtree of T such that their
roots are identical.
(2) Find the block B; in 7 that contains the smallest remaining element,
say z, and construct the claw tree Tg,.
(A) If z — 1 has been assigned to some edge < u,v > where u is an even
height vertex, merge T, and T's, by putting Ts, on the left-hand side of
< u,v > and identifying the root of Tg, and u. We shall call this operation
a left-horizontal merge to Tg,.
(B) Otherwise, i.e. = — 1 has been assigned to < u,v > where v is an
even height vertex, merge Ts, and Tp, by putting Tz, underneath v and
identifying the root of T, and v. We shall call this operation a vertical
merge to Tg,.
(3) Repeat (2) until all blocks in 7 are considered.

Since a claw subtree with ¢ edges is added corresponding to a block of
t elements and an odd height vertex is added after either a left-horizontal
merge or a vertical merge, when all &k blocks in 7 are considered, we get a
bicoloured ordered tree with k odd height vertices and n+1— k even height
vertices. Moreover, a singleton block leads to an odd height leaf and a non-
singleton block to an odd height internal vertex. Since a left-horizontal
merge is conducted to a claw subtree T, if and only if /(B;) — 1 is a leader
of some another block B;(i # j), a block run corresponds to consecutive
left-horizontal merges. Furthermore, to s different block runs, s —1 vertical
merges are needed, which lead to s even height internal vertices. This
means that after s — 1 vertical merges and k — s left-horizontal merges, the
eventually obtained bicoloured ordered tree is the required. ]

Example 2.2 Fig. 2 shows a bicoloured ordered tree T with 16 even height
vertices 7 of which are internal and 19 odd height vertices 8 of which are
internal and the corresponding non-crossing partition m of [34] into 19 blocks
8 of which are non-singleton with 7 block runs, where the edges in T are
assigned with numbers by the E-Labelling algorithm.

Lemma 2.3 ([1]) The number of bicoloured ordered trees with k odd height
vertices v of which are internal and n + 1 — k even height ones s of which
are internal equals

== () () (505

From Theorem 2.1 and Lemma 2.3, we have

159



Corollary 2.4 The number of non-crossing partitions of [n] into k blocks
r of which are non-singleton with s block runs equals

() ()0 60)

7={{1,27},{2,20,21},{3},{4,6,7,19},{5},{8,16},{9},{10,11,15},{12},
{13},{14},{17},{18},{22},{23,24,25,26 } ,{ 28,34} ,{29,30,31},{32},{33} }
Fig.2.

Summing the number in Corollary 2.4 over s and over r respectively, we
obtain

Corollary 2.5 The number of non-crossing partitions of [n] into k blocks
T of which are non-singleton equals

=) (720 ()

Corollary 2.6 The number of non-crossing partitions of [n] into k blocks
with s block runs equals

1 k-N\/n+1-k\/n-1
n+l—-k\s-1 s k-1/"
Almost using the procedures similar to that in Theorem 2.1, we now
give another bijection between bicoloured ordered trees and non-crossing

partitions, with the main difference being that O-Labelling algorithm will
be used instead of E-Labelling algorithm.
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Theorem 2.7 There is a bijection between the set of bicoloured ordered
trees with k odd height vertices and n + 1 — k even height ones and the set
of non-crossing partitions of [n] into n + 1 — k blocks.

Proof. Let T be such a bicoloured ordered tree.

(1) Label the edges in T with numbers 1,2,...,n by the O-Labelling algo-
rithm.

(2) To each even height vertex u, let the set of labels of those edges in
CT(u) be a block of the partition.

Since there are n + 1 — k even height vertices, we eventually get the
desired non-crossing partition . Moreover, if the root’s degree is 1, the
number of non-singleton blocks in 7 is 1 less than the number of even
height internal vertices in T, otherwise those two numbers are equal; if the
leftmost child of the root is a leaf, the number of block runs in 7 is 1 more
than the number of odd height internal vertices in T, otherwise those two
numbers are equal.

To the reverse procedure, without loss of generality, suppose the blocks
of a partition have been ordered increasingly with respect to their leaders,
ie. m = {B1,Bs,..., Bpy1-k}, 1 = I(B1) < l(B2) < --- < {(Bn41-k) < 1.
To By, a claw tree Tp, centered by some vertex u with |B;| edges, where
edges all flow from u and are labelled by the elements of B; increasingly
from left to right, will be constructed; and to B;(2 < i < n+1-k) a
corresponding claw tree T, will be constructed similarly as in Theorem
2.1.

(1) Let the claw tree T, corresponding to B; be a subtree of T such that
their roots are identical.

(2) Consider the claw tree T, corresponding to B,. Let the edge labelled
by I(Bz) —1is < u,v >. Merge T, and Tp, through a vertical merging
operation: put T, underneath v and identify the root of 75, and v.

(3) Consider the claw tree Tg, corresponding to Bj.

(A) If I(B3) — 1 has been assigned to some edge < u,v > where u is a even
height vertex, insert T'g, into the constructed tree by a vertical merge.
(B) Otherwise, when [(B3) — 1 has been assigned to < u,v > where u is a
odd height vertex, insert Tg, into the constructed tree by a left-horizontal
merging operation: put T'g, on the left-hand side of < u,v > and identify
the root of Tg, and u.

(4) Repeat (3) until Tp,,...,Tg,,,_, all are considered.

Since an even height vertex is added after either of the above two merg-
ing operations, when claw tress corresponding to those blocks in 7 all are
considered, we get the desired bicoloured ordered tree at last. 1

For example, from the tree T in Example 2.2, we get another non-
crossing partition 7', as shown in Fig. 3, where the edges in T are assigned
with numbers by the O-Labelling algorithm.
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7'={{1,2,17,18,26},{3},{4,6,12,13},{5},{7},{8,9,10,11},{14,15,16},
{19,21,25},{20},{22},{23},{24},{27,28,33},{29,31,32},{30},{34} }
Fig.3.
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