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Abstract

This paper deals with the Abelian sandpile model on the general-
ized trees with certain given boundary condition. Using a combinato-
rial method, we obtain the exact expressions for all single-site proba-
bilities and some two-site joint probabilities. Also, we prove that the
sites near the boundary have a different height probability from those
away from it in bulk for the Bethe lattice with the boundary con-
dition, which is the same as those results found by Grassberger and
Manna [“Some more sandpiles,”J.Phys.(France)51,1077-1098(1990)]
and proved by Haiyan chen and Fuji Zhang [“Height probabilities in
the Abelian sandpile on the generalized finite Bethe lattice” J. Math.
Phys. 54, 083503 (2013)].

1 Introduction

In 1987, the concept of self-organized criticality was put forward by Bak,

Tang and Wiesenfeld (BTW) as an attempt to explain the occurrence of
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power laws in various and many natural phenomena. The sandpile model is
the paradigm of a self-organized critical system in physics (see (3, 4, 5, 6]).
It is a discrete model defined on a lattice and possesses a cellular automaton
type of dynamics. A general analysis of the original sandpile model was
undertaken by Dhar (see [7]). Dhar and Creutz (see {7, 8]) showed that
the general sandpile model features an Abelian group, hence refer to this
model as the Abelian sandpile model (ASM). It has been considered by
many combinatorists as a game on a graph called the chip firing game or
the dollar game (see [9, 10, 11, 12, 13, 14]).

The Abelian sandpile model can be described informally as the dy-
namics on a connected multigraph with a special vertex, called the sink.

Let G = (V, g, E) be a connected multigraph with the vertex set
V(G) = {Q1 V1,V2, " 1vn}a

the sink q and the edge set E(G). In the model, a configuration on G is a

non-negative integer vector
z = (z(v1),z(v2), - ,z(vn)),

where the non-negative integer z(v;) is considered as the height of the
vertex v;. A vertex v; with 0 < z(v;) < dg(v;) (the degree of v; in G) is
called stable vertex. A configuration z is said to be stable when all the
vertices different from ¢ are stable. In an unstable configuration z, for a
vertex v; with z(v;) > dg(v;), we may perform a toppling to obtain a new

configuration y such that

z(v;) —deg(v;) ifj=1
y(v;) = () (v Y
z(v;) + eij ifj#1
where e;; denotes the number of edges between vertices v; and v; in G. The

adjacency relation between the sink ¢ and the rest vertices of G is called
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the boundary condition. The time evolution of a configuration of the ASM
is defined by the following rules:

1. taking a stable configuration

2. choosing randomly a vertex v; and setting z(v;) — z(v;) + 1

3. performing topplings until a new stable configuration is obtained.
Starting with any unstable configuration and toppling unstable vertices re-
peatedly, we finally obtain a new stable configuration after a finite sequence
of topplings since the graph G is connected. It is well known (see [7]) that
the new stable configuration does not depend on the possible choice of the
order of the finite sequence of topplings.

A configuration is recurrent in the ASM if it is a stable configuration
which is met infinitely often in the dynamics. Dhar (see [7]) showed that
the set of recurrent configurations of the ASM on a graph has a group
structure (the Abelian group) with a natural addition and the recurrent
configurations occur with equal probability under the invariant measure.
It is well known that the number of recurrent configurations is equal to the
number of spanning trees of the underlying graph (see [7]). Furthermore,
in (7, 12, 13], several explicit one-to-one mappings between spanning trees
and recurrent configurations have been constructed.

Let R be the set of all recurrent configurations, R¥ the set of the
recurrent configurations with height z(v;) = k, |R| the cardinal of the set
R, then the single-site height probabilities are

k
P(z(v) = k) = ||R—ﬁ||

and the two-site joint height probabilities are

|RF N RY|

P(z(v;) = k,z(v;) = 1) = TR
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There are many works to study these height probabilities in the ASM
on lattices. In [15], Priezzhev developed a technique to obtain the height
probabilities on the plane square lattice. Using basically this technique,
many more infinite lattices, such as the plane square lattice [16, 17], the
Bethe lattice [18], the d-dimensional hypercubic lattice [19], the triangu-
lar lattice [20], the honeycomb lattice (21}, the upper-half plane square
lattice [22, 23, 24], are also considered by many researchers. As for the
finite lattices, it is a challenge to present exact expressions for the height
probabilities, in view of effects of boundary conditions and lack of good
symmetry. So up to date, only a few results (1, 25, 2] are obtained. In [1],
Grassberger and Manna studied the height probabilities on the finite Bethe

lattices with two different boundary conditions (see Figures 1(a) and 1(b)).

q q q
(a) () ()

Fig. 1.Finite Bethe lattices with boundary conditions

For the finite Bethe lattices with boundary condition (b), they found
that the height probabilities depend on the generation g (the distance from
the sink g), which agrees with the result obtained in [18]. For the fi-
nite Bethe lattices with boundary condition (a), they found that for the
total generation g from 4 to 20, P(z(v) = 0) = &,Plz(v) = 1) =
L, P(z(v) = 2) = {5 for all vertices with g > 2, while P(z(v) = 0) =



3 Px(v) = 1) = 2 for leaves (g = 1), which agrees with the result
proved by Haiyan chen and Fuji Zhang in [2]. Here, under the bound-
ary condition of (a), we consider the finite Bethe lattice (see Figures 1(c)).
For some special event about this finite Bethe lattice, by direct calcula-
tion, it is not difficult to get that for the total generation g from 4 to 6,
P(z(v) = 0) = ,, P(z(v) =1) = [}, P(z(v) = 2) = [}, for all vertices with
g 2 2and P(z(v) =0) = 1,P(z(v) = 1) = 2 for leaves (g = 1). This
example is interesting, we can see that the result of the example is just
the result which was found by Grassberger and Manna in [1] and proved by
Haiyan chen and Fuji Zhang [2]. For the finite Bethe lattices with boundary
condition (c), we found that there are many more sites near the boundary
than that on the finite Bethe lattices with boundary condition (a) and (b).
The motivation for this paper is the above fact, that is, whether such the
finite Bethe lattices with boundary condition (c) affects the height prob-
abilities or not. Thus, in this paper, we characterize height probabilities
of the generalized finite Bethe lattice with the boundary condition (see
Figures 1(c)). Based on the one-to-one mapping given by Biggs [12] and
the technique developed by Haiyan chen and Fuji Zhang, first we deter-
mine spanning trees corresponding to recurrent configurations with given
height. Then we count the total number of spanning trees and the num-
bers of spanning trees corresponding to recurrent configurations with the
constrained height.

The remainder of this paper is organized as follows. In section 2, we
do some preliminaries, including the notations and some useful results. In
sections 3 and 4, we present the exact expressions for the height probabil-

ities. In section 5, in view of the theorems in sections 3 and 4, we derive
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the height probabilities of the ASM on the finite Bethe lattice with the

boundary condition (c).
2 Preliminaries

The purpose of this section is to define the finite Bethe lattice we shall
study and introduce some useful results.

Let Tk,n denote a rooted tree in which the root has k children, the
other vertex has two children and the leaves are at a distance n from the
root. Let Tk, be one generalized finite Bethe lattice obtained from T ,
by adding a sink g to Tk and joining the sink to every leaf vertex of
Tk n, which is defined by Haiyan chen et al. (2]. Let Ti,n be a two-rooted
tree constructed from two rooted trees T, by using one edge to join the
root vertices of the two rooted trees. Then another generalized finite Bethe
lattice T,?,n is obtained from Ti,,, by adding a sink q to Tis,, and joining

the sink to every leaf vertex of Ti,n (see Fig. 2).

Fig. 2. The generalized Bethe lattice

In the next subsection, we present the one-to-one mapping [12] be-
tween spanning trees and recurrent configurations. Let G = (V,q, E) be a

connected multigraph with |V(G)| = n+1 and |E(G)| = m, g be the fixed
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sink. We fix once and for all a vertex ¢ € V(G) as the sink and an ordering
e, €2, ---, em of E(G). Let P be the set of paths in G which begin at
g, and there is a lexicographic ordering < of P induced by the ordering of

edges defined as follows. If
o= (a1,02, - a;) and B = (By, Ba, - - - Br)

are sequences of edges corresponding to paths in P and i is the least index
for which a; # B;, then a < 8 if and only if a; comes before §; in the order
on E(G); if there is no such index then a < 3 if and only if j < k. (For
completeness the empty set of edges is regarded as a path from ¢ to ¢, and
it comes first in the < order.)

Given a spanning tree T of G, the construction
T— (-<T, :BT)

produces a total ordering <7 of V(G) and a recurrent configuration zp.
The total ordering depends on the simple observation that given T, for any
vertex v € V(G), there is a unique path in T from q to v. We can therefore
define an order <7 on the vertices of G by using the < order on the paths.
For each vertex v # q let v’ be the unique vertex adjacent to v on the path

from g to v in T. Define
Nr(v) = {u € V(G)|u <7 v’ and wv € E(G)} U {v'}

The corresponding recurrent configuration zr is defined by z7(v) = dg(v)—
|N7(v)|. Since the mapping from the set of spanning trees to the set of re-
current configurations is a bijection [12], this implies , about the height
variables of recurrent configurations, that we just need to determine the

corresponding spanning trees.
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Throughout this paper, we fix once and for all an ordering of E(T,?,n)
as follows.

Starting from the edges adjacent to the sink ¢, from left to right,
down to up, label the edges of TZ,. An example about the above or-
dering and the mapping is shown in figure 3, where the configuration

z7 = (2(r1), 2(r2), z(u1), z(u2), - - - ,z(u12)) and the ordering <7 is

q, u7, u2, ug, 1, U1, Us, Us, 72, U3,, U9, U10, U12, Uq, U]1].

q
T —vz7=(2,2,2,2,2,1,0,0,1,0,1,1,0,1)
(a) The way of the edge-labeling of E(T#;)  (b) The mapping from T to zr

Fig. 3

We denote the number of spanning trees of a simple graph G by 7(G).
An edge e of G is said to be contracted if it is deleted and its ends are
identified, then the resulting graph is denoted by G - e, and G — e denotes
the graph obtained by deleting e. We shall apply the well-known formula
7(G)=7(G —e) + 7(G - e).

In order to calculate the number of spanning trees corresponding to
recurrent configurations with the constrained height, we need the following
lemmas.

Lemma 2.1 [2]. Let tyn be the number of spanning trees of Ty n and

Sk,n denote the number of spanning forests of Tk,n with two components in
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which the root belongs to one and the sink the other, then for k,n > 1,

tion = k2K2" (4D gpg g gk2" =k

According to the structure of spanning trees of T} ,, and induction on
n, Lemma 2.1 can be obtained. By the formula 7(G) = 7(G —¢e) +7(G - e),
we have 7(T2,) = (tx,n)? + tak,n. Combining Lemma 2.1, we can get the
following lemma.

Lemma 2.2 ForT?,, k,n > 1, then 7(T?,) = k22"*'=2k(k2-2 4 1).

3 The Single-site Probabilities of the ASM
on T¢,

In this section we concentrate on the single-site probabilities of heights of
vertices in recurrent configurations.

First we give the properties of recurrent configurations and spanning
trees of TZ,,. For convenience, we label the k children of the root r; of TZ,
from left to right as 1,2,... ,k (see Fig. 4(a)). Denote {1,2,--- ,k, 1} =
U1 |JUa, where r2 can be viewed as the k + 1-th child of 7, and U; denotes
the set of the children of the root r; lying before it in the ordering <7
of V(T,f,n) corresponding to the recurrent configuration z7, Us behind r;.
Writing B; for the subgraph of T,:{n induced by a vertex j and all its
descendants together with the sink g (see Fig. 4(b)).

By the bijection between spanning trees and recurrent configurations
defined in Section 2, for z7, we have the property as follows:

(a) if zp(ry) =4,i=0,1,--- Jk, then [U; |[=k+1—1i.
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Moreover, if the unique path from sink g to the root r; in T is ¢ ~
.- ~ v ~ 7y, then T has the following structural properties:

(b)ur; € E(T) and v is the element in U; with the largest label; if
j €U and j < v, then jry € E(T) and T restricted B; is a spanning tree
of B;;

(c)if 7 € Uz and j < v, then jr; € E(T) and T restricted B; is a
spanning forest of B; which has two components with j and r; in different
components; if 5 € U and j > v, then T restricted B; is either a spanning

tree or a spanning forest with two components according to jry ¢ E(T) or

not.

(a) To label the children of the root r (b) Illustration of the definition B;
and the right of T2, — ri72

Fig. 4
Now we can calculate the probability distribution of heights of root
vertices in recurrent configurations.
Theorem 3.1. For T, ,n>1andk>1

the height probabilities of the roots are

1
k2’°‘1 + 2k+1 ’
(k)TN Cr P R
- k29k-1 1 kok+1 !

P(x(r;) =0) =

P(z(ri) = 7)
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wherei=1,2,=1,2,--- k.

Proof. By analysis as above, we just need to calculate the number of
spanning trees T of T,f’ » such that corresponding recurrent configuration
zr satisfies zp(ry) = i (¢ = 0,1,--- ,k). By property (a), for such any
spanning tree T', we get that |U;| = k£ + 1 — 4. According to properties (b)
and (c), T also satisfies the label of v on the unique path from ¢ to r
adjacent tor; isk+1—i+a,a=0,1,---,i—1 and 7, that is, the largest
labelof Uy isk+1—i+a,a=0,1,--- ,i—1 and r3. So there are two cases
in the following.

(i)Suppose the largest label of U; be k+1—i+a,a =0,1,--- ,i—1,
by (b), for j € U; and j # k + 1 — i + @, a spanning tree of B; can be
assigned independently and jr; ¢ E(T), there are (t3 ,—1)**t!~* possibil-
ities. For j € Uz and j < k41 — i + a, a spanning forest of B; vyhich
has two components with j and ¢ in different components can be assigned
independently and jr; € E(T), there are (sg,—1)® possibilities. For the
rest j € Us, either a spanning tree of B; can be assigned independently
and jry ¢ E(T') or a spanning forest of B; which has two components with
7 and g in different components independently and jr; € E(T), there are

10t CL i _o(tanc1) 172! (sg,n_1)" possibilities. If 7172 ¢ E(T), then
for the right of T,f'n — rir2, we may assign independently a spanning tree
of Ty n, there are ti , possibilities. If riry € E(T), then the unique path
fromgtorainTisq~---~k+1—i+4+a~r ~ 1y For the right of
T,?’n —rirg and k+ 1 < j < 2k, either a spanning tree of B; or a spanning
forest of B; with two components according to jry ¢ E(T) or not, there

are YF o Ch(tan-1)*"'(sa,n-1)! possibilities. Combining Lemma 2.1, we
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can get that the number of spanning trees satisfying above property is

i-1
(Z Ch_ira2 ) ton1)  (tkn + (2t2,n-1)%), i=1,2,--- k.

a=0

(ii)Suppose the largest label of Uy be ry, then 7170 € E(T) and the
unique path from g to ro in T is ¢ ~ v; ~ r2. So we can construct
spanning trees of T,f,n corresponding to configuration zr with zr(r)) =
i,% = 0,1,---,k in the following. For the left of T2, — s, for j €
{1,2,--- ,k}, B; may be assigned a spanning tree or a spanning forest
independently. For the right of T,f,n — 1172, Wwe may assign independently
a spanning tree of Tk . So the number of spanning trees satisfying above

property is
Cli(tZ,n—l)k-i(32,n—l)i(tk,n)y i= 0, 1; R} k.

By Lemma 2.2, we have the probability distributions

C(ta,n—-1)%(s2,n-1)tk,n _ 1
kQFETI-TR (k92 + 1) | K2k-T 4 2RF1’

P(z(r1) = 0)

P(z(ry) =7)
(t2m=1)*((thn + 2%(t2inm1)%) T4 C2_ 4029707 + 14 nCY)
k2k2"F1 -2k (k22 + 1)
(k+2)Yi 4 Ce_,, .2 + kC]
k22k-1 + k2k+1 !

where j =1,2,--- k.
Analyzing similarly as above, combining the symmetry of the structure

of T,f,n, we also prove that the probability distributions of the root r3

1
Ple(ra) =0) = g geet
L R+ TINCE 2 + K
P(z(r2) = j) = e -:- o ,
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where 7 =1,2,--- k.
So the proof of the theorem is complete.
n
In order to obtain the height probabilities of v, { = 1,2,--- ,n, in
the next subsection, we first do some preparation work. For convenience,
for T,?’n, we label the left-most descendants from up to down as vy =
T1,V1,V2,*** ,Un, the sibling of v as v] (see Fig.5(a)). Let B,, be the
subgraph of Tk , by deleting the vertex v; and all its descendants, and let
my,1 be the number of spanning trees of B,,, let ny; be the number of
spanning forest with two components of B,, in which v and the sink ¢

belong to different components (see Fig.5(b)).

(a) The way of the descendant-labelling  (b) Illustration of the definition B,

Fig. 5
Lemma 3.2. [2]. With the notation as above, for !l = 1,2,---,n,
k>2,
(i = 242" =2 20Dk (211 1 1) ),

.. n_on=1 - 1) -
(i) = 282" =2"7 1 =2(= D)=k [k (9201 _9) 4 9],
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Fig. 6 Illustration of the proof of Theorem 3.3

Theorem 3.3. For TZ,, n>1 and k > 1,
the height probabilities of v;, 1 =1,2,--- ,n—1 are
P(z(v)) =0) = (2—21—3(§(22l—1 +1) - Dk + 2—2(l+1)(_2§lg(22l—1 +1)
—1))(k?272 + k)
P(z(u) = 1) = (272-3(5(22-1 - 2) +2)k + 272041 (Zk (921 _2) 1 9)
+ 2—21—3(k(22!—1 +1)-3)k + 2—2(l+1)(2k(22!—1 +1)
- 3))(k*27% + k)7
P(z(v) =2) = (2—21—3(§(221+1 _2)+2)k+2—2(l+1)(23_k(221+1 -2)+2)
+ 2—21—3(%(221—1 -2)+ 2)k + 2—2(l+1)(_l§(22l—1 +1)
-1k + 2—21—1(231:_(221—1 +1)-1)+ 2—2!—2(%(221—1
-2)+2)) (k2272 + k)1,
the height probabilities of v, are
P(a(vn) = 0) = (2771 (£(2201 11) — 1)k + 2~ (2 (2201 4 1)
— 1))(k?272 + k)~
P(z(va) =1) = (27152 1+ 1)~ Dk + 2727 (F (221 +1) - 1)
+ 2—2n—1(§(22n—1 - 2) +2)k + 2—271(%(227:—1 -2)
+2))(k%2-2 4+ k)~L.
Proof. By analysis as Theorem 3.1, we just need to calculate the

number of spanning trees T of T;?'n such that corresponding recurrent con-
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figuration zr satisfies zr(v) =i (0 < i < d(v)). Note that to each span-
ning tree T of T,f_n that contains 7,72, there corresponds a spanning tree
T -rirg of T,?_ » - T172. This correspondence is clearly a bijection. Therefore
(T2, - r172) is precisely the number of spanning trees of T2, that contain
ryra.

For v, 1 <! < n, the three vertices adjacent to v; are vi_1, vi4+1, v},
For recurrent configurations with z(v;) = 0, the corresponding spanning
trees must contain the edge v;—1v; but not vvi41, vivj,,. So there are two
cases:

(1)If the corresponding spanning trees T of T,f'ﬂ do not contain the edge
7172, then the number of spanning trees satisfying the above condition is
(t2,n—1-1)°Mi itk,n (see Figure 6(a)).

(ii)If the corresponding spanning trees T of T2, contain the edge
7172, then the number of spanning trees satisfying the above condition
is (t2,n—1—1)?mok (see Figure 6(b)). Thus the total number of correspond-
ing spanning trees is (t2,n—i—1)*Mk,itk,n + (t2,n—1-1)*max,1. Hence
P(z(v;) =0)

(tzn—i=1)?Muicati,n + (t2,n—1-1) Mok
(tk,n)? + tok,n
(2-21—3(2(221-1 +1) -k + 2—2(1+1)(2§’S(221-1 +1)

]

—1))(k2272 + k)"

For recurrent configurations with z(v) = 1, the corresponding span-
ning trees must satisfy that only two of v,_1, vi41, v}, lie before v; in the
vertex order <. So there are three cases:

(i)If vig1 <7 Vi, <T W, then the number of spanning trees satisfying

the above condition is (t2,n—1-1)%(Nk,itk,n + N2kt + Mk itkn + Mak1) (see
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Figure 6(c,d,e,f)).

(i)If vi41 <T vi—1 <7 v, then the number of spanning trees satisfying
the above condition is (t2,n—1—1)(s2.n—t—1)(Mk itk n + mak,t) (see Figure
6(g,h)).

(ii)If vj, ; <7 vi—1 <7 v, then the number of spanning trees satisfying
the above condition is (t2,n—1—1)(82,n—1—1)(Mk itk n + maok,1) (see Figure
6(i.j))-

Combining Lemma 2.1, we can get that the total number of corresponding
spanning trees is (t2,n—1-1)2(nk,itk,n + N2k, + Mk 1tk n + Mok 1+ 2(Mk 1tk n +
mak,1)). Thus

P(z(u) =1)

(t2,n—1-1)2 (M atie,n + Nokt + Mk itin + Mok + 2(Ma itk n + Mok i)
(tkn)? + tok,n

- (2—21—3(2(221—1 _ 2) + 2)k + 2—2([-}-1)(%(22!—1 _ 2) + 2)
+2—2l—3(k(22!—1 + 1) _ 3)]61 + 2—2(l+1)(2k(221—1 + 1) _ 3))(k22—2

+k)~L.

For recurrent configurations with z(v;) = 2, the corresponding span-
ning trees must satisfy that only one of vi_1, vi41, v] +1 lies before v; in the
vertex order <. So there are three cases:

({)If vi41 <7 v, then the number of spanning trees satisfying the above
condition is
t2n—t1-1(Nk,i+1tkn + nok14+1) (see Figure 6(k,1)).

(i)If vj,, <7 v, then the number of spanning trees satisfying the
above condition is t2 n_1-152,n—1—1(nk,1 + N2k + Mi,1 + mak,1) (see Figure
6(m,n,o,p)).

(iii)If vi—y <7 v, then the number of spanning trees satisfying the
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above condition is (s2,n—i-1)%(mk,1 + mak) (see Figure 6(q,r)).

So the total number of corresponding spanning trees is

t2.n—1-1 (T 141t k,n + T2k 041 ) F(E2,n-1-1) 2 (ke 2 1)tk 12k 1+ 22k ).
Thus

P(z(v) =2)

2k
3

= @ EEEEM -9 42k + 27T 2) 4 2)

+2-2‘-3(§(22’"2 -2)+2)k+ 2‘2(‘+1>(§(2"‘-l +1) - 1)k

k
+2-2‘-1(%(22’*1 +1)-1)+ 2-2'-2’(2?(22’-1 —2) +2))(k*272

+k)~1.
Analyzing similarly as above, note that v, has only two neighbors, we
also prove that the height probabilities of v, are
P(z(va) =0)
Mp nlkn + Mak,n

(tk,n)2 -+ t2k,n

(2-2"-1(§(22"-1 +1) - 1)k + 2"2"(33'3(22"—1 +1) - 1))(k?272

il

+k)~1.

P(z(vn) = 1)
Mg ntkn + Mok n + Nk nlen + N2kn
(tk,n)2 + t2k,n
—2n-1 k 2n—1 —2n 2k 2n—1
= (2 (5(2 +1)-1)k+2 (?(2 +1)-1)

+2-2"-1(§(22"-1 -2)+2)k+ 2-"‘"(2—3'3(22"~1 -2+ 2))(k%272

+k)~L.

So the proof of the theorem is complete. (]

By the symmetry of the structure of T,f,n, we get all single site height

probability distributions.
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4 The Two-site Joint Probabilities of the ASM
on Tk2,n

In this section we will give some two-site joint probabilities of the ASM on
T,?,n. First we consider two adjacent root vertices 7,7. Note that if in
a recurrent configuration, there are two adjacent sites with height 0, then
the recurrent configuration occurs with zero probability. For convenience,
let P.(i,5) and Pi(i,j) denote P(z(r) = i,z(ry) = j) and P(z(v) =
4, z(v41) =37),1=0,1,2,--- ,n—1(vp = 71), respectively. So, fori = j =0,
P.(0,0) = P(0,0) = 0.
Theorem 4.1. For Tz,n, n>1andk>1,
P(0,i) = Po(3,0) = ZazoChouta? 17" g oo

k222(k—l)+k22k
, z:;lo Cl‘e‘—i+ 21:-4-:'—-]--»:3_‘_0,:‘c Zk;(l, 2k—u—l . .
Pr(i,k) = == ak222(k—l)+k22k 2 y 1<i<k
P.(i,5) = Tam0Chipa2 0TI 0O a1 P THCITITY Ci_jpa2 7!
~(1,5) = %222(k- 1) 1 o2k )

1<i<k1<j<k-1.

Proof. Let T be the spanning tree of Tkz!n corresponding to the
recurrent configuration x with z(r;) = ¢ and z(r2) = j. So, in the order
<7, k+1—ichildren of the root r; must lie before itself, and k+1-j children
of the root r; must lie before itself. Note that {1,2,---,k,72} = U, |JUs,
where U; denotes the set of the children of the root r; lying before it in
the ordering <7 of V(T2,), U, behind r, (see Fig. 4(a)). By property
(a) in section 3, we get that |U}| =k+1—14,i=0,1,---,k. According
to properties (b) and (c) in section 3, T also satisfies the label of v on the
unique path from g to r; adjacent tory isk+1—i+4+a,a=0,1,---,i—1,
and 73, that is, the largest label of the element in U; is k + 1 — i + q,

a=0,1,---,i—1, and ro. Then there are two different cases as follows:
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(i)Suppose the largest label of U be k+1—i+a,a=0,1,---,i—1,
by (b), for l € U; and | # k+ 1 — i + a, we may assign independently
a spanning tree of B; and Iry ¢ E(T). Forl € U andl < k+1 -
i+ a, we may assign independently a spanning forest of B; which has
two components with ! and g in different components and Ir; € E(T).
For the rest | € U,, either a spanning tree of By or a spanning forest of
B, with two components according to Ir; ¢ E(T) or not. So there are

(S Gy atan1)F 1 (52,0-1)°)(Tice ™ Choi—a(tgnan) 172!
(s2.n-1)!) possibilities, i = 1,2,--- , k. If any spanning tree T of TZ,, does
not contain the edge 7173, an analogous discussion for the root 2, combin-
ing Lemma 2.1, then we can get the number of spanning tree corresponding
to recurrent configurations with z(r;) = ¢ and z(r2) = j is

i-1 j
(O Coia2 ™ 2= 1)) D O jpam1 P % (t2in-1)"),

a=0 a=0

j=0,1,---,k — 1. If any spanning tree T of TZ, contains the edge 173,
then the unique path fromgtorainTisg~---~k+1—i+a~r ~ro.
For the right of T,f’n — r172 (see Fig. 4(b)), note that z(rz) = k, we may
assign independently either a spanning tree of B; or a spanning forest of
B; with two components according to jre ¢ E(T) or not, k +1 < j < 2k.
So the number of spanning trees corresponding to recurrent configurations

with z(r;) =i and z(rp) =k is

i1 k
> Ch_ira2 ™ % (t2,n-1))(Q_ Chlto,n-1)*" (s2,n-1)")
a=0 =0

i—1

= (O Coipa2 1 (t2in-1)) (2t2,0-1) .

a=0

(ii)Suppose the largest label of U; be 73, then 72 € E(T) and the

unique path from gtora in T isg ~ -+ ~v ~ 3 ~ 71, where v is the child
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of the root r3. So we can construct spanning trees of TZ, corresponding
to configuration zr with z(r;) = i and z(rp) = j as follows. For the
left of T2, — ryrq, for I € {1,2,--+,k}, B; may be assigned a spanning
tree or a spanning forest with two components independently according to
Iry ¢ E(T) or not. For the right of T,;""n —r172, We may assign independently
a spanning tree of Tk ,. So the number of spanning trees satisfying above

property is
i-1
Citon-1) " (s2,0-1)"Q_ Chj4a2’ ™17 (t2,n-1)%,

a=0
i=0s1a"'ik’ j=la"'1k'

By the above analysis, we have
Zuzock_,.,_ gi-l-a . )
Pr( ‘L) = ( ) = k2oa(k- 1):k22k , 1<:i< k,
Zn-o Ck—l-rn.z +'-l—"+cl f:v—(l) 2‘:—'“— . .
(k) = k222(k=1) 1 k22 , 1<i<k;
2{.—_-ock-:+a2' e i_oCk ;+u—l21-<.+C' Za—ock—yi-q?’_" 1
( ) k222(k=1) 22k ,
<

i<k,1<j<k-1.

1
So the proof of the theorem is complete. ]
For simplicity, we use ¢;(Z, j) to denote the number of spanning trees
corresponding to the recurrent configurations with z(v;) = ¢ and z(v41) =
5 1=0,1,2,--- ,n — 1(vg = r1). By an argument similar to the above, we

have the following results (Tables 1-6):

Table t: i =0,1,2,:-- .k —-1; j =0.
toli 4+ 1, j) i=0
=0 (t2,0=2)2CL 1 (t2,0 1) T Tag y_1)P2y
1Sighk=1  (t2,0-2)202 a1 Mg n + P2 ITL_, 0221 | 2% 4 ci_ 00

Then we can calculate all adjacent two-site joint probabilities. Along
the same line, it is natural to consider any two-site joint probabilities. But

the results are cumbersome.
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Table 2: i = -1,0,1, - -

s k=1, =1,
to(i + 1, 5) j=1
i=-1 (t2,n-2)2(t2, - 1O}tk
1=0 (,2"‘_2)2(,2‘“_1)&-1((,‘ +2)tp n + (2t2 n—1)¥)
1€ik-2 “2.7.—2)2("2.n—l)k-l((tk,u + (2"2.n—l)k)
(Cim0 Cfmigam2? T8 + 284y ORIl p2' ™ + (L] +20)_ 0
i=k-1 (12,0=2)2(tg, o 1F " Mtg o + (202 k)K= 4285 opTl 277
+2tk‘£
Table 3: i = —1,0,1,--- , k—1;j =2,
toG + 1. 4) =2
i=-1

3(t3,n-2)2 (b2 n- "1, ey
(t2.0=2)2 (02— D* 1B Li0 CF _ipac2? ™ “Cr,n + (2t2, - 1")
+@citl +oi_pan
(12,n=2)2(t2, e DK "1 (g 0 + 2t o 1) N g CF L ipa_22' ™"
#3801 Cf T a2 ™M) + (3647

ko1 T Cko1)th,n)
i=k-1 (!2"‘_2)2(?2'”_1)k—l((,k‘!‘ + (2¢2.v?-l)k)(3 . gk—1
+ 1 Chlliaa? ™) + Ch1tkn)
Table4: I =1,--- ., n—=2; j=0,1.
(i 3) 1=0 j=1
¢ .l z
=0 Q*L‘#("‘k.l’k.n + makt)
(tg not1-1)? (tg p—y-1?
i=1 —2'"—4¢(mk.uk.n —2'%’;((""&.4 + )tk n
+'"22k.1) +amap g + oK)
t —1-1) (t —t—1)
1=2 '(—2‘"—4;((2'";:_4 +ng Dtkn —2‘"—4';((6"%.1 +Ang )tk n
+2map g + nag ) +6mog ) + 4nak 1)
Table 5: { =1, ,n = 2;j = 2.
ep(i. §) j=2
3 <
i=0 (_2._"_1&(3...,",:,“" + 3moy 1)
_ (tg.n_1-1)?
i=1 T (T g+ 30 1)t + Tngg g+ 30k )
(¢ -
j=2 Q-ﬁ'ﬂ.'_‘)—((amk L4 T Dt n +8map g + Tngy )
Table 6: I = n —- 1.
ty (i, J) j=0 =1
i=0 0 Mme n—1tk,n + ™2k, n-1
I=1 My n-1tk,n

@my oy + N n—1)thn
+2mop ney + P2k a1
(Zmg noy + 20k 1) k.n
+2mopna1 2%k n—1

+Mok n-1
@mg ey 2k n-1Mkon
2ok n_1 F M2k n-1

i=2
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From the above results, we can see that the height probabilities of the
ASM on the finite Bethe lattice TZ, depend on whether the site is near
the boundary or not, but not on the size of the system. Hence we can
get the corresponding probabilities of the ASM on infinite Bethe lattice

T22’n(n — 00).

5 The Height Probabilities of the ASM on
the Finite Bethe Lattice

For the remainder of this paper, we shall now use the above theorems in
sections 3 and 4 to derive the height probabilities of the ASM on the finite
Bethe lattice T%,,.

Theorem 5.1. For the one-site probabilities of the finite Bethe lattice

T22,n7n21,j=1,2,l=1,2,... ,n—1,

P(.’L‘(‘I‘j) = 0) - 112,P(:L‘(7'j) = 1) = 142,P(1.‘(7’]) = 2) = 172;
Ple(w) =0) = |, Pla(w) =1) = 5 Pla(v) =2) = _:

P(2(on) =0) = , P(z(va) = 1) = §

Theorem 5.2. For the two-site joint probabilities of the finite Bethe

lattice TZ,,,

.PT(O, 0) = P[(O, 0) = 0, PT(O, 1) = Pr(l’o) = PI(O, 1) —_ Pl(l,O) - 418’
5 3

P(L1)=P(L1) = o, P(0,2)=P(2,0)= P(0,2) = A(2,0) = e
15 10

P.(2,2) = P(2,2) = P.(1,2)=P.(2,1) = F(1,2) = B(2,1) = 48"’

48’
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{=0,1,---,n—2

1 3

Pn—l(oyo)—(), Pn—l(lyo)_ 1—2'7 Pn-—l(230) = 1—2')
1 3 4

Rl—l(03 1) = '1_21 Pn—l(la 1) - 1_2'a Pn—1(21 1) - Té

The result of Theorem 5.1 is the same as those results found by Grass-
berger and Manna in [1] and proved by Haiyan chen and Fuji Zhang in
[2].
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