Forbidden subgraphs and the hamiltonian
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Abstract.
Hamiltonian index of a graph G is the smallest positive integer k, for
which the k-th iterated line graph L*(G) is hamiltonian. Bedrossian
characterized all pairs of forbidden induced subgraphs that imply
hamiltonicity in 2-connected graphs. In this paper, some upper
bounds on the hamiltonian index of a 2-connected graph in terms
of forbidden not necessarily induced subgraphs are presented.
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1 Introduction

In this paper, we consider only finite undirected graphs without loops and mul-
tiple edges. We use [2] for terminology and notations not defined here. For
z,y € V(G), an =,y—path is a path between vertices z and y in G. A hamilto-
nian cycle is a cycle in G on |V (G)| vertices. A graph G is said to be hamiltonian,
if ¢(G) = |V(G)|. For a nonempty set A C V(G), the induced subgraph on A in
G is denoted by (A)c. We denote by P; the path on 7 vertices and we say that
the length of a path P is the number of edges of P. Similarly we denote C; the
cycle on 7 vertices. For any A C V(G), the graph G-A stands for (V(G) \ A)c.

For a connected graph H, a graph G is said to be H-free, if G does not contain
a copy of H as an induced subgraph; the graph H will be also referred to in this
context as a forbidden subgraph. The graph K3 will be called the clow and in
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the special case H = Ky 3 we say that G is claw-free. List of frequently used
forbidden subgraphs is shown in Fig. 1.
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Fig. 1

The graphs Z2, B and N were generalized in [4] as follows. We denote by :

Zi, (i21) - the graph which is obtained by identifying a vertex of
a triangle with an end-vertex of a path of length ¢

Bi.j, (3, > 1) - the generalized (i,7)-bull, i.e., the graph which is obtained
by identifying two distinct vertices of a triangle with an
end-vertex of one of two vertex-disjoint paths of lengths ¢, j

Nijx, (i,J,k > 1) - the generalized (%, j, k)-net, i.e., the graph which is ob-
tained by identifying each vertex of a triangle with an end-
vertex of one of three vertex-disjoint paths of lengths 1, j, k.

One of the motivations for studying hamiltonicity in the class of line graphs was
given by Harary and Nash-Williams in (7). A dominating closed trail (DCT)
in a graph G is a connected eulerian subgraph F of G such that u € V(F) or
v € V(F) for every edge uv € E(G). Note that the trivial DCT (consisting of
only one vertex) is allowed.

Theorem A [7]. Let G be a graph with at least three edges. Then L(G) is
hamiltonian if and only if G contains a DCT.

It is easy to see that the line graph of a hamiltonian graph is also hamiltonian.
The concept of the hamiltonian index of a graph was introduced by Chartrand
in [6)].

Let G be a graph and let k be a positive integer. The k-th iterated line graph of
G, denoted by L*(G), is defined recursively in the following way:

L°%G) =G, L*¥G)=L (L""(G)) .



The hamiltonian index of a graph G, denoted by h(G), is the smallest number k
such that L*(G) is hamiltonian. Chartrand [6] showed that for every connected
graph that is not a path the hamiltonian index exists.

An induced path P in G such that both end vertices of P have degree different
from two and all internal vertices of P (if any) have degree exactly two in G, is
called a branch of G. Let B(G) denote the set of all branches of G. Let S C B(G)
and Gs = (Vs, Es) be the graph with Vs = V(G) and Es = E(G) — E(S). Then
G — S denotes the subgraph obtained from Gs by deleting all internal vertices
of all branches of S. A subset S of G is called a branch cut if G — S has more
components than G. A minimal branch cut is called a branch-bond. It is easy
to see that, for a connected graph G, a subset S of G is a branch-bond if and
only if G — S has exactly two components. We denote by BB(G) the set of all
branch-bonds of G. A branch-bond is called odd if it consists of an odd number
of branches. The length of a branch-bond S, denoted by I(S), is the length of a
shortest branch of S. Let BB,(G) denote the set of all branch-bonds S such that
|S| =1 and the only branch b of S has one end-vertex of degree 1, let BB»(G)
denote the set of all branch-bonds S such that |S| = 1 and the only branch b of
S has both end-vertices of degree at least 3 and let BB3(G) denote the set of
all odd branch-bonds consisting of at least three branches. Now we define, for
1=1,2,3,

hi(G) =

max{l(S)| S € BB:(G)} if BBi(G) # 0,
0 otherwise.

Xiong and Wu [3] proved the following bound for the hamiltonian index of a
graph.
Theorem B [3]. Let G be a 2-connected graph. Then

h3(G) — 1 < h(G) < ha(G) + 1.
For studying hamiltonian properties in terms of forbidden induced subgraphs we
give the following motivation.

Theorem C [1]. Let X and Y be connected graphs with X,Y # P3, and
let G be a 2-connected graph that is not a cycle. Then, G being X,Y -free
implies G is hamiltonian if and only if (up to symmetry) X = K13 and Y €
{Ps, Ps,Ps,C3,2,,Z2,B,N,W}.
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Let § denote the class of graphs shown in Fig. 2 (where elliptical parts represent
cliques of order at least 3).

3
Fig. 2
Brousek, Ryjacek and Schiermeyer in [5] proved the following:

Theorem D (5). Let G be 2-connected graph. If G is K1,3, E-free graph, then
G is hamiltonian or G € §.

Clearly, if G € §, then G has a DCT. Hence we obtain the following consequence.

Corollary 1. IfG is a 2-connected K),3, E-free graph, then G has a DCT, i.e.,
h(G) < 1.

In this paper we present upper bounds for the hamiltonian index of a 2-connected
graph in terms of forbidden, not necessarily induced graphs. We will use the
following notation. We denote L~!(G) a graph H such that L(H) = G, where G
is a line graph.

Note that the line graph of a graph is claw-free, the line graph of a 2-connected
graph is 2-connected, and if G does not contain a connected graph X as a sub-
graph (not necessarily induced), then L(G) is L(X)-free.

2 Upper bounds for hamiltonian index in term:
of forbidden subgraphs

Let G be a graph and H a subgraph of G. We denote by G — H a graph G’
which is obtained from G by deleting all edges of H and subsequently deleting
all isolated vertices in the resulting graph.
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Some auxiliary statements will be shown. Let P denote a set of paths. Then {(P)
stands for the length of a shortest path of P.

Lemma 1. Let z, y be a pair of nonadjacent vertices. Let k > 2 be an odd
integer. Let G be a graph consisting of the vertices z,y and k vertex-disjoint
z,y-paths Pi,..., Pr. Let P = {Py,..., P}. IfI(P) > 1, then h(G) = |(P) - 1.

Proof. Using the fact that the line graph operator decreases the length of any
branch of G by one, L®)~%(G) has a DCT, implying that h(G) < I(P) — 1. The
equality follows from the following fact. The graph L'®)=2(QG) consists of two
vertex disjoint graphs joined by three vertex disjoint paths P’ with {(P') = 2.
And obviously this graph is not hamiltonian. |

Lemma 2. Let ki1, k2 > 2 be integers such that k = ky + k2 is odd. Let G be a
graph consisting of vertices x,y1,y2 such that y1y2 € E(G), z is not adjacent to
any of the vertices y1, y2, G contains k vertex-disjoint paths between x and one of
the vertices y1, y2 such that there are ki z,y1-paths Py, ..., Py, and k2 x, y2-paths
Preyt1y...y P Let P ={P1,..., Pc}. Ifi(P) > 1, then h(G) < I(P) - 1.

Proof. Let G be a graph satisfying the hypothesis. Let P be a shortest path
of P,..., Px. The path P has length {(P). Up to symmetry suppose that P is
an z,y1-path. We prove this lemma by induction on I(P).
i) Suppose that I(P) = 2. If k; is odd, then the graph H = G — P — 132
is a DCT in G. If k, is even, then the graph H = G — P isa DCT in G.
Hence G has a DCT, implying that h(G) < 1 by Theorem A.
ii) Suppose that A{G) < ! -2 holds for each graph with the given structure,
for which {(P) = — 1. Let G’ be a graph obtained from G by replacing
P by a path P’ of length ¢ — 1. Hence h(G’) < ! — 2 by the induction
hypothesis. This yields that L'~?(G’) is hamiltonian. Now we denote
by G” the graph obtained from L'~2(G’) by replacing the edge, which
corresponds to P’ in G', by a path of length two. Clearly G" = L'~%(G)
and L'~?(G) has a DCT, implying that h(G) <! - 1. ]

Lemma 3. Let ki,k2 > 2 be integers such that k = k; + kz is odd. Let G
be a graph consisting of vertices z,y1,y2 such that = is not adjacent to any of
the vertices y1,y2, G contains k vertex-disjoint paths between z and one of the
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vertices y1,y2 such that there are ky z,y1-paths Pi,..., P, and k2 z,y2-paths
Py, 41, .., Px. Moreover there are l vertices adjacent to both vertices y1,y2 but
not tox,l € N. Let P = {Py,..., Pc}. Ifl(P) > 1, then h(G) < {(P) — 1.

Proof. Let G be a graph satisfying the hypothesis. Let P be a shortest path
of Py,..., P.. The path P has length [(P). Up to symmetry suppose that P is
an z,y1-path. Let z denote any of the vertices adjacent to both vertices y;, 2
but not to = and @ the path induced by {y1,2,¥2}. We prove this lemma by
induction on {(P).
i) Suppose that I{(P) = 2. If k, is odd, then the graph H = P — P is a
DCT in G. If k; is even, then the graph H = (P — P)UQ is a DCT in
G. Hence G has a DCT, implying that 2(G) < 1 by Theorem A.
ii) Suppose that h(G) < !—2 holds for each graph with the given structure,
for which {(P) = | — 1. Let G’ be a graph obtained from G by replacing
P by a path P’ of length [ — 1. Hence h(G’) < ! — 2 by the induction
hypothesis. Thus L'~2(G’) is hamiltonian. Now we denote by G” the
graph obtained from L'~2(G’) by replacing the edge, which corresponds
to P’ in G’, by a path of length two. Clearly G = L'~?(G) and L'~2(G)
has a DCT, implying that h{(G) <! - 1. |

Lemma 4. Let ki, k2, ks > 1 be integers such that k = ki + k2 + k3 is an odd
number. Let G be a graph consisting of vertices x,y1,Yy2,ys such that y1y2 €
E(G), y2ys € E(G) but z is not adjacent to any of the vertices y1,y2,y3, G
contains k vertex-disjoint paths between = and one of the vertices y1,y2,ys such
that there is ky =, y1-paths Py,..., Py, k2 =,y2-paths Pi,41,..., Px,+x, and ka
zys-paths P tip+1,..., Pe. Let P = {Py,..., P}. If{(P) > 1, then h(G) <
(P)-1.

Proof. Let G be a graph satisfying the hypothesis. Let P be a shortest path

of Pi,..., P.. The path P has length {(P). We prove this lemma by induction
on I(P).

i) Suppose that [(P) = 2. First suppose that P is an z, y2-path. If all the

numbers k), k2, k3 are odd, then the graph (P — P) U {n1y2,71y3} is a

DCT in G. If k2 is odd and both numbers k;, k3 are even, then the graph

P — Pis a DCT in G. Now suppose that k2 is even. Since k is odd,

exactly one of the numbers ki, ks, say k1, is odd. Then (P -~ P)U {1112}
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is a DCT in G.

Now suppose that P is not an z, y2-path. Up to symmetry suppose that
P is an z,y;-path. If all the numbers k1, k2, k3 are odd, then the graph
(P — P)U {yzys} is a DCT in G. If k; is odd and both numbers k2, k3
are even, then the graph P — P is a DCT in G. Now suppose that k;
is even. Since k is odd, exactly one of the numbers k2, k3 is odd. If ko
is odd, then the graph (P — P} U {y1y2} is a DCT in G. If k3 is odd,
then the graph (P — P) U {y1y2,y2ys} is a DCT in G. Hence, in any
possibility, G has a DCT, implying that A(G) < 1 by Theorem A.

ii) Suppose that h(G) < !—2 holds for each graph with the given structure,
for which {(P) = — 1. Let G’ be a graph obtained from G by replacing
P by a path P’ of length { — 1. Hence h(G') < [ — 2 by the induction
hypothesis. Therefore L'~%(G’) is hamiltonian. Now we denote by G”
the graph obtained from L'~%(G’) by replacing the edge, which corre-
sponds to P’ in G, by a path of length two. Clearly G” = L'"%(G) and
L'*%(G) has a DCT, implying that h(G) <! — 1. |

The following lemma gives a lower bound for the length of a path in a graph G
involving the hamiltonian index of G.

Lemma 5. Let G be a 2-connected graph with h(G) > 2. Then G contains a
path of length at least 3h(G) — 2.

Proof. Let G be a 2-connected graph with hamiltonian index h(G). Since G is
2-connected, every branch-bond of G has at least two branches. By Theorem B,
there is a branch-bond S of G such that S contains an odd number of branches
and each branch of S has length at least A(G) — 1. Since h(G) > 2, I(S) > 2. By
the definition of a branch-bond, there are exactly two components of the graph
G — S. Let Gi, G2 be the components of G — S. Let by, bz, b3 be a triple of
branches of S, B = {b1,b2,b3}, let z; denote the end-vertex of b; in G1, y; the
end-vertex of b; in Gz, i = 1,2,3. Let g1 = |V(G1) N (V(b1) U V(b2) U V(b3))|
and g2 = [V(G2) N (V(b)) UV (b2) UV (b3))]. Choose branches by, b2, bs with
maximum g; + g2. Consider the following cases:

Case 1: g1 = 3 and g» = 3. Since G is connected, there is a z,,z2-path P,
in Gy and a z1,z3-path P; in Gi. Choose Py, P, shortest possible. By
minimality of the paths P; and P2, P, does not contain z3 or P2 does
not contain x2. Up to symmetry suppose that P, does not contain z3.
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Since G2 is connected, there is a ¥z, ys-path @ in G2. Let 3’ denote the
neighbour of y; on b;. Then the path ¥/, b1, z1, P1, 2, b2, y2,Q, ¥3, b3, za
has length at least 3h(G) — 2.

Case2: g1 = 2, g2 = 3or g1 = 3, g2 = 2. By symmetry suppose that
g1 = 2 and g2 = 3. Two of the branches of B have a common end-
vertex in G;, say branches b;, b2. Hence z; = z2. Since G2 is con-
nected, there is a y2,ys-path Q in G2. If y1 € V(Q), then the path
y1, b1, z1, b2, y2, @, ¥s, ba, za is a path of length at least 32(G) — 2 in G.
Now suppose that y; € V(Q). Hence @ has length at least two. Then
the path z3, b3, y3, Q, y2, b2, 21, b1 — 31 has length at least 3h(G) — 2.

Case 3: g1 = 2 and g2 = 2. Since g; = 2, two of the branches of B have a
common end-vertex in Gi, say branches bi,b2. Thus z; = z2. Since
dg(zx3) > 3, there is a vertex z € V(G) such that z & V(b3), z # z1.
Since I(S) > 1, z & V(G2). Since g2 = 2, 31 # ya or y2 # y3. Up
to symmetry suppose that ¥, # ys. Since G2 is connected, there is a
y1,ys-path Q in G2. Then the path z,z3,b3,y3,Q,y1,b1,%1,b2 — y2 has
length at least 3h(G) — 2.

Case 4: g1 =1, g2 = 3 or g1 = 3, g2 = 1. Up to symmetry suppose that g; = 1
and g2 = 3. Suppose that |[V(G1)| > 1. Then at least one of the vertices
of G, different from z,, say vertex u, is an end-vertex of some branch
of S, since otherwise G is not 2-connected. But then the branches b1,
ba, bs can be chosen in such a way that there are at least two different
end-vertices of the triple of branches in G; and at least two different
end-vertices of the triple of branches in G2. Hence we are in one of the
previous three cases.

Hence |V(G)| = 1. Let =’ denote the neighbour of 21 on b;. Since

[(8) > 1, 2’ € V(G2). Now we suppose that [V(G2)| = 3. By Lemma

4, I(S) > h(G) + 1. Since G2 is connected, there is a y;,y2-path @

is G2. Then the path ', b1, 41, Q, y2, b2, T2, ba — y3 has length at least

3h(G) — 2. Now suppose that |V (G3)| > 3. There is a vertex z in G2

different from y;,y2,ys such that z is a neighbour of at least one of the

vertices y1,¥2,y3. Up to symmetry suppose that zy: € E(G). Since G
is connected, there is a y2, ys-path Q in Ga.

Subcase 4.1: There is a path Q in G2 such that Q does not contain y;.

If z € V(Q), then the path z,y1,b1,%1,b2,y2, @, y3, b3 — 23 has

length at least 3h(G) — 2. If Q contains z but not y1, then the

path y1, b1, T1, b2, ¥2, @, y3, bs — z3 has length at least 3h(G) — 2
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since @ has length at least two.
Subcase 4.2: Every y2, y3-path Q contains vertex 31. Choose Q short-
est possible. Since de(ys) > 3 and y2ys € E(G), there is
a vertex 2z’ different from yi,y2 in G such that 2z’ ¢ V(bs).
By minimality of Q there is a y;,y2-path Q; in G2 such that
Q1 does not contain y3. Clearly 2’ € V(Q:), since otherwise
there is a y2, y3-path which does not contain y;. Then the path
2’',ya, b3, 23,b2,92,Q,v1, b1 — z1 has length at least 3h(G) — 2.
Case 5: g1 = 1,92 =2o0r g1 =2, g2 = 1. Up to symmetry suppose that g; = 1
and g2 = 2. First we suppose that |V (G1)| > 1. Since G is 2-connected,
at least one of the vertices of G, different from z,, say vertex u, is an
end-vertex of some branch of S. But then the branches by, b2, b3 can be
chosen in such a way that there are at least two different end-vertices of
the triple of branches in G; and at least two different end-vertices of the
triple of branches in G;. Hence we are in one of the first three cases.
Hence |V(G1)] = 1. Since g2 = 2, two of the branches of B have a
common end-vertex in Gz, say branches b;,b;. Hence y; = y2. Let z’
denote the neighbour of z; on b1. Clearly =’ ¢ V(G:) since {(S) > 1.
Suppose that |V(G2)| = 2. Then, by Lemma 2, {(S) > h(G) + 1. Then
the path ', by, 41, b2, T2, ba, ya has length at least 3h(G) — 2.
Now we suppose that |V (G2| > 2 and each vertex 2z € V(G2) \ {y1,¥3}
is adjacent to both vertices y1,y3. By Lemma 3, each branch of S has
length at least A(G) + 1. Then the path z’, b1, 31, b2, z2, b3, y3 has length
at least 3h(G) — 2.
Finally we suppose that |V(G2| > 2 and there is a vertex z € V(G2) \
{¥1,¥3} such that 2 is adjacent to exactly one of the vertices y1,ys, say
yaz € E(G). (The case y1z ¢ E(G) can be shown analogously). By
maximality of g2, there is no vertex y € V(G2) \ {y1,y3} such that y
is an end-vertex of some branch of S. Using this fact and since G is
2-connected, there is a z, y3-path Q in G2 such that @ does not contain
y1. Since yaz € E(G), the path Q has length at least two. Then the
path bs — 3,y3,2,Q,y1,b1,71,b2 — y2 has length at least 3h(G) — 2.
Case 6: g1 = 1 and g2 = 1. Clearly |V(G1)| = |V(G2)] = 1. Then, by
Lemma 1, each branch of S has length at least h(G) + 1. Then the path
b1 — 1,1, b2, z2, b3 — y3 has length at least 3h(G) ~ 2. |

By Theorem C, if G is 2-connected K} 3, Ps-free, then h{G) < 1. Now we consider
a 2-connected graph H with no P; as a subgraph. Then L(H) is 2-connected and

171



K, 3, Ps-free. This implies that h(H) < 2. As an immediate consequence of the
previous lemma we obtain the following upper bound for the hamiltonian index
of a graph in terms of maximum path length.

Theorem 1. Let k be a positive integer, let G be a 2-connected graph such
that G does not contain a path of length k. Then h(G) < 2.

Corollary 2. Let G be a 2-connected graph which does not contain L™(Px).
Then h(G) < 3.

The following lemma is an analogue to Lemma 5.

Lemma 6. Let G be a 2-connected graph with h(G) > 2. Then G contains a
graph L™ (Zah(G)-3) as an induced subgraph.

Proof. Let G be a 2-connected graph with hamiltonian index h(G). Since G is
2-connected, every branch-bond of G has at least two branches. By Theorem B,
there is a branch-bond S of G such that S contains an odd number of branches
and each branch of S has length at least h{(G) — 1. Since h(G) > 2, I(S) > 2. By
the definition of a branch-bond, there are exactly two components of the graph
G — S. Let Gi, G2 be the components of G — S. Let by, b2,b3 be a triple of
branches of S, B = {b1,b2,bs}, let z; denote the end-vertex of b; in G, y: the
end-vertex of b; in G2, i = 1,2,3. Let g1 = |[V(G1) N(V (b)) UV (b2) UV (b3))|
and g2 = |[V(G2) N(V{b1) U V(b2) U V(b3))|. Choose branches by, b2,b3 in such a
way that g1 + g2 is maximum. Consider the following cases:

Case 1: g1 = 3 and g2 = 3. Since G2 is connected, there is a yi1, y2-path P
in Gz. Since dg(z2) > 3, there are at least two neighbours z’, z” of
z2 such that none of them belongs to b2 nor V(G2). Then the graph
z2x’, 222", bg, P1,b1 — 71 is isomorphic to L™ (Zan(c)-3)-

Case 2: g1 = 2, g2 = 3or g1 = 3, g2 = 2. Up to symmetry suppose that g, = 2
and g2 = 3. Two of the branches of B have exactly one end-vertex in G,
say branches by and bz. Hence z1 = z2. Since G2 is connected, there is a
y2,ya-path Q in Gz. Since dg(z2) > 3, there are at least two neighbours
z', 2" of z1 in G such that none of them belongs to b2. Since h(G) > 2,
z' @ V(G2) and =" ¢ V(G2). Then the graph z1z’, 212", b2,Q, b3 — z3
is isomorphic to L™ (Z2n(c)-3)-

Case 3: g1 = 2 and g2 = 2. Since g1 = 2, two of the branches of B, say b,
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b2, have a common end-vertex in Gi. Hence z; = z2. Since g2 = 2,
then y1 # y2 or y1 # ys. Up to symmetry suppose that y; # va. Since
G2 is connected, there is a y1,ys-path @ in G2. By the definition of a
branch, dg(x3) > 3. Hence there are at least two neighbours z’, 2" of z3
in G such that none of them belongs to b3 nor V(G2). Then the graph
z3z’, z32", b3, Q, b1 — z; is isomorphic to L™ (Zan(c)—3)-

Case 4: g1 = 1,92 =3 or g1 =3, g2 = 1. Up to symmetry suppose that g; = 1

and g2 = 3. Suppose that |V (G1)| > 1. Then at least one of the vertices
of G, different from z,, say vertex u, is an end-vertex of some branch
of S, since otherwise G is not 2-connected. But then the branches by,
b2, b3 can be chosen in such a way that there are at least two different
end-vertices of the triple of branches in G; and at least two different
end-vertices of the triple of branches in G,. Hence we are in one of the
previous three cases.
Hence |V(G1)] = 1. Let z denote the only vertex of G;. Since G
is connected, there is a path @ of length at least two in G2 joining
two of the vertices yi,y2,ys. Without loss of generality suppose that
Q is a y1,y2-path. Let =’ denote the neighbour of z on b; and z” the
neighbour of z on b3. Clearly 2’ € V(G2), z” € V(G2). The graph
zz’,zz", b2, Q, b1 — {z,z'} is isomorphic to L~!(Zon(cy-3)-

Case 5: g1 =1, g2 =2o0r g1 =2, g2 = 1. Up to symmetry suppose that g; =1
and gz = 2. First we suppose that |V (G1)| > 1. Since G is 2-connected,
at least one of the vertices of G; different from z;, say vertex wu, is an
end-vertex of some branch of S. But then the branches b;, b2, b3 can be
chosen in such a way that there are at least two different end-vertices of
the triple of branches in G and at least two different end-vertices of the
triple of branches in G;. Hence we are in one of the first three cases.
Hence |V(G1)| = 1. Since g2 = 2, two of the branches of B have a
common end-vertex in Ga, say branches b1,b2. Thus y1 = y2. Let z be
the vertex of G1. Let z’ denote the neighbour of z on b, and z” the
neighbour of = on b2. It is easy to see that none of the vertices z’, z”
belongs to Ga.

First suppose that |V(G2)| = 2. By Lemma 2, each branch of B has
length at least h(G) + 1. Clearly yiys € E(G) by connectivity of Ga.
The graph zz', zz", b3, y1y3,b1 — {z,2'} has a subgraph isomorphic to
L™Y(Zan(6)-3)-

Now we suppose that |V (G2)| > 2. There is a vertex z € V(G2)\ {¥1,¥3}
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such that z is adjacent to at least one of the vertices y1,y3, say y1z €
E(G). (The case ysz € E(G) can be shown analogously). By maximality
of g2, there is no vertex y € V(G2)\ {y1,y3} such that y is an end-vertex
of some branch of S. Using this fact and since G is 2-connected, there
is a z,ys-path Q in G2 such that @ does not contain y;. The graph
zz',zz", b3, Q,y12, b1 — {z,z'} is isomorphic to L~ (Zon(c)-3)-

Case 6: g1 = 1 and g2 = 1. Clearly |V(G1)| = |V(G2)| = 1. Then each branch
of B has length at least h(G) + 1 by Lemma 1. Let = be the neighbour
of z on b; and z” the neighbour of z on b2. Clearly none of the vertices
z', " belongs to G2. The graph zz’,zz", b3, b1 — {z, '} has a subgraph
isomorphic to L™(Zzn(g)-3)- |

By Bedrossian’s characterization (see Theorem C), if G is 2-connected K 3, Z2-
free, then h(G) < 1. Now we consider a 2-connected graph H with no L'(2;) as a
subgraph. Then L(H) is 2-connected and K 3, Z2-free, implying that h(H) < 2.
Using this fact and the previous lemma we obtain the following theorem.

Theorem 2. Let k > 1 be an integer, let G be a 2-connected graph such that
G does not contain a subgraph isomorphic to L~*(Zy). Then h(G) < #

Corollary 3. Let G be a 2-connected graph such that G does not contain
L™Y(Z3). Then h(G) < 3.

For graphs B; ; we prove the following lemma.

Lemma 7. Let G be a 2-connected graph with h(G) > 2 and let 1, j be positive
integers at least one. Then G contains a graph L~'(B:,;) as an induced subgraph,
where i + j > 3h(G) - 5.

Proof. Let G be a 2-connected graph with hamiltonian index h(G). Since
G is 2-connected, every branch-bond of G contains at least two branches. By
Theorem B, there is a branch-bond S of G such that S contains an odd number
of branches and {(S) > h(G) — 1. Since h(G) > 2, I(S) > 2. By the definition
of a branch-bond, there are exactly two components of the graph G — 5. Let
G1, G2 denote the components of G — S. Let by, b2, bz denote a triple of branches
of S, B = {b1,b2,b3}, let z; denote the end-vertex of b; in G1, yi the end-vertex
of b; in Ga, i = 1,2,3. Let g; = |[V(G;) N (V(hi)) UV (b2)UV(bs))], 7 = 1,2
Choose branches by, b2, b3 in such a way that g, + g2 is maximum. The following
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possibilities can occur:

Case 1: g1 = 3 and gz = 3. Since G; is connected, there is a z;,z2-path P,
and r1,z3-path P2 in G;. Choose P, and P, shortest possible. Clearly
Py does not contain z3 or P does not contain z2. By symmetry suppose
that P, does not contain x3. Since dg(z1) > 3, there is a neighbouring
vertex z’ of x1 such that z’ does not belong to any of b1, Py. Since I(S) >
2, ' ¢ V(G2). Since G; is connected, there is a y1ys-path Q in Go.
Choose Q shortest possible. Consider the following paths: By = z12,
Bz = 1,b1,41,Q,y3,b3 — z3, Bs = z1, P1,x2,b2 — y2. A subgraph of G
consisting of the paths B1, Bz, Bs is isomorphic to L™} (Ban(c)-3,n(c)-2)-

Case 2: g1 =2, g2 =3 or g1 = 3, g2 = 2. Up to symmetry suppose that g; = 2
and g2 = 3. Two of the branches of B have exactly one end-vertex in
G, say branches b; and b;. Hence z; = z2. Since G is connected,
there is a z1, z3-path P in G;. Analogously, since G2 is connected, there
is a y2,y3-path Q in G2. Choose P and Q shortest possible. Since
dg(zs) > 3, there is a vertex =’ such that =’ ¢ V(P), =’ ¢ V(bs).
Since I(S) > 2, 2’ & V(G2). Consider the following paths: B, = z3,z’,
B; = x3,b3,y3,Q, y2, b2 — z2, Bs = 23, P,z1,b1 —y1. The subgraph of G
consisting of the paths Bi, Bz, Bs is isomorphic to L™ (Ban(c)-3,a(c)-2)-

Case 3: g1 = 2 and g2 = 2. Two of the branches of B, say b, b2, have a
common end-vertex in G;. Thus z; = z2. Similarly, there are exactly
two different end-vertices of the branches of B in G2. Let y,, y» denote
these vertices and, up to symmetry, suppose that y, € V(bs). Hence
Ya € V(b1) or yo € V(b2). Since G; is connected, there is a z;, z3-path
P in G;. Analogously, since G2 is connected, there is a ya, ys-path Q
in G2. Choose P and Q shortest possible. Since dg(z3) > 3, there is a
vertex z’ such that =’ € V(P), 2’ € V(ba). Clearly 2’ ¢ V(Gs). First
we suppose that y, € V(b;). Consider the following paths B; = z3,z’,
B2 = z3,b3,ys, Q,Ya, b1 — 1, Bs = z3, P, 21, bo — y:, where y; denote the
end-vertex of b2 in G2. Then the triple By, B2, Bs forms a subgraph of
G isomorphic to L™!(Ban(c)-3,a(G)-2)-
Finally we suppose that y, € V(b2). Consider the following paths B, =
z3,2', B2 = z3,b3, Y5, Q, Ya, b2 — 1, Bs = 3, P,x1,b1 — i, where y; is
the end-vertex of b, in G2. Then the triple By, Bz, B3 forms a subgraph
of G isomorphic to L™ (Ban(c)-3,n(G)~2)-

Case 4: gy =1, g2 =3 o0r g; = 3, g2 = 1. Up to symmetry suppose that g; = 1
and g2 = 3. First we suppose that |[V(G1)| > 1. Then at least one of
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the vertices of G different from z;, say vertex u, is an end-vertex of
some branch of S, since otherwise G is not 2-connected. But then the
branches b, b2, b3 can be chosen in such a way that there are at least
two different end-vertices of the branches of S in G1 and at least two
different end-vertices of the branches of S in G2. Therefore we are in
one of the previous three cases.

Hence [V(G1)| = 1 and 21 = z2 = z3. Suppose that |V (G2)| = 3. Let
z' denote the neighbour of z; on b;. Clearly ' € V(G2). Since G2 is
connected, y1y2 € E(G) or y1y3 € E(G). Up to symmetry suppose that
y1y2 € E(G). By Lemma 4, each branch of S has length at least h(G)+1.
The following triple of paths By = z1,z’, Bz = 71, b2, ¥2, 91, b1 — {z, 2},
Ba =z, b3, y3 forms a subgraph of G isomorphic to L'l(Bz,,(a)_,,(G)).
Now suppose that |V (G2)| > 3. There is a vertex z € V(G2) such that
z is different from y1,y2,ys and z is a neighbour of at least one of the
vertices y1, ¥2, Y3, say vertex y1. Since G is connected, there is a y2, y3-
path Q in G2. Choose @ shortest possible. Let u denote the neighbour
of z2 on by and let v denote the neighbour of =3 on bs.

Subcase 4.1: The path Q does not contain any of the vertices z, .
Then the triple of paths By = z3,v, B2 = z2,b2,¥2,Q, y3,b3 —
{z3,v}, Bs = z1,b1, 31,2 forms a subgraph of G isomorphic to
L™Y(Ban(Gy-a.0(G)-1)-

Subcase 4.2: The path Q contains z but not y;. The graph consist-
ing of the paths By = z3,v, B2 = z2,b2,¥2, Q, y3, b3 — {z3, v},
B3 = z1,by, 3 is isomorphic to L"‘(Bg;.(c)_g_h(c)_g) since Q
has length at least two.

Subcase 4.3: The path @ contains y; but not z. By minimality of Q,
there is a y1, y3-path Q1 in G2 such that Q; does not contain y,.
(Note that Q. is a subpath of Q.) The graph consisting of the
paths B1 = w1, 2, B2 = y1,b1,21,b2,92, Bs = 41,Q1,¥3,b3 — 23
is isomorphic to L™ (Bah(g)-3.n(G)-2)-

Subcase 4.4: The path Q contains both vertices z,y. By mini-
mality of @, there is a y;,ys-path Q) in G2 such that Q)
does not contain y2. If z € V(Q1), then the triple of paths
By = 1,2, B2 = y1,b1,21,b3,y3, B2 = 11,Q — Q1,¥2,b2 — 72
forms a subgraph of G isomorphic to L™ (Ban(g)-3,n(c)-2)- If
z € V(Q1), then the graph consisting of the paths B, = y1, 2,
By = 41, b1, 71,b2,y2, Bz = y1,Q1,¥3,ba — z3 is isomorphic to
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L™Y(BanGy-3,n(c)-2)-

Case 5: g1 =1, g2 =2 0r g1 = 2, g2 = 1. By symmetry suppose that g; = 1
and g2 = 2. First we suppose that |V(G,){ > 1. Since G is 2-connected,
at least one of the vertices of G, different from z:, say vertex u, is an
end-vertex of some branch of S. But then the branches by, b2, b3 can be
chosen in such a way that there are at least two different end-vertices of
the triple of branches in G, and at least two different end-vertices of the
triple of branches in G2. Hence we are in one of the first three cases.
Hence |V(G)1)| = 1. Since g2 = 2, two of the branches of B have a
common end-vertex in Gz, say branches b;,b2. Thus y; = y2. Let z'
denote the neighbour of z; on b. Since I(S) > 2, £’ € V(G2). The
following possibilities can occur:

- [V(G2)| = 2. By Lemma 2, every branch of S has length at
least h(G)+1. The triple of paths By = z1,z’, B2 = x1, b2, 92 =
y1,b1 — {z1,2'}, Bs = zy, b3, y3 forms a subgraph of G isomor-
phic to L™} (Ban(c)-1,n(6))-

- [V(G2)| > 2. First we suppose that every vertex of V(Gs) \
{v1,y3} is adjacent to both vertices y;,ys. Then, by Lemma 3,
each branch of S has length at least h(G)+1. The triple of paths
B1 = z,2', By = z1,b2,92 = 31, b1 — {z1,2'}, Bs = z1,b3,93
forms a subgraph of G isomorphic to L™!(Ban(g)-1.n(a))-
Finally we suppose that |V (G2)| > 2 and that there is a vertex
z € V(G2)\ {1, y3} such that z is adjacent to exactly one of the
vertices y1,ys, say y3z € E(G). (The case y1z ¢ E(G) can be
shown analogously). By maximality of g2, there is no vertex y €
V(G2) such that y is an end-vertex of some branch of S. Using
this fact and since G is 2-connected, there is a z, ya-path Q in G2
such that Q does not contain ;. Since y3z € E(G), the path Q
has length at least two. Now we consider the paths B; = z;,2’,
Bz = x1,b2,y2 = y1,b1 — {z1,2'}, B3 = 1,b3,93,Q, 2. The
subgraph of G consisting of the triple By, Bz, Bs is isomorphic
to L™ (Ban(c)-s,n(c))-

Case 6: g1 = 1, g2 = 1. Clearly |V(G1)| = |V(G2)| = 1. By Lemma 1, each
branch of S has length at least A(G) + 1. Let z’ be the neighbour of
x1 on b and clearly 2’ ¢ V(G2). Consider the following triple of paths:
By = z1,2', Ba = z1,b2, 2 = y1,b1 - {z1,2'}, Bs = z1,ba — y3. The
graph consisting of By, Bz, B3 is isomorphic to L™ (Ban(cy-1.n(c)-1)-B
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By Theorem C, if G is 2-connected K3, Bya-free, then A(G) < 1. Now we
consider a 2-connected graph H with no L!(B:,2) as a subgraph. Then L(H) is
2-connected and K3, By 2-free. This implies that h(H) < 2. As an immediate
consequence of Lemma 7 and Theorem C we obtain the following theorem.

Theorem 3. Let i,j be positive integers such that i,5 > 1. Let G be a 2-
connected graph. If G does not contain any of graphs L~'(B; ;) as a subgraph
(not necessarily induced), then h(G) < #4*2,

Corollary 4. Let G be a 2-connected graph such that G does not contain any
of graphs L™'(B;, j), where i,j are positive integers such that ¢ + j = 4. Then
h(G) < 3.

The following lemma gives an upper bound on the hamiltonian index in terms of

the preimage of a line graph N; j«.

Lemma 8. Let G be a 2-connected graph with h(G) > 3 and let i,j,k be
positive integers at least one. Then G contains a graph L' (N ;) as an induced
subgraph, where i + j + k > 3h(G) - 5.

Proof. Let G be a 2-connected graph with hamiltonian index h(G). Since

G is 2-connected, every branch-bond of G contains at least two branches. By

Theorem B, there is a branch-bond S of G such that S contains an odd number

of branches and {(S) > h(G) — 1. Since h(G) > 2, I(S) > 2. By the definition

of a branch-bond, there are exactly two components of the graph G — S. Let

G), G2 denote the components of G — S. Let by, bz, bs denote a triple of branches

of S, B = {b1, b2, b3}, let z; denote the end-vertex of b; in Gi, y; the end-vertex

of b; in G2, i = 1,2,3. Let g; = |V(G;) N (V(b1)UV(b2) UV (B3))], 5 = 1,2.

Choose branches by, ba, b3 in such a way that g1 + g2 is maximum. The following
possibilities can occur:

Case 1: g1 = 3 and g2 = 3. Since G, is connected, there is a z,z2-path P

in G; and x7,z3-path P; in G2. Choose Py and P, shortest possible.

Then P, does not contain z3 or P2 does not contain z;. Up to symmetry

suppose that P does not contain z3. If Pz does not contain zi, then the

triple of paths B, = x2, P1,1,b1, B2 = z2,b2,y2, Ba = x2, P2, z3,b3,3

forms a subgraph of G isomorphic to L'l(Nh(a)_l,h(c,-)_g,,,(c)_l), since

¥1, Y2, ys are mutually different. Now suppose that P2 contains vertex

178



z1. Then there is a path P; in G, a subpath of P,, such that Ps does
not contain z2. Hence we switch vertices z; and 2, y1 and y2, branches
b: and b2, and we are in the previous possibility.

Case 2: g1 = 2,92 = 3 or g1 = 3,92 = 2. Up to symmetry suppose that g; = 2
and g2 = 3. Two branches of B have a common end-vertex in G, say
branches b, and b;. Hence z1 = z2. Since G, is connected, there is
a z1,z3-path P in G;. Consider the following paths B1 = z1,b1,y1,
Bz = z1,b2,y2 and B3 = z1, P,z3,b3,ys. Then the triple B, B;, Ba
forms a subgraphs of G isomorphic to L™!(Ny(gy-2,n(G)~2,h(G)~1)-

Case 3: g1 = 2 and g2 = 2. Two branches of B, say b; and bz, have a common

end-vertex in Gy. Thus 1 = 2. Similarly, there are exactly two end-
vertices of the branches of B in G2. Since G, is connected, there is a
z1,z3-path P in G). First we suppose that ¥ = yo. Since dg(ys) > 3,
there is a vertex z € [V(G)\ V(G1) \ V(B)]. The triple of paths B, =
z1,b1,41, B2 = z1,b2 — 31, Bs = z1, P,23,b3 forms a subgraph of G
isomorphic to L™*(Ny(c)—2,n(G)=3.0(G) )-
Now suppose that y1 # y2. Since g2 = 2, y1 = y3 or yo = y3. Up to
symmetry suppose that y2 = y3. Since dg(y1) > 3, there is a vertex
z € [V(G)\ V(G1) \ V(B)]. Then the triple of paths By = z1,b1, 1, 2,
B = z,,b2,y3, B3 = z1, P, 3, b3 — y3 forms a subgraph of G isomorphic
to L™} (Nh(G)y-1,0(G)~2,h(G)-2)-

Case 4: g1 = 1,92 = 3 or g1 = 3,92 = 1. Up to symmetry suppose that g1 = 1
and g2 = 3. First we suppose that |V(G1)| > 1. Then at least one vertex
of G different from z,, say vertex u, is an end-vertex of some branch of
S, since otherwise G is not 2-connected. But then the branches b, b2, b3
can be chosen in such a way that g1 > 2 and g2 > 2. Hence we are in
one of the previous three cases.

Hence |V(G1)| = 1. This yields that z; = z2 = z3. Suppose that
|[V(G2)| = 3. By Lemma 4, each branch of S has length at least h(G)+1.
Then the subgraph of G consisting of the paths By = z;,b1,31, B2 =
z1, b2, y2, Bs = x4, b3, y3 contains L’I(Nh(c)‘h(a).h(c)).

Now suppose that |[V{(G2) > 3. Then there is a vertex z € V(G2)\ V(B)
such that z is a neighbour of at least one of the vertices y;,y2, 3. Up to
symmetry suppose that ¢z € E(G). Then the following triple of paths
By = z1,b1,1, 2, B2 = 1, b2, y2, Bz = 1, b3, y3 forms a subgraph of G
isomorphic to L—](Nh(G)—l,h(G)—z,h(G)-2)-

Case 5: g1 = 1,92 =2 or g1 = 2,92 = 1. Up to symmetry suppose that g; = 1
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and g2 = 2. Suppose that |V(G1)| > 1. Since G is 2-connected, at least
one of the vertices of G different from z,, say vertex u, is an end-vertex
of some branch of S. But then the branches b, b2, bs can be chosen in
such a way that there are at least two different end-vertices of the triple
of branches in G1 and at least two different end-vertices of the triple of
branches in G2. Hence we are in one of the first three cases.

Hence |V(G1) = 1. Since g2 = 2, two branches of B have a common
end-vertex in G2, say branches by,b2. Thus y1 = y2. Since I(S) > 2,
z) € V(G2). The following possibilities can occur:

- |[V(G2)| = 2. By Lemma 2, every branch of S has length at
least h(G) + 1. The triple of paths By = z1,bi,%1, B2 =
z1,b2 — y2, B3 = 11, b3, y3 forms a subgraph of G isomorphic to
L™ (Nw(6),h(6)-1,a(G))-

- |V(G2)| > 2. First we suppose that every vertex of V(G2) \

{y1,ys} is adjacent to both vertices ¥, and y3. Then, by Lemma
3, every branch of S has length at least A(G) + 1. The triple of
paths By = z1,b1,y1, B2 = z1,b2 — y2, Ba = x1,b3,y3 forms a
subgraphs of G isomorphic to L™ (Ni(g),n(c)-1,h(G))-
Finally we suppose that |V(G2)| > 2 and there is a vertex
z € V(G2) \ {v1,ys} such that z is adjacent to exactly one of
the vertices y1,y3. Suppose that y3z ¢ E(G). Since de(ys) > 3,
there is a vertex 2’ € V(G) \ V(B) different from z such that
2z'ys € E(G). The triple of paths By = z1,b,41,2, B2 =
x1,by — y2, Ba = z1,ba,ys, 2’ forms a subgraph of G isomor-
phic to L™} (Ni(g)-1,n(6)-3.1(G)-1)- Hence we suppose that
yaz € E(G), but y1z ¢ E(G). By maximality of gz, there
is no vertex y € V(G2) such that y is an end-vertex of some
branch of S. Using this fact and since G is 2-connected, there is
a z,y1-path Q in G such that Q does not contain ys. Since
1z € E(G), Q has length at least two. Consider the fol-
lowing paths B: = z1,b1,1,Q.2, B2 = z1,b2 — y2, Bs =
x1,b3,y3. The subgraph consisting of By, Bz, B3 is isomorphic
to L™ (Nh(e),m(6)-3.n(6)-2)-

Case 6: g; =1 and g2 = 1. Clearly |V(G1)| =1 and |V(G2)| = 1. By Lemma
1, every branch of S has length at least h(G) + 1. Then the triple of
paths By = z1,b1,y1, B2 = z1,b2—y2, B3 = z1, bs —y3 forms a subgraph
of G isomorphic to L™ (Nr(G),a(G)-1,h(G)-1)- [ ]
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By Corollary 1, if G is a 2-connected K3, E-free graph, then h(G) < 1. Now
we consider a 2-connected graph H such that H does not contain L™!(E) as a
subgraph. Then L(H) is 2-connected and K\ 3, E-free, implying that h(H) < 2.
By Theorem C, if G is 2-connected K 3, N-free, then h(G) < 1. Now we consider
a 2-connected graph H with no L™!(N) as a subgraph. Then L(H) is 2-connected
and Ki,3, N-free. This implies that h(H) < 2.

As an immediate consequence of Lemma 7, Theorem C and Corollary 1 we obtain
the following theorem.

Theorem 4. Let i,j be positive integers such that i,j,k > 1. Let G be a 2-
connected graph. If G does not contain any of graphs L™Y(N; ;x) as a subgraph
(not necessarily induced), then h(G) < “titkt5,

Corollary 5. Let G be a 2-connected graph such that G does not contain any
of graphs L='(N; j ), where i, j, k are positive integers such that i + j + k = 4.
Then h(G) < 3.

3 Sharpness

Now we consider the following example. Let k be a positive integer, let G be
a graph consisting of paths Py, P2, P; each of length k + 1 with common end-
vertices z and y. By Lemma 1, h(G) = k and G contains a path of length 3k+1, a
graph L' (Z3k_1), a graph L™!(Bk_1,2¢—1), and a graph L™!(Nk_,,:;) for each
positive integers ¢,j with i + j =2k - 1.

Replacing any of the paths P;, P, P3 with a shorter one we obtain a graph H
such that h(H) < h(G) by Lemma 1. Hence the graph G is the graph with
minimum number of vertices such that h(G) = k and G is 2-connected, and the
following conjectures could be true.

Conjecture 1. Let k > 1 be a positive integer, let G be a 2-connected graph
such that G does not contain a subgraph isomorphic to L™'(Pi). Then h(G) <

k-1

3

Conjecture 2. Let k > 1 be a positive integer, let G be a 2-connected graph

such that G does not contain a subgraph isomorphic to L™'(Zx). Then h(G) <
ktl
.
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Conjecture 3. Let i, be positive integers at least one, let G be a 2-connected
graph such that G does not contain any of subgraphs isomorphic to L=Y(Bi;)-
Then h(G) < ‘—t?:—z

Conjecture 4. Let i, j, k be positive integers at least one, let G be a 2-connected
graph such that G does not contain any of subgraphs isomorphic to L™ (Nj j k).
Then h(G) < Hitki2

Note that, for cases Ps, Z2, Bi,2 and Ni,1,1, the previous conjectures holds by
Theorem C.
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