A COMPUTATIONAL CRITERION FOR THE SUPERSOLVABILITY
OF LINE ARRANGEMENTS

STEFAN O. TOHANEANU

ABSTRACT. In this note we find a necessary and sufficient condition for the
supersolvability of an essential, central arrangement of rank 3 (i.e., line arrange-
ment in the projective plane). We present an algorithmic way to decide if such
an arrangement is supersolvable or not that does not require an ordering of the
lines as the Bjorner-Ziegler’s and Peeva's criteria require. The method uses the
duality between points and lines in the projective plane in the context of coding
theory.

1. INTRODUCTION

Let A = {H,,..., H,} be a central essential hyperplane arrangement in K3,
where K is a field of characteristic 0. This means that {(0,0,0)} = () H; and
therefore the H;'s are lines in P2 not all passing through the same point and each
H; is the kernel of a linear form !; € K[z, y, 2]

Denote with Sing(A) = {P,,...,Ps} C IP? the set of the intersection points
of the lines H; in A. These points are the rank 2 elements in the lattice of inter-
section L 4 of A and the Mobius function value at each P; is u(P;) = m; — 1,
where m; = mp, is the number of lines from A passing through P; (see [10] for
background and more details). Denote with M = max{mp|P € Sing(A)} and
let mazSing(A) = {P € Sing(A)|mp = M}.

By [10] a hyperplane arrangement is called supersolvable if L 4 has a maximal
chain of modular elements. For the case of our interest (line arrangements), this
translates into the existence of a point (that we will call modular point) P €
Sing(A) that is connected to all the other points in Sing(.A) by lines in A.

Supersolvable arrangements are a special class of free arrangements ([8]). A
hyperplane arrangement is called free if a certain derivations module is free. By
Saito’s Criterion ([13]), if f is the defining polynomial of the arrangement A C
K™+! (i.e., f is the product of the equations of the hyperplanes in .A), then A is
free if and only if the Jacobian ideal of f, Jy, is Cohen-Macaulay. In this situation
the exponents of A are exp(A) = {1,a,,...,an—1}, where ay,...,a,_; are the
degrees of basis for the syzygies module of J;.

2000 Mathematics Subject Classification. Primary: 52C35; Secondary: 94B27, 05B35.
Key words and phrases. supersolvable arrangements, minimal distance.

ARS COMBINATORIA 117(2014), pp. 217-223



Example 1.1. Let A, be the line arrangement in P? with defining polynomial
fi = zyz(z — y)(z — z)(y — z)(z + y — z) (the non-Fano arrangement).

Let A, be the line arrangement in P? with defining polynomial fo = zyz(z —
2)(z +2)(y — 2)(y + 2).

Both arrangements are free with exponents {1, 3, 3}, but A, is not supersolv-
able and A5 is supersolvable; it is clear that the free resolution of the Jacobian
ideal of the defining polynomial does not give such information.

Supersolvable arrangements are an important class of hyperplane arrangements
and they have been studied quite a lot from different points of view (combinatorial,
algebraic or topological): [16], [17], [8], [15], [9], [5], just to cite here a few. Also
testing the supersolvability of hyperplane arrangements has been done before by
Bjorner and Ziegler ([2]): a hyperplane arrangement is supersolvable if and only
if the Orlik-Solomon algebra has a quadratic minimal broken circuit basis. From
this criterion, Peeva in [12] gives a more computational test, using Grobner bases:
a hyperplane arrangement is supersolvable if and only if the Orlik-Solomon ideal
has a quadratic Grobner basis. In both cases a good ordering of the hyperplanes is
necessary. For the case of line arrangements this means that once a modular point
is found, order the lines passing through the modular point to be the smallest in
the lexicographic order than the other lines (see [12] and [11]).

Our note is about an alternative criterion to test the supersolvability of line
arrangements, that does not require an ordering of the lines. First we show that
points of maximum multiplicity for a supersolvable line arrangements are mod-
ular points (Lemma 2.1), and once we have this, from the definition of super-
solvability we get the theoretical result (Theorem 2.2). The theory of hyper-
plane arrangements interacts very well with coding theory, and we are going
to speculate this as well in Section 3 for the effective computations and algo-
rithm: the Macaulay 2 ([6]) code to implement this algorithm is available at
http://homepages.uc.edu/~tohanesn/, where we also compare our
criterion to Peeva’s.

2. THE THEORETICAL RESULT

Let A = {H,,...,H,} be a line arrangement in P2. Let f = l;---1, €
K[z, y, 2| be its defining polynomial. For a point P € Sing(.A), let fp be the
product of the linear forms of the lines in .A passing through P. So deg(fp) =
mp.

Lemma 2.1. If A is supersolvable, then any point in mazSing(A) is a modular
point.

Proof. 1If A is supersolvable, then there exist a modular point P. Let mp is the
number of lines in .4 passing through P.

Let Q € mazSing(A) with mg = M (so M > mp). If Q is not a modular
point, then there exists a point R € Sing(.A) not connected to Q.
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Since P is modular point, then P is connected to Q by a line Hg € Aand
is connected to R by a line Hg € A. Since R € Sing(A), there should exist a
second line H € A passing through R (but not through P nor Q).

In these conditions the line H intersects the lines passing through Q in M
points Q1,...,Qp. Since P is modular point it should connect with M lines
from A with all of these points. Now counting, we get that through P should pass
these M lines (here we include Hg) plus the one line Hg. Somp > M + 1.
Contradiction. o

Let Iq = (lo---lp,lilz - ln,..., [y~ - lnmy) C K][z,y,2]. This ideal has
been studied in [14], in connection to the blow up of P? at Sing(.A) and the
Orlik-Terao algebra.

Theorem 2.2. Ler A be an essential line arrangement in P2. Let P €
mazSing(A) withmp = M. Then A is supersolvable if and only if f g’ “lela.

Proof. First of all, by [14], the primary decomposition of I 4 is
Ig=1I" AoV it

where each I; is the ideal of the point P; € Sing(A).

From the definition, A is supersolvable if there exists Q € Sing(.A) such that
all the other intersection points of A lie on the lines passing through Q (i.e., Q is
a modular point). This means that fo € 1 N--- NI, = /T 4.

Let P € maxzSing(A) and assume I, = Ip is the ideal of P, so

=I¥"nJ,

where J = I;""l N---NIM~landallm; < M.
If A is supersolvable, then from Lemma 2.1, P is a modular point and therefore

fPGIpﬂfgn--'ﬁIs.

Of course fp € Ip and so f ! ¢ Ip. Since M — 1 > m; — 1, then we also
have f 1€ Jandso

Mlel,

For the other direction, if P is an intersection point with f ! € I, then
fp € V14 and hence P is a modular point for .A. Note that for this implication
P need not to be in mazSing(A). O

This method works only for line arrangements in P2: the decomposition of I 4
in the proof above is known to work only for this situation (see (1], [7] and [14]
for analysis of ideals of fat points and blowups of P? at the singularities of line
arrangements). Also, working in P? gives a nice pictorial geometric intuition for
supersolvable arrangements that can lead to results similar to Lemma 2.1.
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3. BRIEF INTRO TO CODING THEORY

From computational point of view, the main issue in Theorem 2.2 is to find a
point P € maxzSing(.A). In theory, to answer this question, one should com-
pute the associated primes of I 4 to get the ideals I, .. ., I, and therefore the set
Sing(A). Then localize I 4 at all these ideals and select those I; with deg(/.4)1;
maximal. These selected ideals will be the ideals of the points in mazSing(A).
The main difficulty of this approach is that s can be very large and we have to do
lots of localizations and degree of ideal computations. We can avoid this by doing
the following approach derived from basic coding theory.

Let C be a linear code of length n and dimension k (k < n), given by the matrix
A of rank k

a;l a2 ' Qin

azy a2 -+ Q2n
A= . . B )

Gkl Qg2 "' Qkn

ai; € K, where K is a field.

A codeword w € C is an element in the vector subspace generated by the rows
of A.

The minimal (minimum) distance (or Hamming distance) of C is, by definition,

d= min |wl,
weC\{0}

where |w| = the number of nonzero entries in w = the weight of w. By pro-
jective codewords of weight d we will understand the equivalence class, under
multiplication by nonzero scalars, of codewords of weight d.

The linear code C has minimal distance d if and only if » — d is the maximum
number of columns in A that span a £ — 1 dimensional vector space ([19]). In
other words, if we think of the columns of A as the coordinates of n points in
P*~1, n — d is the maximum number of these points lying in a hyperplane. The
coefficients of the equation of such a hyperplane give the scalars in the linear
combination of the rows of A to obtain a projective codeword of weight exactly d.

Another way to find the minimal distance is due to de Boer and Pellikaan ({3]):
In P*—1 consider the hyperplanes given by the vanishing of the linear forms (with
coefficients the entries of each column of the matrix A):

L, zia11 + -+ Trar
Ly 1012 + - + TRk
Ly z1a1n + -+ TpQkn
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and in R = Klz,,...,xx], consider J; to be the ideal generated by all the j
products of linear forms Ly, ..., L,. Then

d = min{j|Z(J;41) # 9 as algebraic set in P*~1}.

Note that d is the maximum value of j such that codim(J;) = k; therefore
COd’im(Jj+1) < k-1.

Let p be a minimal prime containing J;. Then any product L,,, - - - Ly, isan
element in p. This means that at least one of the linear forms L,y , ..., Ly, isan
element in p. Inductively we get that

-]j c (Li17""Lin—j+l) Cp

forsome 1 <4 < - <in_j4y < nandhencep = (L;,,...,L;,_,,,) (note
that p need not to be minimally generated by all of the n — 7 + 1 linear forms
above).

Suppose codim(J441) = k — a,a > 2. Then there exists a minimal prime
p = (La+1,. .., Ln) with dimg Span{Lg41,...,Ln} = k — a. But

Jd - (Ll "'Ld,Ld-l-la---’Ln) C (Ll’Ld+1a"'aLn>'

Therefore dimg Span{Li, Lyy1,...,La} = k, which contradicts the assump-
tion: if we add a vector to the spanning set of a vector subspace, we increase
the dimension with at most 1. Hence codim(Jg4+1) = k — 1. So the primary
decomposition of Jy4 is:

Jd+1=rlﬂ-~ﬂrmﬂ.],

where r; are g;—primary ideals of codimension Xk — 1 and J is a
(z1,...,zk)—primary ideal.

The associated primes of Jy;, are {q1,...,qm, (z1,...,2x)}. To obtain a
projective codeword of weight exactly d, we only have to pick any of the g; above
(so a minimal prime): V/(g;) C P*~1 is the point whose coordinates are the scalars
in the linear combination of the rows of A that gives the corresponding projective
codeword; this is true from the simple observation that a vector has no more than
d non-zero entries if the products of any of the d + 1 entries in the vector vanish.

4. THE COMPUTATIONAL APPROACH
Fix the equations of the lines in A:
li=az+by+cz,i=1,...,n

To find a point in mazSing(A), first we need to find M.

Suppose we know that A is free with exponents {1, u, v}. If A is not free, then
it will not be supersolvable either. If A is supersolvable, then by Lemma 2.1, if
P € mazSing(A) withmp = M, then P is a modular point. So deleting lines
from A, not passing through P, from Terao’s Addition-Deletion Theorem ([18]),
we must have exp(A) = {1, M — 1,n — M}. So v or v must be equal to M — 1.
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Consider S C P? the set of points (a; : b; : ¢;). Itis clear that M is exactly the
maximum number of collinear points in S. If the line where these points lie has
equation az + by + cz, then P = (a : b : c) € mazxSing(A).

Create the matrix with entries in K:

a, az ‘- an
A= | b by -+ bn
c1 Co e Cn

From Section 3, the linear code with generating matrix A has minimal distance
d=n—-M.

Consider the ideals J, generated by all the & products, & = 1,...,n, of the
linear forms I;. For example, I4 = Jn,—1. Also from Section 3, the minimal
distance is the number d such that codim(J4) = 3 and codim(Jg41) = 2.

To find M, one should do the following computations: create the ideals
Jn—(u+1), Jn—u and check if codim(J,_(v+1)) = 3 and codim(Jp—y) = 2. If
not, do the same computations for v. If we get a negative answer as well, then A
is not supersolvable. Otherwise, M =u+1or M = v+ 1. Suppose M = u+1.

To obtain a P € mazSing(A), from Section 3, just pick any of the associated
primes of the saturation of J,,_,; so it should be a ¢; and hence P = V/(g;).
In most of the cases the cardinality of mazSing(A) is much smaller than the
cardinality of Sing(.A).

Example 4.1. We are going to check this algorithm for the Example 1.1 at the
beginning of these notes.

For both arrangements we have v = v = 3and n = 7. For A, we get
codim(J3) = codim(Js) = 3,s0d =7 — M > 4 which means that M — 1 < 2
and therefore A; is not supersolvable.

For A, we get codim(J3) = 3 and codim(Jy) = 2. So 7 — M = 3 and hence
M = 4, If we saturate J; we get the ideal

(ry, z) = (z,2) N (y, 2).

So P = (0:1:0) € mazSing(A). We have fp = zz(x — 2)(z + 2). Since
f3 € 14,, from Theorem 2.2, we get that Ay is supersolvable.
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