# Forbidden subgraphs and the hamiltonian index of a 2-connected graph

## Přemysl Holub <sup>1</sup>

#### Abstract.

Hamiltonian index of a graph G is the smallest positive integer k, for which the k-th iterated line graph  $L^k(G)$  is hamiltonian. Bedrossian characterized all pairs of forbidden induced subgraphs that imply hamiltonicity in 2-connected graphs. In this paper, some upper bounds on the hamiltonian index of a 2-connected graph in terms of forbidden not necessarily induced subgraphs are presented.

**Keywords:** Forbidden subgraphs, Hamiltonicity, Hamiltonian index

AMS Subject Classification (2000): 05C45, 05C35

## 1 Introduction

In this paper, we consider only finite undirected graphs without loops and multiple edges. We use [2] for terminology and notations not defined here. For  $x,y\in V(G)$ , an x,y-path is a path between vertices x and y in G. A hamiltonian cycle is a cycle in G on |V(G)| vertices. A graph G is said to be hamiltonian, if c(G)=|V(G)|. For a nonempty set  $A\subseteq V(G)$ , the induced subgraph on A in G is denoted by  $\langle A\rangle_G$ . We denote by  $P_i$  the path on i vertices and we say that the length of a path P is the number of edges of P. Similarly we denote  $C_i$  the cycle on i vertices. For any  $A\subset V(G)$ , the graph G-A stands for  $\langle V(G)\setminus A\rangle_G$ . For a connected graph H, a graph G is said to be H-free, if G does not contain a copy of H as an induced subgraph; the graph H will be also referred to in this context as a forbidden subgraph. The graph  $K_{1,3}$  will be called the claw and in

<sup>&</sup>lt;sup>1</sup>Department of Mathematics, University of West Bohemia, and Institute for Theoretical Computer Science (ITI), Charles University, Univerzitni 22, 306 14 Pilsen, Czech Republic, e-mail: holubpre@kma.zcu.cz. Research Supported by Grant No. 1M0545 of the Czech Ministry of Education.

the special case  $H = K_{1,3}$  we say that G is *claw-free*. List of frequently used forbidden subgraphs is shown in Fig. 1.



Fig. 1

The graphs  $Z_2$ , B and N were generalized in [4] as follows. We denote by:

Z<sub>i</sub>, (i ≥ 1) - the graph which is obtained by identifying a vertex of a triangle with an end-vertex of a path of length i
B<sub>i,j</sub>, (i, j ≥ 1) - the generalized (i, j)-bull, i.e., the graph which is obtained by identifying two distinct vertices of a triangle with an end-vertex of one of two vertex-disjoint paths of lengths i, j
N<sub>i,j,k</sub>, (i, j, k ≥ 1) - the generalized (i, j, k)-net, i.e., the graph which is obtained by identifying each vertex of a triangle with an end-

One of the motivations for studying hamiltonicity in the class of line graphs was given by Harary and Nash-Williams in [7]. A dominating closed trail (DCT) in a graph G is a connected eulerian subgraph F of G such that  $u \in V(F)$  or  $v \in V(F)$  for every edge  $uv \in E(G)$ . Note that the trivial DCT (consisting of

vertex of one of three vertex-disjoint paths of lengths i, j, k.

**Theorem A** [7]. Let G be a graph with at least three edges. Then L(G) is hamiltonian if and only if G contains a DCT.

only one vertex) is allowed.

It is easy to see that the line graph of a hamiltonian graph is also hamiltonian. The concept of the hamiltonian index of a graph was introduced by Chartrand in [6].

Let G be a graph and let k be a positive integer. The k-th iterated line graph of G, denoted by  $L^k(G)$ , is defined recursively in the following way:

$$L^{0}(G) = G, \quad L^{k}(G) = L\left(L^{k-1}(G)\right).$$

The hamiltonian index of a graph G, denoted by h(G), is the smallest number k such that  $L^k(G)$  is hamiltonian. Chartrand [6] showed that for every connected graph that is not a path the hamiltonian index exists.

An induced path P in G such that both end vertices of P have degree different from two and all internal vertices of P (if any) have degree exactly two in G, is called a branch of G. Let B(G) denote the set of all branches of G. Let  $S \subset B(G)$ and  $G_S = (V_S, E_S)$  be the graph with  $V_S = V(G)$  and  $E_S = E(G) - E(S)$ . Then G-S denotes the subgraph obtained from  $G_S$  by deleting all internal vertices of all branches of S. A subset S of G is called a branch cut if G-S has more components than G. A minimal branch cut is called a branch-bond. It is easy to see that, for a connected graph G, a subset S of G is a branch-bond if and only if G - S has exactly two components. We denote by BB(G) the set of all branch-bonds of G. A branch-bond is called odd if it consists of an odd number of branches. The length of a branch-bond S, denoted by l(S), is the length of a shortest branch of S. Let  $BB_1(G)$  denote the set of all branch-bonds S such that |S| = 1 and the only branch b of S has one end-vertex of degree 1, let  $BB_2(G)$ denote the set of all branch-bonds S such that |S| = 1 and the only branch b of S has both end-vertices of degree at least 3 and let  $BB_3(G)$  denote the set of all odd branch-bonds consisting of at least three branches. Now we define, for i = 1, 2, 3,

$$h_i(G) = \left\{ egin{array}{ll} \max\{l(S)|\, S \in BB_i(G)\} & \mbox{ if } BB_i(G) 
eq \emptyset, \\ 0 & \mbox{ otherwise.} \end{array} 
ight.$$

Xiong and Wu [3] proved the following bound for the hamiltonian index of a graph.

Theorem B [3]. Let G be a 2-connected graph. Then

$$h_3(G) - 1 \le h(G) \le h_3(G) + 1.$$

For studying hamiltonian properties in terms of forbidden induced subgraphs we give the following motivation.

**Theorem C** [1]. Let X and Y be connected graphs with  $X, Y \neq P_3$ , and let G be a 2-connected graph that is not a cycle. Then, G being X, Y-free implies G is hamiltonian if and only if (up to symmetry)  $X = K_{1,3}$  and  $Y \in \{P_4, P_5, P_6, C_3, Z_1, Z_2, B, N, W\}$ .

Let \$\footnote{g}\$ denote the class of graphs shown in Fig. 2 (where elliptical parts represent cliques of order at least 3).



Fig. 2

Brousek, Ryjáček and Schiermeyer in [5] proved the following:

**Theorem D** [5]. Let G be 2-connected graph. If G is  $K_{1,3}$ , E-free graph, then G is hamiltonian or  $G \in \mathcal{F}$ .

Clearly, if  $G \in \mathfrak{F}$ , then G has a DCT. Hence we obtain the following consequence.

Corollary 1. If G is a 2-connected  $K_{1,3}$ , E-free graph, then G has a DCT, i.e.,  $h(G) \leq 1$ .

In this paper we present upper bounds for the hamiltonian index of a 2-connected graph in terms of forbidden, not necessarily induced graphs. We will use the following notation. We denote  $L^{-1}(G)$  a graph H such that L(H) = G, where G is a line graph.

Note that the line graph of a graph is claw-free, the line graph of a 2-connected graph is 2-connected, and if G does not contain a connected graph X as a subgraph (not necessarily induced), then L(G) is L(X)-free.

# 2 Upper bounds for hamiltonian index in terms of forbidden subgraphs

Let G be a graph and H a subgraph of G. We denote by G - H a graph G' which is obtained from G by deleting all edges of H and subsequently deleting all isolated vertices in the resulting graph.

Some auxiliary statements will be shown. Let  $\mathcal{P}$  denote a set of paths. Then  $l(\mathcal{P})$  stands for the length of a shortest path of  $\mathcal{P}$ .

Lemma 1. Let x, y be a pair of nonadjacent vertices. Let  $k \geq 2$  be an odd integer. Let G be a graph consisting of the vertices x, y and k vertex-disjoint x, y-paths  $P_1, \ldots, P_k$ . Let  $\mathcal{P} = \{P_1, \ldots, P_k\}$ . If  $l(\mathcal{P}) > 1$ , then  $h(G) = l(\mathcal{P}) - 1$ .

**Proof.** Using the fact that the line graph operator decreases the length of any branch of G by one,  $L^{l(\mathcal{P})-2}(G)$  has a DCT, implying that  $h(G) \leq l(\mathcal{P}) - 1$ . The equality follows from the following fact. The graph  $L^{l(\mathcal{P})-2}(G)$  consists of two vertex disjoint graphs joined by three vertex disjoint paths  $\mathcal{P}'$  with  $l(\mathcal{P}') = 2$ . And obviously this graph is not hamiltonian.

**Lemma 2.** Let  $k_1, k_2 \geq 2$  be integers such that  $k = k_1 + k_2$  is odd. Let G be a graph consisting of vertices  $x, y_1, y_2$  such that  $y_1 y_2 \in E(G)$ , x is not adjacent to any of the vertices  $y_1, y_2, G$  contains k vertex-disjoint paths between x and one of the vertices  $y_1, y_2$  such that there are  $k_1, x, y_1$ -paths  $P_1, \ldots, P_{k_1}$  and  $k_2, x, y_2$ -paths  $P_{k_1+1}, \ldots, P_k$ . Let  $\mathcal{P} = \{P_1, \ldots, P_k\}$ . If  $l(\mathcal{P}) > 1$ , then  $h(G) \leq l(\mathcal{P}) - 1$ .

**Proof.** Let G be a graph satisfying the hypothesis. Let P be a shortest path of  $P_1, \ldots, P_k$ . The path P has length  $l(\mathcal{P})$ . Up to symmetry suppose that P is an  $x, y_1$ -path. We prove this lemma by induction on  $l(\mathcal{P})$ .

- i) Suppose that  $l(\mathcal{P}) = 2$ . If  $k_1$  is odd, then the graph  $H = G P y_1 y_2$  is a DCT in G. If  $k_1$  is even, then the graph H = G P is a DCT in G. Hence G has a DCT, implying that  $h(G) \leq 1$  by Theorem A.
- ii) Suppose that h(G) ≤ l-2 holds for each graph with the given structure, for which l(P) = l-1. Let G' be a graph obtained from G by replacing P by a path P' of length l-1. Hence h(G') ≤ l-2 by the induction hypothesis. This yields that L<sup>l-2</sup>(G') is hamiltonian. Now we denote by G" the graph obtained from L<sup>l-2</sup>(G') by replacing the edge, which corresponds to P' in G', by a path of length two. Clearly G" = L<sup>l-2</sup>(G) and L<sup>l-2</sup>(G) has a DCT, implying that h(G) ≤ l-1.

**Lemma 3.** Let  $k_1, k_2 \geq 2$  be integers such that  $k = k_1 + k_2$  is odd. Let G be a graph consisting of vertices  $x, y_1, y_2$  such that x is not adjacent to any of the vertices  $y_1, y_2$ , G contains k vertex-disjoint paths between x and one of the

vertices  $y_1, y_2$  such that there are  $k_1, x, y_1$ -paths  $P_1, \ldots, P_{k_1}$  and  $k_2, x, y_2$ -paths  $P_{k_1+1}, \ldots, P_k$ . Moreover there are l vertices adjacent to both vertices  $y_1, y_2$  but not to  $x, l \in \mathbb{N}$ . Let  $\mathcal{P} = \{P_1, \ldots, P_k\}$ . If  $l(\mathcal{P}) > 1$ , then  $h(G) \leq l(\mathcal{P}) - 1$ .

**Proof.** Let G be a graph satisfying the hypothesis. Let P be a shortest path of  $P_1, \ldots, P_k$ . The path P has length  $l(\mathcal{P})$ . Up to symmetry suppose that P is an  $x, y_1$ -path. Let z denote any of the vertices adjacent to both vertices  $y_1, y_2$  but not to x and Q the path induced by  $\{y_1, z, y_2\}$ . We prove this lemma by induction on  $l(\mathcal{P})$ .

- i) Suppose that  $l(\mathcal{P}) = 2$ . If  $k_1$  is odd, then the graph  $H = \mathcal{P} P$  is a DCT in G. If  $k_1$  is even, then the graph  $H = (\mathcal{P} P) \cup Q$  is a DCT in G. Hence G has a DCT, implying that  $h(G) \leq 1$  by Theorem A.
- ii) Suppose that  $h(G) \leq l-2$  holds for each graph with the given structure, for which  $l(\mathcal{P}) = l-1$ . Let G' be a graph obtained from G by replacing P by a path P' of length l-1. Hence  $h(G') \leq l-2$  by the induction hypothesis. Thus  $L^{l-2}(G')$  is hamiltonian. Now we denote by G'' the graph obtained from  $L^{l-2}(G')$  by replacing the edge, which corresponds to P' in G', by a path of length two. Clearly  $G'' = L^{l-2}(G)$  and  $L^{l-2}(G)$  has a DCT, implying that  $h(G) \leq l-1$ .

Lemma 4. Let  $k_1, k_2, k_3 \ge 1$  be integers such that  $k = k_1 + k_2 + k_3$  is an odd number. Let G be a graph consisting of vertices  $x, y_1, y_2, y_3$  such that  $y_1y_2 \in E(G)$ ,  $y_2y_3 \in E(G)$  but x is not adjacent to any of the vertices  $y_1, y_2, y_3, G$  contains k vertex-disjoint paths between x and one of the vertices  $y_1, y_2, y_3$  such that there is  $k_1 x, y_1$ -paths  $P_1, \ldots, P_{k_1}, k_2 x, y_2$ -paths  $P_{k_1+1}, \ldots, P_{k_1+k_2}$  and  $k_3 xy_3$ -paths  $P_{k_1+k_2+1}, \ldots, P_k$ . Let  $\mathcal{P} = \{P_1, \ldots, P_k\}$ . If  $l(\mathcal{P}) > 1$ , then  $h(G) \le l(\mathcal{P}) - 1$ .

**Proof.** Let G be a graph satisfying the hypothesis. Let P be a shortest path of  $P_1, \ldots, P_k$ . The path P has length l(P). We prove this lemma by induction on l(P).

i) Suppose that  $l(\mathcal{P}) = 2$ . First suppose that P is an  $x, y_2$ -path. If all the numbers  $k_1, k_2, k_3$  are odd, then the graph  $(\mathcal{P} - P) \cup \{y_1y_2, y_1y_3\}$  is a DCT in G. If  $k_2$  is odd and both numbers  $k_1, k_3$  are even, then the graph  $\mathcal{P} - P$  is a DCT in G. Now suppose that  $k_2$  is even. Since k is odd, exactly one of the numbers  $k_1, k_3$ , say  $k_1$ , is odd. Then  $(\mathcal{P} - P) \cup \{y_1y_2\}$ 

is a DCT in G.

Now suppose that P is not an  $x, y_2$ -path. Up to symmetry suppose that P is an  $x, y_1$ -path. If all the numbers  $k_1, k_2, k_3$  are odd, then the graph  $(\mathcal{P} - P) \cup \{y_2y_3\}$  is a DCT in G. If  $k_1$  is odd and both numbers  $k_2, k_3$  are even, then the graph  $\mathcal{P} - P$  is a DCT in G. Now suppose that  $k_1$  is even. Since k is odd, exactly one of the numbers  $k_2, k_3$  is odd. If  $k_2$  is odd, then the graph  $(\mathcal{P} - P) \cup \{y_1y_2\}$  is a DCT in G. If  $k_3$  is odd, then the graph  $(\mathcal{P} - P) \cup \{y_1y_2, y_2y_3\}$  is a DCT in G. Hence, in any possibility, G has a DCT, implying that  $h(G) \leq 1$  by Theorem A.

ii) Suppose that  $h(G) \leq l-2$  holds for each graph with the given structure, for which  $l(\mathcal{P}) = l-1$ . Let G' be a graph obtained from G by replacing P by a path P' of length l-1. Hence  $h(G') \leq l-2$  by the induction hypothesis. Therefore  $L^{l-2}(G')$  is hamiltonian. Now we denote by G'' the graph obtained from  $L^{l-2}(G')$  by replacing the edge, which corresponds to P' in G', by a path of length two. Clearly  $G'' = L^{l-2}(G)$  and  $L^{l-2}(G)$  has a DCT, implying that  $h(G) \leq l-1$ .

The following lemma gives a lower bound for the length of a path in a graph G involving the hamiltonian index of G.

**Lemma 5.** Let G be a 2-connected graph with h(G) > 2. Then G contains a path of length at least 3h(G) - 2.

**Proof.** Let G be a 2-connected graph with hamiltonian index h(G). Since G is 2-connected, every branch-bond of G has at least two branches. By Theorem B, there is a branch-bond S of G such that S contains an odd number of branches and each branch of S has length at least h(G) - 1. Since h(G) > 2,  $l(S) \ge 2$ . By the definition of a branch-bond, there are exactly two components of the graph G - S. Let  $G_1$ ,  $G_2$  be the components of G - S. Let  $b_1, b_2, b_3$  be a triple of branches of S,  $B = \{b_1, b_2, b_3\}$ , let  $x_i$  denote the end-vertex of  $b_i$  in  $G_1$ ,  $y_i$  the end-vertex of  $b_i$  in  $G_2$ , i = 1, 2, 3. Let  $g_1 = |V(G_1) \cap (V(b_1) \cup V(b_2) \cup V(b_3))|$  and  $g_2 = |V(G_2) \cap (V(b_1) \cup V(b_2) \cup V(b_3))|$ . Choose branches  $b_1, b_2, b_3$  with maximum  $g_1 + g_2$ . Consider the following cases:

Case 1:  $g_1 = 3$  and  $g_2 = 3$ . Since  $G_1$  is connected, there is a  $x_1, x_2$ -path  $P_1$  in  $G_1$  and a  $x_1, x_3$ -path  $P_2$  in  $G_1$ . Choose  $P_1$ ,  $P_2$  shortest possible. By minimality of the paths  $P_1$  and  $P_2$ ,  $P_1$  does not contain  $x_3$  or  $P_2$  does not contain  $x_2$ . Up to symmetry suppose that  $P_1$  does not contain  $x_3$ .

Since  $G_2$  is connected, there is a  $y_2, y_3$ -path Q in  $G_2$ . Let y' denote the neighbour of  $y_1$  on  $b_1$ . Then the path  $y', b_1, x_1, P_1, x_2, b_2, y_2, Q, y_3, b_3, x_3$  has length at least 3h(G) - 2.

Case 2:  $g_1 = 2$ ,  $g_2 = 3$  or  $g_1 = 3$ ,  $g_2 = 2$ . By symmetry suppose that  $g_1 = 2$  and  $g_2 = 3$ . Two of the branches of B have a common end-vertex in  $G_1$ , say branches  $b_1$ ,  $b_2$ . Hence  $x_1 = x_2$ . Since  $G_2$  is connected, there is a  $y_2, y_3$ -path Q in  $G_2$ . If  $y_1 \notin V(Q)$ , then the path  $y_1, b_1, x_1, b_2, y_2, Q, y_3, b_3, x_3$  is a path of length at least 3h(G) - 2 in G. Now suppose that  $y_1 \in V(Q)$ . Hence Q has length at least two. Then the path  $x_3, b_3, y_3, Q, y_2, b_2, x_1, b_1 - y_1$  has length at least 3h(G) - 2.

Case 3:  $g_1=2$  and  $g_2=2$ . Since  $g_1=2$ , two of the branches of B have a common end-vertex in  $G_1$ , say branches  $b_1,b_2$ . Thus  $x_1=x_2$ . Since  $d_G(x_3)\geq 3$ , there is a vertex  $z\in V(G)$  such that  $z\not\in V(b_3),\ z\neq x_1$ . Since  $l(S)>1,\ z\not\in V(G_2)$ . Since  $g_2=2,\ y_1\neq y_3$  or  $y_2\neq y_3$ . Up to symmetry suppose that  $y_1\neq y_3$ . Since  $G_2$  is connected, there is a  $y_1,y_3$ -path Q in  $G_2$ . Then the path  $z,x_3,b_3,y_3,Q,y_1,b_1,x_1,b_2-y_2$  has length at least 3h(G)-2.

Case 4:  $g_1 = 1$ ,  $g_2 = 3$  or  $g_1 = 3$ ,  $g_2 = 1$ . Up to symmetry suppose that  $g_1 = 1$  and  $g_2 = 3$ . Suppose that  $|V(G_1)| > 1$ . Then at least one of the vertices of  $G_1$  different from  $x_1$ , say vertex u, is an end-vertex of some branch of S, since otherwise G is not 2-connected. But then the branches  $b_1$ ,  $b_2$ ,  $b_3$  can be chosen in such a way that there are at least two different end-vertices of the triple of branches in  $G_1$  and at least two different end-vertices of the triple of branches in  $G_2$ . Hence we are in one of the previous three cases.

Hence |V(G)|=1. Let x' denote the neighbour of  $x_1$  on  $b_1$ . Since l(S)>1,  $x' \notin V(G_2)$ . Now we suppose that  $|V(G_2)|=3$ . By Lemma 4,  $l(S)\geq h(G)+1$ . Since  $G_2$  is connected, there is a  $y_1,y_2$ -path Q is  $G_2$ . Then the path  $x',b_1,y_1,Q,y_2,b_2,x_2,b_3-y_3$  has length at least 3h(G)-2. Now suppose that  $|V(G_3)|>3$ . There is a vertex z in  $G_2$  different from  $y_1,y_2,y_3$  such that z is a neighbour of at least one of the vertices  $y_1,y_2,y_3$ . Up to symmetry suppose that  $zy_1\in E(G)$ . Since  $G_2$  is connected, there is a  $y_2,y_3$ -path Q in  $G_2$ .

Subcase 4.1: There is a path Q in  $G_2$  such that Q does not contain  $y_1$ . If  $z \notin V(Q)$ , then the path  $z, y_1, b_1, x_1, b_2, y_2, Q, y_3, b_3 - x_3$  has length at least 3h(G) - 2. If Q contains z but not  $y_1$ , then the path  $y_1, b_1, x_1, b_2, y_2, Q, y_3, b_3 - x_3$  has length at least 3h(G) - 2 since Q has length at least two.

Subcase 4.2: Every  $y_2, y_3$ -path Q contains vertex  $y_1$ . Choose Q shortest possible. Since  $d_G(y_3) \geq 3$  and  $y_2y_3 \notin E(G)$ , there is a vertex z' different from  $y_1, y_2$  in G such that  $z' \notin V(b_3)$ . By minimality of Q there is a  $y_1, y_2$ -path  $Q_1$  in  $G_2$  such that  $Q_1$  does not contain  $y_3$ . Clearly  $z' \notin V(Q_1)$ , since otherwise there is a  $y_2, y_3$ -path which does not contain  $y_1$ . Then the path  $z', y_3, b_3, x_3, b_2, y_2, Q, y_1, b_1 - x_1$  has length at least 3h(G) - 2.

Case 5:  $g_1 = 1$ ,  $g_2 = 2$  or  $g_1 = 2$ ,  $g_2 = 1$ . Up to symmetry suppose that  $g_1 = 1$  and  $g_2 = 2$ . First we suppose that  $|V(G_1)| > 1$ . Since G is 2-connected, at least one of the vertices of  $G_1$  different from  $x_1$ , say vertex u, is an end-vertex of some branch of S. But then the branches  $b_1$ ,  $b_2$ ,  $b_3$  can be chosen in such a way that there are at least two different end-vertices of the triple of branches in  $G_1$  and at least two different end-vertices of the triple of branches in  $G_2$ . Hence we are in one of the first three cases.

Hence  $|V(G_1)| = 1$ . Since  $g_2 = 2$ , two of the branches of B have a common end-vertex in  $G_2$ , say branches  $b_1, b_2$ . Hence  $y_1 = y_2$ . Let x' denote the neighbour of  $x_1$  on  $b_1$ . Clearly  $x' \notin V(G_2)$  since l(S) > 1. Suppose that  $|V(G_2)| = 2$ . Then, by Lemma 2,  $l(S) \ge h(G) + 1$ . Then the path  $x', b_1, y_1, b_2, x_2, b_3, y_3$  has length at least 3h(G) - 2.

Now we suppose that  $|V(G_2| > 2$  and each vertex  $z \in V(G_2) \setminus \{y_1, y_3\}$  is adjacent to both vertices  $y_1, y_3$ . By Lemma 3, each branch of S has length at least h(G) + 1. Then the path  $x', b_1, y_1, b_2, x_2, b_3, y_3$  has length at least 3h(G) - 2.

Finally we suppose that  $|V(G_2| > 2$  and there is a vertex  $z \in V(G_2) \setminus \{y_1, y_3\}$  such that z is adjacent to exactly one of the vertices  $y_1, y_3$ , say  $y_3z \notin E(G)$ . (The case  $y_1z \notin E(G)$  can be shown analogously). By maximality of  $g_2$ , there is no vertex  $y \in V(G_2) \setminus \{y_1, y_3\}$  such that y is an end-vertex of some branch of S. Using this fact and since G is 2-connected, there is a  $z, y_3$ -path Q in  $G_2$  such that Q does not contain  $y_1$ . Since  $y_3z \notin E(G)$ , the path Q has length at least two. Then the path  $g_3 = x_3, g_3, g_3, g_4, g_4, g_5, g_5, g_7$  has length at least  $g_3 = g_5$  has length at least  $g_3 = g_5$ .

Case 6:  $g_1 = 1$  and  $g_2 = 1$ . Clearly  $|V(G_1)| = |V(G_2)| = 1$ . Then, by Lemma 1, each branch of S has length at least h(G) + 1. Then the path  $b_1 - x_1, y_1, b_2, x_2, b_3 - y_3$  has length at least 3h(G) - 2.

By Theorem C, if G is 2-connected  $K_{1,3}$ ,  $P_6$ -free, then h(G) < 1. Now we consider a 2-connected graph H with no  $P_7$  as a subgraph. Then L(H) is 2-connected and

 $K_{1,3}$ ,  $P_6$ -free. This implies that h(H) < 2. As an immediate consequence of the previous lemma we obtain the following upper bound for the hamiltonian index of a graph in terms of maximum path length.

**Theorem 1.** Let k be a positive integer, let G be a 2-connected graph such that G does not contain a path of length k. Then  $h(G) < \frac{k+2}{3}$ .

Corollary 2. Let G be a 2-connected graph which does not contain  $L^{-1}(P_7)$ . Then h(G) < 3.

The following lemma is an analogue to Lemma 5.

**Lemma 6.** Let G be a 2-connected graph with h(G) > 2. Then G contains a graph  $L^{-1}(Z_{2h(G)-3})$  as an induced subgraph.

**Proof.** Let G be a 2-connected graph with hamiltonian index h(G). Since G is 2-connected, every branch-bond of G has at least two branches. By Theorem B, there is a branch-bond S of G such that S contains an odd number of branches and each branch of S has length at least h(G) - 1. Since h(G) > 2,  $l(S) \ge 2$ . By the definition of a branch-bond, there are exactly two components of the graph G - S. Let  $G_1$ ,  $G_2$  be the components of G - S. Let  $b_1, b_2, b_3$  be a triple of branches of S,  $B = \{b_1, b_2, b_3\}$ , let  $x_i$  denote the end-vertex of  $b_i$  in  $G_1$ ,  $y_i$  the end-vertex of  $b_i$  in  $G_2$ , i = 1, 2, 3. Let  $g_1 = |V(G_1) \cap (V(b_1) \cup V(b_2) \cup V(b_3))|$  and  $g_2 = |V(G_2) \cap (V(b_1) \cup V(b_2) \cup V(b_3))|$ . Choose branches  $b_1, b_2, b_3$  in such a way that  $g_1 + g_2$  is maximum. Consider the following cases:

Case 1:  $g_1 = 3$  and  $g_2 = 3$ . Since  $G_2$  is connected, there is a  $y_1, y_2$ -path  $P_1$  in  $G_2$ . Since  $d_G(x_2) \geq 3$ , there are at least two neighbours x', x'' of  $x_2$  such that none of them belongs to  $b_2$  nor  $V(G_2)$ . Then the graph  $x_2x', x_2x'', b_2, P_1, b_1 - x_1$  is isomorphic to  $L^{-1}(Z_{2h(G)-3})$ .

Case 2:  $g_1 = 2$ ,  $g_2 = 3$  or  $g_1 = 3$ ,  $g_2 = 2$ . Up to symmetry suppose that  $g_1 = 2$  and  $g_2 = 3$ . Two of the branches of B have exactly one end-vertex in  $G_1$ , say branches  $b_1$  and  $b_2$ . Hence  $x_1 = x_2$ . Since  $G_2$  is connected, there is a  $y_2, y_3$ -path Q in  $G_2$ . Since  $d_G(x_2) \ge 3$ , there are at least two neighbours x', x'' of  $x_1$  in G such that none of them belongs to  $b_2$ . Since h(G) > 2,  $x' \notin V(G_2)$  and  $x'' \notin V(G_2)$ . Then the graph  $x_1x', x_1x'', b_2, Q, b_3 - x_3$  is isomorphic to  $L^{-1}(Z_{2h(G)-3})$ .

Case 3:  $g_1 = 2$  and  $g_2 = 2$ . Since  $g_1 = 2$ , two of the branches of B, say  $b_1$ ,

 $b_2$ , have a common end-vertex in  $G_1$ . Hence  $x_1 = x_2$ . Since  $g_2 = 2$ , then  $y_1 \neq y_2$  or  $y_1 \neq y_3$ . Up to symmetry suppose that  $y_1 \neq y_3$ . Since  $G_2$  is connected, there is a  $y_1, y_3$ -path Q in  $G_2$ . By the definition of a branch,  $d_G(x_3) \geq 3$ . Hence there are at least two neighbours x', x'' of  $x_3$  in G such that none of them belongs to  $b_3$  nor  $V(G_2)$ . Then the graph  $x_3x', x_3x'', b_3, Q, b_1 - x_1$  is isomorphic to  $L^{-1}(Z_{2h(G)-3})$ .

Case 4:  $g_1 = 1$ ,  $g_2 = 3$  or  $g_1 = 3$ ,  $g_2 = 1$ . Up to symmetry suppose that  $g_1 = 1$  and  $g_2 = 3$ . Suppose that  $|V(G_1)| > 1$ . Then at least one of the vertices of  $G_1$  different from  $x_1$ , say vertex u, is an end-vertex of some branch of S, since otherwise G is not 2-connected. But then the branches  $b_1$ ,  $b_2$ ,  $b_3$  can be chosen in such a way that there are at least two different end-vertices of the triple of branches in  $G_1$  and at least two different end-vertices of the triple of branches in  $G_2$ . Hence we are in one of the previous three cases.

Hence  $|V(G_1)|=1$ . Let x denote the only vertex of  $G_1$ . Since  $G_2$  is connected, there is a path Q of length at least two in  $G_2$  joining two of the vertices  $y_1, y_2, y_3$ . Without loss of generality suppose that Q is a  $y_1, y_2$ -path. Let x' denote the neighbour of x on  $b_1$  and x'' the neighbour of x on  $b_3$ . Clearly  $x' \notin V(G_2)$ ,  $x'' \notin V(G_2)$ . The graph  $xx', xx'', b_2, Q, b_1 - \{x, x'\}$  is isomorphic to  $L^{-1}(Z_{2h(G)-3})$ .

Case 5:  $g_1 = 1$ ,  $g_2 = 2$  or  $g_1 = 2$ ,  $g_2 = 1$ . Up to symmetry suppose that  $g_1 = 1$  and  $g_2 = 2$ . First we suppose that  $|V(G_1)| > 1$ . Since G is 2-connected, at least one of the vertices of  $G_1$  different from  $x_1$ , say vertex u, is an end-vertex of some branch of S. But then the branches  $b_1$ ,  $b_2$ ,  $b_3$  can be chosen in such a way that there are at least two different end-vertices of the triple of branches in  $G_1$  and at least two different end-vertices of the triple of branches in  $G_2$ . Hence we are in one of the first three cases.

Hence  $|V(G_1)| = 1$ . Since  $g_2 = 2$ , two of the branches of B have a common end-vertex in  $G_2$ , say branches  $b_1, b_2$ . Thus  $y_1 = y_2$ . Let x be the vertex of  $G_1$ . Let x' denote the neighbour of x on  $b_1$  and x'' the neighbour of x on  $b_2$ . It is easy to see that none of the vertices x', x'' belongs to  $G_2$ .

First suppose that  $|V(G_2)|=2$ . By Lemma 2, each branch of B has length at least h(G)+1. Clearly  $y_1y_3\in E(G)$  by connectivity of  $G_2$ . The graph  $xx', xx'', b_3, y_1y_3, b_1 - \{x, x'\}$  has a subgraph isomorphic to  $L^{-1}(Z_{2h(G)-3})$ .

Now we suppose that  $|V(G_2)| > 2$ . There is a vertex  $z \in V(G_2) \setminus \{y_1, y_3\}$ 

such that z is adjacent to at least one of the vertices  $y_1, y_3$ , say  $y_1z \in E(G)$ . (The case  $y_3z \in E(G)$  can be shown analogously). By maximality of  $g_2$ , there is no vertex  $y \in V(G_2) \setminus \{y_1, y_3\}$  such that y is an end-vertex of some branch of S. Using this fact and since G is 2-connected, there is a  $z, y_3$ -path Q in  $G_2$  such that Q does not contain  $y_1$ . The graph  $xx', xx'', b_3, Q, y_1z, b_1 - \{x, x'\}$  is isomorphic to  $L^{-1}(Z_{2h(G)-3})$ .

Case 6:  $g_1 = 1$  and  $g_2 = 1$ . Clearly  $|V(G_1)| = |V(G_2)| = 1$ . Then each branch of B has length at least h(G) + 1 by Lemma 1. Let x' be the neighbour of x on  $b_1$  and x'' the neighbour of x on  $b_2$ . Clearly none of the vertices x', x'' belongs to  $G_2$ . The graph xx', xx'',  $b_3$ ,  $b_1 - \{x, x'\}$  has a subgraph isomorphic to  $L^{-1}(Z_{2h(G)-3})$ .

By Bedrossian's characterization (see Theorem C), if G is 2-connected  $K_{1,3}$ ,  $Z_2$ -free, then h(G) < 1. Now we consider a 2-connected graph H with no  $L^1(Z_2)$  as a subgraph. Then L(H) is 2-connected and  $K_{1,3}$ ,  $Z_2$ -free, implying that h(H) < 2. Using this fact and the previous lemma we obtain the following theorem.

**Theorem 2.** Let  $k \ge 1$  be an integer, let G be a 2-connected graph such that G does not contain a subgraph isomorphic to  $L^{-1}(Z_k)$ . Then  $h(G) < \frac{k+3}{2}$ .

Corollary 3. Let G be a 2-connected graph such that G does not contain  $L^{-1}(Z_3)$ . Then h(G) < 3.

For graphs  $B_{i,j}$  we prove the following lemma.

Lemma 7. Let G be a 2-connected graph with h(G) > 2 and let i, j be positive integers at least one. Then G contains a graph  $L^{-1}(B_{i,j})$  as an induced subgraph, where  $i + j \ge 3h(G) - 5$ .

**Proof.** Let G be a 2-connected graph with hamiltonian index h(G). Since G is 2-connected, every branch-bond of G contains at least two branches. By Theorem B, there is a branch-bond S of G such that S contains an odd number of branches and  $l(S) \geq h(G) - 1$ . Since h(G) > 2,  $l(S) \geq 2$ . By the definition of a branch-bond, there are exactly two components of the graph G - S. Let  $G_1, G_2$  denote the components of G - S. Let  $b_1, b_2, b_3$  denote a triple of branches of S,  $B = \{b_1, b_2, b_3\}$ , let  $x_i$  denote the end-vertex of  $b_i$  in  $G_1$ ,  $y_i$  the end-vertex of  $b_i$  in  $G_2$ , i = 1, 2, 3. Let  $g_j = |V(G_j) \cap (V(b_1) \cup V(b_2) \cup V(b_3))|$ , j = 1, 2. Choose branches  $b_1, b_2, b_3$  in such a way that  $g_1 + g_2$  is maximum. The following

### possibilities can occur:

- Case 1:  $g_1 = 3$  and  $g_2 = 3$ . Since  $G_1$  is connected, there is a  $x_1, x_2$ -path  $P_1$  and  $x_1, x_3$ -path  $P_2$  in  $G_1$ . Choose  $P_1$  and  $P_2$  shortest possible. Clearly  $P_1$  does not contain  $x_3$  or  $P_2$  does not contain  $x_2$ . By symmetry suppose that  $P_1$  does not contain  $x_3$ . Since  $d_G(x_1) \geq 3$ , there is a neighbouring vertex x' of  $x_1$  such that x' does not belong to any of  $b_1$ ,  $P_1$ . Since  $l(S) \geq 2$ ,  $x' \notin V(G_2)$ . Since  $G_2$  is connected, there is a  $y_1y_3$ -path Q in  $G_2$ . Choose Q shortest possible. Consider the following paths:  $B_1 = x_1x'$ ,  $B_2 = x_1, b_1, y_1, Q, y_3, b_3 x_3$ ,  $B_3 = x_1, P_1, x_2, b_2 y_2$ . A subgraph of G consisting of the paths  $B_1$ ,  $B_2$ ,  $B_3$  is isomorphic to  $L^{-1}(B_{2h(G)-3,h(G)-2})$ .
- Case 2:  $g_1 = 2$ ,  $g_2 = 3$  or  $g_1 = 3$ ,  $g_2 = 2$ . Up to symmetry suppose that  $g_1 = 2$  and  $g_2 = 3$ . Two of the branches of B have exactly one end-vertex in  $G_1$ , say branches  $b_1$  and  $b_2$ . Hence  $x_1 = x_2$ . Since  $G_1$  is connected, there is a  $x_1, x_3$ -path P in  $G_1$ . Analogously, since  $G_2$  is connected, there is a  $y_2, y_3$ -path Q in  $G_2$ . Choose P and Q shortest possible. Since  $d_G(x_3) \geq 3$ , there is a vertex x' such that  $x' \notin V(P)$ ,  $x' \notin V(b_3)$ . Since  $l(S) \geq 2$ ,  $x' \notin V(G_2)$ . Consider the following paths:  $B_1 = x_3, x'$ ,  $B_2 = x_3, b_3, y_3, Q, y_2, b_2 x_2$ ,  $B_3 = x_3, P, x_1, b_1 y_1$ . The subgraph of G consisting of the paths  $B_1, B_2, B_3$  is isomorphic to  $L^{-1}(B_{2h(G)-3,h(G)-2})$ .
- Case 3:  $g_1=2$  and  $g_2=2$ . Two of the branches of B, say  $b_1,b_2$ , have a common end-vertex in  $G_1$ . Thus  $x_1=x_2$ . Similarly, there are exactly two different end-vertices of the branches of B in  $G_2$ . Let  $y_a, y_b$  denote these vertices and, up to symmetry, suppose that  $y_b \in V(b_3)$ . Hence  $y_a \in V(b_1)$  or  $y_a \in V(b_2)$ . Since  $G_1$  is connected, there is a  $x_1, x_3$ -path P in  $G_1$ . Analogously, since  $G_2$  is connected, there is a  $y_a, y_b$ -path Q in  $G_2$ . Choose P and Q shortest possible. Since  $d_G(x_3) \geq 3$ , there is a vertex x' such that  $x' \notin V(P)$ ,  $x' \notin V(b_3)$ . Clearly  $x' \notin V(G_2)$ . First we suppose that  $y_a \in V(b_1)$ . Consider the following paths  $B_1 = x_3, x'$ ,  $B_2 = x_3, b_3, y_b, Q, y_a, b_1 x_1, B_3 = x_3, P, x_1, b_2 y_i$ , where  $y_i$  denote the end-vertex of  $b_2$  in  $G_2$ . Then the triple  $B_1, B_2, B_3$  forms a subgraph of G isomorphic to  $L^{-1}(B_{2h(G)-3,h(G)-2})$ .

Finally we suppose that  $y_a \in V(b_2)$ . Consider the following paths  $B_1 = x_3, x'$ ,  $B_2 = x_3, b_3, y_b, Q, y_a, b_2 - x_1$ ,  $B_3 = x_3, P, x_1, b_1 - y_i$ , where  $y_i$  is the end-vertex of  $b_1$  in  $G_2$ . Then the triple  $B_1, B_2, B_3$  forms a subgraph of G isomorphic to  $L^{-1}(B_{2h(G)-3,h(G)-2})$ .

Case 4:  $g_1 = 1$ ,  $g_2 = 3$  or  $g_1 = 3$ ,  $g_2 = 1$ . Up to symmetry suppose that  $g_1 = 1$  and  $g_2 = 3$ . First we suppose that  $|V(G_1)| > 1$ . Then at least one of

the vertices of  $G_1$  different from  $x_1$ , say vertex u, is an end-vertex of some branch of S, since otherwise G is not 2-connected. But then the branches  $b_1$ ,  $b_2$ ,  $b_3$  can be chosen in such a way that there are at least two different end-vertices of the branches of S in  $G_1$  and at least two different end-vertices of the branches of S in  $G_2$ . Therefore we are in one of the previous three cases.

Hence  $|V(G_1)| = 1$  and  $x_1 = x_2 = x_3$ . Suppose that  $|V(G_2)| = 3$ . Let x' denote the neighbour of  $x_1$  on  $b_1$ . Clearly  $x' \notin V(G_2)$ . Since  $G_2$  is connected,  $y_1y_2 \in E(G)$  or  $y_1y_3 \in E(G)$ . Up to symmetry suppose that  $y_1y_2 \in E(G)$ . By Lemma 4, each branch of S has length at least h(G)+1. The following triple of paths  $B_1 = x_1, x'$ ,  $B_2 = x_1, b_2, y_2, y_1, b_1 - \{x, x'\}$ ,  $B_3 = x_1, b_3, y_3$  forms a subgraph of G isomorphic to  $L^{-1}(B_{2h(G),h(G)})$ . Now suppose that  $|V(G_2)| > 3$ . There is a vertex  $z \in V(G_2)$  such that z is different from  $y_1, y_2, y_3$  and z is a neighbour of at least one of the vertices  $y_1, y_2, y_3$ , say vertex  $y_1$ . Since  $G_2$  is connected, there is a  $y_2, y_3$ -path Q in  $G_2$ . Choose Q shortest possible. Let u denote the neighbour of  $x_2$  on  $b_2$  and let v denote the neighbour of  $x_3$  on  $b_3$ .

- Subcase 4.1: The path Q does not contain any of the vertices  $z, y_1$ . Then the triple of paths  $B_1 = x_3, v$ ,  $B_2 = x_2, b_2, y_2, Q, y_3, b_3 - \{x_3, v\}$ ,  $B_3 = x_1, b_1, y_1, z$  forms a subgraph of G isomorphic to  $L^{-1}(B_{2h(G)-4,h(G)-1})$ .
- Subcase 4.2: The path Q contains z but not  $y_1$ . The graph consisting of the paths  $B_1 = x_3, v$ ,  $B_2 = x_2, b_2, y_2, Q, y_3, b_3 \{x_3, v\}$ ,  $B_3 = x_1, b_1, y_1$  is isomorphic to  $L^{-1}(B_{2h(G)-3,h(G)-2})$  since Q has length at least two.
- Subcase 4.3: The path Q contains  $y_1$  but not z. By minimality of Q, there is a  $y_1, y_3$ -path  $Q_1$  in  $G_2$  such that  $Q_1$  does not contain  $y_2$ . (Note that  $Q_1$  is a subpath of Q.) The graph consisting of the paths  $B_1 = y_1, z$ ,  $B_2 = y_1, b_1, x_1, b_2, y_2$ ,  $B_3 = y_1, Q_1, y_3, b_3 x_3$  is isomorphic to  $L^{-1}(B_{2h(G)-3,h(G)-2})$ .
- Subcase 4.4: The path Q contains both vertices  $z, y_1$ . By minimality of Q, there is a  $y_1, y_3$ -path  $Q_1$  in  $G_2$  such that  $Q_1$  does not contain  $y_2$ . If  $z \in V(Q_1)$ , then the triple of paths  $B_1 = y_1, z$ ,  $B_2 = y_1, b_1, x_1, b_3, y_3$ ,  $B_2 = y_1, Q Q_1, y_2, b_2 x_2$  forms a subgraph of G isomorphic to  $L^{-1}(B_{2h(G)-3,h(G)-2})$ . If  $z \notin V(Q_1)$ , then the graph consisting of the paths  $B_1 = y_1, z$ ,  $B_2 = y_1, b_1, x_1, b_2, y_2$ ,  $B_3 = y_1, Q_1, y_3, b_3 x_3$  is isomorphic to

$$L^{-1}(B_{2h(G)-3,h(G)-2}).$$

- Case 5:  $g_1 = 1$ ,  $g_2 = 2$  or  $g_1 = 2$ ,  $g_2 = 1$ . By symmetry suppose that  $g_1 = 1$  and  $g_2 = 2$ . First we suppose that  $|V(G_1)| > 1$ . Since G is 2-connected, at least one of the vertices of  $G_1$  different from  $x_1$ , say vertex u, is an end-vertex of some branch of S. But then the branches  $b_1$ ,  $b_2$ ,  $b_3$  can be chosen in such a way that there are at least two different end-vertices of the triple of branches in  $G_1$  and at least two different end-vertices of the triple of branches in  $G_2$ . Hence we are in one of the first three cases. Hence  $|V(G_1)| = 1$ . Since  $g_2 = 2$ , two of the branches of B have a common end-vertex in  $G_2$ , say branches  $b_1, b_2$ . Thus  $y_1 = y_2$ . Let x' denote the neighbour of  $x_1$  on  $b_1$ . Since  $l(S) \geq 2$ ,  $x' \notin V(G_2)$ . The following possibilities can occur:
  - $|V(G_2)|=2$ . By Lemma 2, every branch of S has length at least h(G)+1. The triple of paths  $B_1=x_1,x',\,B_2=x_1,b_2,y_2=y_1,b_1-\{x_1,x'\},\,B_3=x_1,b_3,y_3$  forms a subgraph of G isomorphic to  $L^{-1}(B_{2h(G)-1,h(G)})$ .
  - $|V(G_2)| > 2$ . First we suppose that every vertex of  $V(G_2) \setminus \{y_1, y_3\}$  is adjacent to both vertices  $y_1, y_3$ . Then, by Lemma 3, each branch of S has length at least h(G)+1. The triple of paths  $B_1 = x_1, x', B_2 = x_1, b_2, y_2 = y_1, b_1 \{x_1, x'\}, B_3 = x_1, b_3, y_3$  forms a subgraph of G isomorphic to  $L^{-1}(B_{2h(G)-1,h(G)})$ .

Finally we suppose that  $|V(G_2)| > 2$  and that there is a vertex  $z \in V(G_2) \setminus \{y_1, y_3\}$  such that z is adjacent to exactly one of the vertices  $y_1, y_3$ , say  $y_3z \notin E(G)$ . (The case  $y_1z \notin E(G)$  can be shown analogously). By maximality of  $g_2$ , there is no vertex  $y \in V(G_2)$  such that y is an end-vertex of some branch of S. Using this fact and since G is 2-connected, there is a  $z, y_3$ -path Q in  $G_2$  such that Q does not contain  $y_1$ . Since  $y_3z \notin E(G)$ , the path Q has length at least two. Now we consider the paths  $B_1 = x_1, x'$ ,  $B_2 = x_1, b_2, y_2 = y_1, b_1 - \{x_1, x'\}, B_3 = x_1, b_3, y_3, Q, z$ . The subgraph of G consisting of the triple  $B_1, B_2, B_3$  is isomorphic to  $L^{-1}(B_{2h(G)-5,h(G)})$ .

Case 6:  $g_1 = 1$ ,  $g_2 = 1$ . Clearly  $|V(G_1)| = |V(G_2)| = 1$ . By Lemma 1, each branch of S has length at least h(G) + 1. Let x' be the neighbour of  $x_1$  on  $b_1$  and clearly  $x' \notin V(G_2)$ . Consider the following triple of paths:  $B_1 = x_1, x', B_2 = x_1, b_2, y_2 = y_1, b_1 - \{x_1, x'\}, B_3 = x_1, b_3 - y_3$ . The graph consisting of  $B_1, B_2, B_3$  is isomorphic to  $L^{-1}(B_{2h(G)-1,h(G)-1})$ .

By Theorem C, if G is 2-connected  $K_{1,3}$ ,  $B_{1,2}$ -free, then h(G) < 1. Now we consider a 2-connected graph H with no  $L^1(B_{1,2})$  as a subgraph. Then L(H) is 2-connected and  $K_{1,3}$ ,  $B_{1,2}$ -free. This implies that h(H) < 2. As an immediate consequence of Lemma 7 and Theorem C we obtain the following theorem.

**Theorem 3.** Let i, j be positive integers such that  $i, j \geq 1$ . Let G be a 2-connected graph. If G does not contain any of graphs  $L^{-1}(B_{i,j})$  as a subgraph (not necessarily induced), then  $h(G) < \frac{i+j+5}{3}$ .

Corollary 4. Let G be a 2-connected graph such that G does not contain any of graphs  $L^{-1}(B_i, j)$ , where i, j are positive integers such that i + j = 4. Then h(G) < 3.

The following lemma gives an upper bound on the hamiltonian index in terms of the preimage of a line graph  $N_{i,j,k}$ .

Lemma 8. Let G be a 2-connected graph with h(G) > 3 and let i, j, k be positive integers at least one. Then G contains a graph  $L^{-1}(N_{i,j,k})$  as an induced subgraph, where  $i + j + k \ge 3h(G) - 5$ .

**Proof.** Let G be a 2-connected graph with hamiltonian index h(G). Since G is 2-connected, every branch-bond of G contains at least two branches. By Theorem B, there is a branch-bond S of G such that G contains an odd number of branches and  $l(S) \geq h(G) - 1$ . Since h(G) > 2,  $l(S) \geq 2$ . By the definition of a branch-bond, there are exactly two components of the graph G - S. Let  $G_1, G_2$  denote the components of G - S. Let  $G_1, G_2$  denote a triple of branches of G and G denote the components of G and G denote a triple of branches of G and G denote the end-vertex of G in G, G denote the end-vertex of G in G, G in G denote the end-vertex of G in G i

Case 1:  $g_1 = 3$  and  $g_2 = 3$ . Since  $G_1$  is connected, there is a  $x_1, x_2$ -path  $P_1$  in  $G_1$  and  $x_2, x_3$ -path  $P_2$  in  $G_2$ . Choose  $P_1$  and  $P_2$  shortest possible. Then  $P_1$  does not contain  $x_3$  or  $P_2$  does not contain  $x_1$ . Up to symmetry suppose that  $P_1$  does not contain  $x_3$ . If  $P_2$  does not contain  $x_1$ , then the triple of paths  $B_1 = x_2, P_1, x_1, b_1, B_2 = x_2, b_2, y_2, B_3 = x_2, P_2, x_3, b_3, y_3$  forms a subgraph of G isomorphic to  $L^{-1}(N_{h(G)-1,h(G)-2,h(G)-1})$ , since  $y_1, y_2, y_3$  are mutually different. Now suppose that  $P_2$  contains vertex

- $x_1$ . Then there is a path  $P_3$  in  $G_1$ , a subpath of  $P_2$ , such that  $P_3$  does not contain  $x_2$ . Hence we switch vertices  $x_1$  and  $x_2$ ,  $y_1$  and  $y_2$ , branches  $b_1$  and  $b_2$ , and we are in the previous possibility.
- Case 2:  $g_1 = 2, g_2 = 3$  or  $g_1 = 3, g_2 = 2$ . Up to symmetry suppose that  $g_1 = 2$  and  $g_2 = 3$ . Two branches of B have a common end-vertex in  $G_1$ , say branches  $b_1$  and  $b_2$ . Hence  $x_1 = x_2$ . Since  $G_1$  is connected, there is a  $x_1, x_3$ -path P in  $G_1$ . Consider the following paths  $B_1 = x_1, b_1, y_1, B_2 = x_1, b_2, y_2$  and  $B_3 = x_1, P, x_3, b_3, y_3$ . Then the triple  $B_1, B_2, B_3$  forms a subgraphs of G isomorphic to  $L^{-1}(N_{h(G)-2,h(G)-2,h(G)-1})$ .
- Case 3:  $g_1=2$  and  $g_2=2$ . Two branches of B, say  $b_1$  and  $b_2$ , have a common end-vertex in  $G_1$ . Thus  $x_1=x_2$ . Similarly, there are exactly two endvertices of the branches of B in  $G_2$ . Since  $G_1$  is connected, there is a  $x_1, x_3$ -path P in  $G_1$ . First we suppose that  $y_1=y_2$ . Since  $d_G(y_3) \geq 3$ , there is a vertex  $z \in [V(G) \setminus V(G_1) \setminus V(B)]$ . The triple of paths  $B_1=x_1,b_1,y_1$ ,  $B_2=x_1,b_2-y_1$ ,  $B_3=x_1,P,x_3,b_3$  forms a subgraph of G isomorphic to  $L^{-1}(N_{h(G)-2,h(G)-3,h(G)})$ .

Now suppose that  $y_1 \neq y_2$ . Since  $g_2 = 2$ ,  $y_1 = y_3$  or  $y_2 = y_3$ . Up to symmetry suppose that  $y_2 = y_3$ . Since  $d_G(y_1) \geq 3$ , there is a vertex  $z \in [V(G) \setminus V(G_1) \setminus V(B)]$ . Then the triple of paths  $B_1 = x_1, b_1, y_1, z$ ,  $B_2 = x_1, b_2, y_3, B_3 = x_1, P, x_3, b_3 - y_3$  forms a subgraph of G isomorphic to  $L^{-1}(N_{h(G)-1,h(G)-2,h(G)-2})$ .

Case 4:  $g_1 = 1, g_2 = 3$  or  $g_1 = 3, g_2 = 1$ . Up to symmetry suppose that  $g_1 = 1$  and  $g_2 = 3$ . First we suppose that  $|V(G_1)| > 1$ . Then at least one vertex of  $G_1$  different from  $x_1$ , say vertex u, is an end-vertex of some branch of S, since otherwise G is not 2-connected. But then the branches  $b_1, b_2, b_3$  can be chosen in such a way that  $g_1 \geq 2$  and  $g_2 \geq 2$ . Hence we are in one of the previous three cases.

Hence  $|V(G_1)| = 1$ . This yields that  $x_1 = x_2 = x_3$ . Suppose that  $|V(G_2)| = 3$ . By Lemma 4, each branch of S has length at least h(G) + 1. Then the subgraph of G consisting of the paths  $B_1 = x_1, b_1, y_1, B_2 = x_1, b_2, y_2, B_3 = x_1, b_3, y_3$  contains  $L^{-1}(N_{h(G),h(G),h(G)})$ .

Now suppose that  $|V(G_2)>3$ . Then there is a vertex  $z \in V(G_2) \setminus V(B)$  such that z is a neighbour of at least one of the vertices  $y_1, y_2, y_3$ . Up to symmetry suppose that  $y_1z \in E(G)$ . Then the following triple of paths  $B_1 = x_1, b_1, y_1, z, B_2 = x_1, b_2, y_2, B_3 = x_1, b_3, y_3$  forms a subgraph of G isomorphic to  $L^{-1}(N_{h(G)-1,h(G)-2,h(G)-2})$ .

Case 5:  $g_1 = 1$ ,  $g_2 = 2$  or  $g_1 = 2$ ,  $g_2 = 1$ . Up to symmetry suppose that  $g_1 = 1$ 

and  $g_2 = 2$ . Suppose that  $|V(G_1)| > 1$ . Since G is 2-connected, at least one of the vertices of  $G_1$  different from  $x_1$ , say vertex u, is an end-vertex of some branch of S. But then the branches  $b_1$ ,  $b_2$ ,  $b_3$  can be chosen in such a way that there are at least two different end-vertices of the triple of branches in  $G_1$  and at least two different end-vertices of the triple of branches in  $G_2$ . Hence we are in one of the first three cases.

Hence  $|V(G_1)| = 1$ . Since  $g_2 = 2$ , two branches of B have a common end-vertex in  $G_2$ , say branches  $b_1, b_2$ . Thus  $y_1 = y_2$ . Since  $l(S) \ge 2$ ,  $x_1 \notin V(G_2)$ . The following possibilities can occur:

- $|V(G_2)| = 2$ . By Lemma 2, every branch of S has length at least h(G) + 1. The triple of paths  $B_1 = x_1, b_1, y_1, B_2 = x_1, b_2 y_2, B_3 = x_1, b_3, y_3$  forms a subgraph of G isomorphic to  $L^{-1}(N_{h(G),h(G)-1,h(G)})$ .
- $|V(G_2)| > 2$ . First we suppose that every vertex of  $V(G_2) \setminus \{y_1, y_3\}$  is adjacent to both vertices  $y_1$  and  $y_3$ . Then, by Lemma 3, every branch of S has length at least h(G) + 1. The triple of paths  $B_1 = x_1, b_1, y_1, B_2 = x_1, b_2 y_2, B_3 = x_1, b_3, y_3$  forms a subgraphs of G isomorphic to  $L^{-1}(N_{h(G),h(G)-1,h(G)})$ .

Finally we suppose that  $|V(G_2)| > 2$  and there is a vertex  $z \in V(G_2) \setminus \{y_1, y_3\}$  such that z is adjacent to exactly one of the vertices  $y_1, y_3$ . Suppose that  $y_3z \notin E(G)$ . Since  $d_G(y_3) \geq 3$ , there is a vertex  $z' \in V(G) \setminus V(B)$  different from z such that  $z'y_3 \in E(G)$ . The triple of paths  $B_1 = x_1, b_1, y_1, z$ ,  $B_2 = x_1, b_2 - y_2$ ,  $B_3 = x_1, b_3, y_3, z'$  forms a subgraph of G isomorphic to  $L^{-1}(N_{h(G)-1,h(G)-3,h(G)-1})$ . Hence we suppose that  $y_3z \in E(G)$ , but  $y_1z \notin E(G)$ . By maximality of  $g_2$ , there is no vertex  $y \in V(G_2)$  such that y is an end-vertex of some branch of S. Using this fact and since G is 2-connected, there is a  $z, y_1$ -path Q in G such that G does not contain G since G is G consider the following paths G is G has length at least two. Consider the following paths G is G has length on sisting of G is G is is isomorphic to G is G is an inferior G is G is isomorphic to G is G is is isomorphic to G is G is isomorphic to G is G.

Case 6:  $g_1 = 1$  and  $g_2 = 1$ . Clearly  $|V(G_1)| = 1$  and  $|V(G_2)| = 1$ . By Lemma 1, every branch of S has length at least h(G) + 1. Then the triple of paths  $B_1 = x_1, b_1, y_1, B_2 = x_1, b_2 - y_2, B_3 = x_1, b_3 - y_3$  forms a subgraph of G isomorphic to  $L^{-1}(N_{h(G),h(G)-1,h(G)-1})$ .

By Corollary 1, if G is a 2-connected  $K_{1,3}$ , E-free graph, then  $h(G) \leq 1$ . Now we consider a 2-connected graph H such that H does not contain  $L^{-1}(E)$  as a subgraph. Then L(H) is 2-connected and  $K_{1,3}$ , E-free, implying that  $h(H) \leq 2$ . By Theorem C, if G is 2-connected  $K_{1,3}$ , N-free, then h(G) < 1. Now we consider a 2-connected graph H with no  $L^{-1}(N)$  as a subgraph. Then L(H) is 2-connected and  $K_{1,3}$ , N-free. This implies that h(H) < 2.

As an immediate consequence of Lemma 7, Theorem C and Corollary 1 we obtain the following theorem.

**Theorem 4.** Let i, j be positive integers such that  $i, j, k \ge 1$ . Let G be a 2-connected graph. If G does not contain any of graphs  $L^{-1}(N_{i,j,k})$  as a subgraph (not necessarily induced), then  $h(G) < \frac{i+j+k+5}{3}$ .

Corollary 5. Let G be a 2-connected graph such that G does not contain any of graphs  $L^{-1}(N_{i,j,k})$ , where i, j, k are positive integers such that i + j + k = 4. Then h(G) < 3.

## 3 Sharpness

Now we consider the following example. Let k be a positive integer, let G be a graph consisting of paths  $P_1$ ,  $P_2$ ,  $P_3$  each of length k+1 with common end-vertices x and y. By Lemma 1, h(G) = k and G contains a path of length 3k+1, a graph  $L^{-1}(Z_{2k-1})$ , a graph  $L^{-1}(B_{k-1,2k-1})$ , and a graph  $L^{-1}(N_{k-1,i,j})$  for each positive integers i, j with i + j = 2k - 1.

Replacing any of the paths  $P_1, P_2, P_3$  with a shorter one we obtain a graph H such that h(H) < h(G) by Lemma 1. Hence the graph G is the graph with minimum number of vertices such that h(G) = k and G is 2-connected, and the following conjectures could be true.

Conjecture 1. Let  $k \ge 1$  be a positive integer, let G be a 2-connected graph such that G does not contain a subgraph isomorphic to  $L^{-1}(P_k)$ . Then  $h(G) < \frac{k-1}{3}$ .

Conjecture 2. Let  $k \ge 1$  be a positive integer, let G be a 2-connected graph such that G does not contain a subgraph isomorphic to  $L^{-1}(Z_k)$ . Then  $h(G) < \frac{k+1}{2}$ .

Conjecture 3. Let i, j be positive integers at least one, let G be a 2-connected graph such that G does not contain any of subgraphs isomorphic to  $L^{-1}(B_{i,j})$ . Then  $h(G) < \frac{i+j+2}{3}$ .

**Conjecture 4.** Let i, j, k be positive integers at least one, let G be a 2-connected graph such that G does not contain any of subgraphs isomorphic to  $L^{-1}(N_{i,j,k})$ . Then  $h(G) < \frac{i+j+k+2}{2}$ .

Note that, for cases  $P_6$ ,  $Z_2$ ,  $B_{1,2}$  and  $N_{1,1,1}$ , the previous conjectures holds by Theorem C.

## References

- [1] P. Bedrossian, Forbidden subgraphs and minimum degree conditions for hamiltonicity, Thesis, Memphis State University, U.S.A., 1991.
- [2] J.A. Bondy, U.S.R. Murty, Graph theory with applications, Macmillan, London and Elsevier, 1976.
- [3] L. Xiong, Q. Wu, The hamiltonian index of a 2-connected graph, Discrete Math. 308 (2008), no. 24, 6373-6382.
- [4] J. Brousek, O. Favaron, Z. Ryjáček, Forbidden subgraphs, hamiltonicity and closure in claw-free graphs, Discrete Mathematics 196 (1999), 29-50.
- [5] J. Brousek, Z. Ryjáček, I. Schiermeyer, Forbidden subgraphs, stability and hamiltonicity, Discrete Math. 197/198 (1999), 143-155.
- [6] G. Chartrand, On hamiltonian line graphs, Trans. Amer. Math. Soc. 134 (1968), 559-566.
- [7] F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Journal of Graph Theory 5 (1981), 307-314.