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Abstract

In this paper, the endomorphism monoid of circulant complete graph
K(n,4) is explored explicitly. It is shown that Aut(K(n,4)) = D,,
the dihedral group of degree n. It is also shown that K(n,4) is unre-
tractive when n = 4m + 1,4m + 3 for some m > 2, End(K(n,4)) =
9End(K(n,4)), sEnd(K(n,4)) = Aut(K(n,4)) when n = 4m,4m +
2 for some m > 2, End(K(4m,4)) is regular and End(K(4m +
2,4)) is completely regular. Some enumerative problems concerning
End(K(n,4)) are solved.
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1 Introduction and preliminaries

Endomorphisin monoids of graphs are generalizations of automorphisin
groups of graphs. In recent years much attention has heen paid to en-
domorphism monoids of graphs and many interesting results concerning
graphs and their endomorphism monoids have been obtained. The aim
of this research is to establish the relationship between graph theory and
algebra theory of semigroups and to apply the theory of semigroups to
graph theory. Hou, Luo and Cheng [6] explored the endomorphism monoid
of P,, the complement of a path P, with n vertices. It was shown that
End(P,) is an orthodox monoid. The endomorphism spectrum and the
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endomorphisin type of P, were given. The endomorphism monoids and
the endomorphism-regularity of graphs were considered hy several authors
(see (1], [3], [7], (8] and [10]). If n and d are positive integers with n > 2d,
then the circulant complete graph K(n,d) is the graph with vertex set
V ={1,2,---,n} in which i is adjacent to j if and only if d < |[i—j| < n-d.
It is easy to see that K (n,?2) is C, and its endomorphism monoid was stud-
ied in [10]. In [8], the endomorphism monoids of K(n,3) was character-
ized. In this paper, the endomorphism monoid of circulant complete graph
K(n,4) is explored explicitly. We show that End(K(4m,4)) is regular,
End(K(4m + 2,4)) is completely regular, End(K(n,4)) = ¢End(K(n,4))
and sEnd(K(n,4)) = Aut(K(n,4)) when n = 4m,4m + 2 for some m > 2.
We also show that K (4m + 1,4) and K(4m + 3, 4) are unretractive.

The graphs considered in this paper are finite undirected graphs without
loops and multiple edges. Let X be a graph. The vertex set of X is denoted
hy V(X) and the edge set of X is denoted by E(X). If two vertices z; and
z, are adjacent in graph X, then the edge connecting x, and 3 is denoted
by {z1,zo} and we write {z;,z2} € E(X) (or briefly {z1,z2} € E). A
subgraph H is called an induced subgraph of X if for any a,b € V(H),
{a,b} € E(H) if and only if {a,b} € E(X). A cligue of a graph X is the
maximal complete subgraph of X. The cliqgue number of X, denoted by
w(X), is the maximal order among the cliques of X. Let S C V(X). We
denote by < S > the subgraph of X induced by S.

Let X and Y be graphs. A mapping f from V(X) to V(Y) is called a
homomorphism (from X to Y) if {z1,z2} € E(X) implies {f(x1), f(x2)} €
E(Y). A homomorphism f is called half-strong if {f(a), f(b)} € E(Y) im-
plies that there exist z1,z2 € V(X) with f(z;) = f(a) and f(z2) = f(b)
such that {z,z2} € E(X). A homomorphism f is called locally-strong if
{f(a), f(b)} € E(Y) implies that for every preimage x; € V(X) of f(a)
there exists a preimage o € V(X) of f(b) such that {z;,z2} € E(X)
and analogously for every preimage of f(b). A homomorphism f is called
quasi-strong if {f(a), f(b)} € E(Y) implies that there exists a preimn-
age z; € V(X) of f(a) which is adjacent to every preimage of f(b) and
analogously for preimage of f(b). A homomorphismn f is called strong if
{f(a), f(b)} € E(Y) implies that any preimage of f(a) is adjacent to any
preimage of f(b). A homomorphism f is called an isomorphism if f is bi-
jective and f~! is a homnomorphism. A homomorphisin (resp. isomorphisimn
) f from X to itself is called an endomorphism (resp. automorphism) of X
(see [2] and its references). The sets of all endomorphisms, half-strong en-
domorphisms, locally-strong endomorphisms, quasi-strong endomorphisms,
strong endomorphisms and automorphisms of the graph X are denoted hy
End(X), hEnd(X), lEnd(X), ¢End(X), sEnd(X) and Aut(X), respec-
tively. A graph X is called unretractive if End(X) = Aut(X). Clearly, for
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any graph X, we always have
Aut(X) € sEnd(X) C qFnd(X) ClEnd(X) C hEnd(X) C End(X).

Let f be a endomorphism of graph X. A subgraph of X is called the
endomorphic image of X under f, denoted by Iy, if V(I;) = f(V(X))
and {f(a), f(b)} € E(I;) if and only if there exist ¢ € f~!(f(a)) and
d € f1(f(b)) such that {c,d} € E(X). By p; we denote the equivalence
relation on V(X) induced by f, i.e., for a,b € V(X), (a,b) € p; if and only
if f(a) = f(b). Denote by [a],, the equivalence class containing a € V(X)
with respect to ps. The partition 7 of V(X)) corresponding to p; is called
the kernel of f. By X/p; we denote the factor graph of X under py, that
is a graph with V(X/p;) = V(X)/pys and {[a],,,[b],,} € E(X/pys) if and
only if there exist ¢ € [a],, and d € [b],, such that {c,d} € E(X). Define
if 2 V(X/pg) — V(Iy) with if([z],,) = f(z) for z € V(X). Obviously,
iy is well defined.

An element a of semigroup S is called regular if there exists z € S such
that aza = a. A semigroup S is called regular if all its elements are regular.
An element e in S is called idempotent if €2 = e. We denote by Idpt(X)
the set of all idempotent endomorphisms of graph X. A graph X is said
to be End-regular if its endomorphism monoid End(X) is regular.

Let S be a semigroup. Green’s relation £, R, J, H and D on S are
defined by

(a,b)e L <« Sla= S,
(a,b) eR & aS!=bS!,
(a,b) €T & SlaS! =SS!

and H=LAR,D=LVR.

The L-class (R-class, J-class, H-class, D-class) containing the element
a will be denoted by L, (R,, Js, Ho, D,). It is known that D = J for any
finite semigroup S. Define a partial order “ < ” among the J-classes of S
by: Ju < Jp if S'aS? € S'6S!. Clearly, Jzqy < J, for all a € S and for all
z,y € S

For undefined concepts in this paper we refer to [5,9]. The following
results quoted from the references will be used later.

Lemma 1.1 ([4]) Let X be a graph, f and g be two regular elements
of End(X). Then

(1) fLg if and only if py = pg;

(2) fRg if and only if Iy = I;

(3) fDg if and only if Iy = I,.

Lemma 1.2 ([8]) Aut(K(n,3)) = D,, the dihedral group of degree n.
Lemma 1.3 ([10]) Let X be a graph and let f € End(X). Then
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(1) f € hEnd(X) if and only if I is an induced subgraph of X;
(2) If f is regular, then f € hEnd(X).

Lemma 1.4 ([11]) Let X be a graph and let f € End(X). Then f
is regular if and only if there exist g, h € Idpt(X) such that p, = py and
In=1I.

Lemma 1.5 ([12]) Let X be a graph. Then the mapping ¢; is an
isomorphism from X/ps to Iy.

2 Main results

In this section, we will characterize the endomorphism monoid of circulant
complete graph K(n,4). Recall that {i,j} € E(K(n,4)) if and only if
4<)i—jl|<n-—4dforanyije {1,2,--,n}. By K; we denotc a graph
obtained by deleting an edge from K, that is K, = K, — e, where e is
any edge of K,,. For convenience, we view i as i(mod n) for any positive
integer ¢ and view n and 1 as consecutive integers.

Lemma 2.1 Let f € End(K(n,4)). Then

(1) If f(z;) = f(x2) for some 1,72 € V(K(n,4)), then |z, — z2| <3
orn—3< |z —zo| <n—-1.

(2) There arc no distinct 1, T2, 73, 24, 5 € V(K(n,4)) such that f(z,) =
f(z2) = f(z3) = f(za) = f(as)-

Proof (1) Note that {z;,z2} € E(K(n,4)) ifand only if4 < |z, —za| <
n—4. If f(z;) = f(z2), then {z1,z2} ¢ E(K(n,4)) and so |z; — z2| < 3
orn—3< |z -2 £n -1

(2) Tt follows immediately from (1).

To study the endomorphism monoid of K(n,4), we divide it into four
cases, that is, n = 4m, n =4m + 1, n = 4m + 2 and n = 4m + 3, where
m > 2. We first consider the case of n = 4m.

Lemma 2.2 (1) w(K(4m,4)) =m.

(2) There are exactly four subgraphs in K(4m,4) isomorphic to K,
say, < 1,5,---,4m -3 >, < 2,6,---,dm -2 >, < 3,7,--+,4m — 1 > and
<4,8,---,4m >.

(3) K(4m,4) does not contain a subgraph isomorphic to K7, ;.

Proof (1) and (2) are obvious.

(3) Suppose that G is a subgraph of K(4m,4) which is isomorphic to
K..,. Without loss of gencrality, we may assume that G = K, U {i}.
Then 7 is adjacent to exactly m — 1 vertices in K,. By the definition of
K(4m,4) and (2), there is no such vertex, hence (3) holds.
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Lemma 2.3 Let f € End(K(4m,4)). If f(z1) = f(z2) = f(zs) =
f(z4) for some distinct z1, z2, z3,24 € V(K (4m, 4)), then z,, 2o, 23 and z4
are four consecutive nuinbers in V(K (4m, 4)). In this case, p; = {[,i+1,i+
2,i+3),[i+4,4+5,i+6,i+7),- -, [i+4m—4,i+4m—3,i+4m—2,i+4m—-1]}
for some i € {1,2,3,4} and Iy = K,,.

Proof Suppose f(z;) = f(z2) = f(z3) = f(x4) for some 1,22, T3, 24 €
V(K(4m,4)). Then {z;,z;} ¢ Eforanyi,j =1,2,3,4. Hence 2, z2, 23, 24
are four consecutive numbers. Without loss of generality, we suppose that
Ty =% T2=1t+1,z3=1+2and z4 =1+ 3 for some i € V(K (4m,4)).

We claim that f(i +4) = f(i +5) = f(i + 6) = f(i + 7). Otherwise,
there exists t € {4,5,6} such that f(i +t) # f(i +7). Let A = {i +
3,i4+7,---,i44m — 1}. Then the subgraph of K(4m,4) induced by A is
isomorphic to Kr,,. Since i+1 is adjacent to every vertex of A\ {i+3,i+7},
f(i+1) is adjacent to every vertex of f(A)\ {f(i +3), f(+7)}. Note that
{fG+8),f(i +3)} = {f(i + ), f(})} € E. Now f(i +¢t) # fi+7)
implies that f(i +t) € f(A). Hence the subgraph of K(4m,4) induced hy
{f(+¢)} U f(A) is isomorphic to K}, ;. This contradicts Lemma 2.2 (3).
A similar argument will show that f(i+4k) = f(i+4k+1) = f(i+4k+2) =
f(i+ 4k +3) for k = 2,3,.--,m — 1. Therefore p; = {[i,i+ 1,i + 2,7 +
3, [i+4,i+5,i+6,i+7],--,[i+4m—4,i+4m -3,i+4m—2,i+4m —1]}.
Clearly, Iy = K(4m,4)/p; = Kp

Lemma 2.4 Let f € End(K(4m,4)). If |[a],,| < 3 for any a €
V(K(4m,4)) and f(z1) = f(z2) = f(z3) for some z1, T2, z3 € V(K (4m,4)),
then z, z3 and z3 are three consecutive numbers in V(K (4m, 4)).

Proof Suppose f(z1) = f(z2) = f(z3) for some distinct z;,z,z3 €
V(K(4m,4)). By Lemma 2.1, |z;—z;] < 3orn—3 < |z;—z;| < n—1forany
t,5 = 1,2,3. Without loss of generality, we may suppose z, < 3 < =3 and
z) = i. If 71, z2 and 3 are not three consecutive numbers in V(K (4mn,4)),
then z3 = i+3. Since |[a],,| < 3 for any a € V(K (4m, 4)), then there exist
t € {1,2} such that f(i+t) # f(i). Let A= {i+3,i4+4+¢t,i+8+t--,i+
4m — 8,1+ 4m — 4 + t}. It is easy to see that the subgraph of K(4m,4)
induced by A\{i + 3} is isomorphic to K,,—;. Since 7 4+ 3 is adjacent to
every vertex of A\ {i +3,i+4 +¢}, f(i + 3) is adjacent to every vertex of

AN{F(i+3), f(i+4+t)}. Now {f(i+3), f(i+4+t)} = {f(i), f(i+4+1)} €
E implies that the subgraph of K(4m,4) induced by f(A) is isomorphic to
K,,. Since i+t is adjacent to every vertex of A\ {i+3}, f(i+1) is adjacent
to every vertex of f(A)\ {f(i +3)}. Now f(i +t) # f(4) implies that the
subgraph of K(4m, 4) induced by f(A)U{f(i+1)} is isomorphic to K%,

A contradiction.

Lemma 2.5 Let f € End(K(4m,4)). If |[a],,| < 3 for any a €
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V(K(4m,4)) and f(i) = f(i+ 1) = f(i + 2) for some i € V(K(4m,4)),
then py = {[i,i+1,i+2],[¢+3],(+4.44+5,s+6],[i+7],- -, [i+4m—4,i+
4m — 3,i + 4m — 2|, [¢ + 4m — 1]} for some i € {1,2,3,4} and I; = Copm.

Proof Suppose f(i) = f(i + 1) = f(i + 2) for some ¢ € V(K(4m,4)).
Then f(i +4) = f(i +5) = f(i + 6). Otherwise, there exist t € {5,6} such
that f(i+1t) # f(i+4). Let A= {+2,i+10,i+14,---,i+4m—2}. Then
the subgraph of K(4m, 4) induced by A is isomorphic to K,_). Since i +4
is adjacent to cvery vertex of A\ {i+2}, f(i+4) is adjacent to every vertex of

AN\{f(i+2)}. Now {f(i+4), f(+2)} = {f(i+4), f(i)} € E implies that
the subgraph of K(4m, 4) induced by f(A)U{f(i+2)} is isomorphic to K.
Since i+t is adjacent to every vertex of A\{i+2}, f(i+t) is adjacent to every
vertex of f(A)\ {f(i +2)}. Now {f(i +1¢),f(i +2)} = {f(z-i-t f(@)} e E
implies that the subgraph of K(4m,4) induced by f(A) U {f(i +t)} is
isomorphic to K,,. Now f(i + 4) # f(i + t) implies that the subgraph of
K(4m,4) induced by F(A)U{f(i+4), f(i +1t)} is isomorphic to K, ;. A
contradiction.

Since |[al,,| < 3 for any @ € V(K (4m,4)), [i+3],, = {i +3}. A similar
argument will show that [i+7],, = {i+ 7}, f(z +8) = f(i+9) = f(: +10),

., fi4+4m—4) = f(i+4m-=3) = f(i+4m-2), [i+4m-1],, = {z+4m 1}.
Therefore pr={li,i+1,i+2],[i+3],[i+4, z+5 i+6),[i+7),---,[i+4m—
4,i4+4m—3,i+4m — 2}, [i + 4m — 1]}. Clearly, Iy = K(4m,4) /pf & Com.

Lemma 2.6 Let f € End(K(4m,4)). If |[a],,| < 2 for any a €
V(K (4m,4)) and f(zy) = f(z2) for some distinct z,,z2 € V(K (4m,4)),
then |z1 —z2| =1lor |z — 22| =n - 1.

Proof Suppose f(z;) = f(z2) for some z;,z2 € V(K (4m,4)). Then
|z1 — z2] €3 or n—3 < |z — 22| < n — 1. Without loss of generality, we
can suppose r; < T2 and z; = 1. If |[z; —z2| # 1 and |z) —x2| # n—1, then
Ty = i+20r 3 = i+3. Let A = {zo,i+5,1+9- - ,i+4m—7,i+4m-3}. Itis
easy to see that the suhgraph of K(4m,4) induced by A\{z2} is isomorphic
to K, —1. Since z, is adjacent to every vertex of A\ {zq,1 + 5} flz2) is
adjacent to every vertex of f(A)\ {f(z2), f(i+5)}. Now {f(z2), f(i+5)} =
{f(®), f(i+5)} € E implies that the subgraph of K(4m, 4) induced by f(A)
is isomorphic to K. Since i + 1 is adjacent to every vertex of A\ {z2},
f(i+1) is adjacent to cvery vertex of f(A)\ {f(z2)}. Since |[a],,]| < 2 for
any a € V(K(4m,4)), f(i + 1) # f(z2), and so f(i +1) ¢ f(A). Thus the
subgraph of K (4m,4) induced by f(A)U{f(¢+1)} is isomorphic to K7, ,,.
A contradiction. Therefore |z; —z2| =1or |z, —z2| =n — 1.

Lemma 2.7 Let f € End(K(4m,4)). If |[a],,| < 2 for any a €
V(K (4m,4)) and f(i) = f(i + 1) for some i € V(K (4m, 4)) , then
(V) py = {6, i+ 1), [i+2,5+3],[i +4,i+ 5], +6,i+7],---,[{ + dm —
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4,i+4m - 3|, [i +4m — 2,i +4m — 1]} and I; = Cy, or
(2) pr = {[é,i+ 1), [i+2),[i +3], (e +4,i+5], [i+6],[i+7),- -, [i +dm —
4,1 +4m - 3|, [i + 4m - 2], [{ + 4m — 1]} and I; = K(3m, 3).

Proof Suppose f(i) = f(i + 1) for some i € V(K(4m,4)). Then
f(i+4) = f(i +5). Otherwise, Let A= {i+1,i+9,i+13,---,i+4m —
7,1+ 4m — 3}. It is easy to see that the subgraph of K(4m,4) induced
by A is isomorphic to Km_;. Since ¢ + 4 is adjacent to every vertex of
A\ {i+1}, f(i + 4) is adjacent to every vertex of f(A4)\ {f(i +1)}. Now
{£(+4), fi + 1)} = {f(i + 4), f(3)} € E implies that f(4) U {f(i + 4)}
is isomorphic to K. Since i + 5 is adjacent to every vertex of A, f(i + 5)
is adjacent to every vertex of f(A). Now f(i +4) # f(i + 5) implies
that the subgraph of K(4m,4) induced by f(A) U {f(i + 4), f(i + 5)} is
isomorphic to K}, ,,. A contradiction. A similar argument will show that
fli+4k)=f(i+4k+1)fork=2,---,m—1.

Since |[a],,| < 2 for any @ € V(K (4m,4)), by Lemma 2.6, we have
f(i+2) = f(i+3) or [i +2],;, = {i +2}. In the former case, a similar
argument of the first paragraph will show that f(i+4k+2) = f(i +4k+3)
forany k € {0,1,---,m—1}. Therefore py = {[i,i+1], [{+2,i+3], [ +4,i+
5,[64+6,i+7], -, [i+4m —4,i+4m =3, [i +4m —2,i+4m —1]}. Clearly,
Iy = K(4m,4)/ps = Cym. In the later case, we have [i +3],, = {i+3}. If
f(i+4t+2) = f(i+4t+3) for some k € {1,2,---,m—1}. A similar argument
of the first paragraph will show that f(i + 4k + 2) = f(i + 4k + 3) for any
k=0,1,---,m —1. A contradiction. Thus f(i + 4k + 2) # f(i + 4k + 3)
for any k € {0,1,---,m — 1}. Therefore py = {[i,i + 1], [i + 2}, [i + 3], [ +
4,i+5),[i4+6],[i+7],--,[i+4m—4,i+4m - 3], [i + 4m — 2], [i + dm — 1]}.
Clearly, Iy = K(4m,4)/ps = K(3m,3).

Theorem 2.8 Let f € End(K(4m,4)). Then

(1) f € Aut(K(4m,4)), or

(2) py ={li,i+1,i+2,i+3],[i+4,i+5,i+6,i+7],---, i +4m —4,i +
4m —3,i+4m — 2,i + 4m — 1]} for some i € {1,2,3,4} and I; & K,,, or

) pr={li,i+ 1,542, +3),[f+4,+5i+6),[i+ 7], -, [i + 4m —
4,i+4m—3,i+4m~—2],[i+4m—1]} for some i € {1,2,3,4} and I; = Cy,p,,
or

(@) pr={[ii+1), (i +2,i+3),[i+4,i+5),[i+6,i+7), -, [i + dm —
4,i+4m -3, [i +4m — 2,5+ 4m — 1]} for some i € {1,2} and I; = Cz, or

(5) pr = {lt,i + 1, [ + 2, +3), e + 4,i + 5], [ + 6], [¢ + 7),- -+, [s +
4m —4,i+4m — 3|, [i + 4m — 2], [i + 4m — 1]} for some i € {1,2, 3,4} and
I; = K(3m, 3).

Proof It follows directly from Lemmas 2.3, 2.5 and 2.7.
Theorem 2.9 End(K(4m,4)) (m > 2) is regular.
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Proof To prove that End(K (4m,4)) is regular, let f € End(K(4m,4)).
We only need to show that there exist two idempotent endomorphisms g
and h such that p, = py and I, = Ij.

Define a mapping g from V(K (4m,4)} to itself by g(x) = i, where i is
the least number in [z],,. Then it is casy to check g € End(K(4m,4)),
ps=pgand g =g.

If Iy = Ky, then we can define a mapping A from V(K (4m, 4)) to itself

z, ifz e V(Iy),

z-1, ifz¢ V()andz—1€V(y),

r—-2, ifz-i¢V{I;)(i=0,1)andz-2€ V(Iy),
-3, fz—i¢V({I)(i=0,1,2)and x -3 € V().

Then h € End(K(4m,4)) and I, = Iy and h? = h.
If I; = Com, then we can define a mapping h from V(K (4m, 4)) to itself
by

z, if z € V(Iy),
hMz)={ z+1, ifz¢ V({y)andz+1€V(Ip),
z+2, fx+i¢V({I5)(i=0,1)and z+2€ V().

Then h € End(K(4m,4)), I = I; and h? = h.
If I; = K(3m,3), then we can define a mapping h from V(K(4m,4))

to itself by . v
_J =, ifz e i)
M“‘{x+Liu¢vmy

Then h € End(K(4m,4)), I = Iy and h? = h. We complete the proof.

Theorem 2.10 End(K(4m,4)) = ¢End(K(4m,4)), sEnd(K(4m,4)) =
Aut(K(4m, 4)).

Proof Let f € End(K(4m,4)) and a,b € V(I;). In the following, we
divide it into four cases to discuss:

(1) Assume py = {[i,i + 1,5+ 2,i+3],[i + 4,0+ 5,0 +6,i + 7],---,[i +
4m —4,i+4m — 3,i+ 4m — 2,7 + 4m — 1]} for some i € {1,2,3,4}. Then
f~Ya) = {s,s+ 1,5 +2,5s+3} and f~1(b) = {t,t + 1,t + 2,t + 3} for
some s,t € V(K (4m,4)). Clearly, there exists z € f~1(a) such that z is
adjacent to every vertex of f~1(b) and there exists y € f~!(b) such that y
is adjacent to every vertex of f~!(a). Hence f € ¢End(K(4m,4)).

(2) Assume py = {[i,i+1,i+2],[i +3],[{+4,i+5,i+6],[i+7],---,[i +
dm — 4,i + 4m — 3,i + 4m — 2,[i + 4m — 1]} for some i € {1,2,3,4}.
If fol,, = (4.3 + L, +2}, lulp, = {7 +3) or [ul, = {j - 1} for some
j € V(K(4m,4)), then {m,n} ¢ E for any m € [z],, and n € [y],,.
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Since f is regular, f € hEnd(K(4m,4)). Hence {f(z), f(y)} ¢ E. Let
a,b € V(Iy) and {a,b} € E(K(4m,4). If f~1(a) = {s,s + 1,s + 2} and
f1(b) = {t,t + 1, + 2} for some s,t € V(K (4m,4)), then there cxists
x € f~!(a) such that z is adjacent to every vertex of f~1(b) and there exists
y € f71(b) such that y is adjacent to every vertex of f~1(a); If f~!(a) =
{s} and f~1(b) = {t} for some s,t € V(K (4m,4)), then {s,t} € E; If
f~Ya) = {s,s+ 1,5+ 2} and f~1(b) = {t} for some s,t € V(K (4m,4)),
by discuss above, t # s+3 and t # s— 1. So {s,t} € E, {s+1,t} € E and
{s+2,t} € E. Hence f € ¢End(K(4m,4)).

(3) Assume py = {[i,i+1],[t +2,i+ 3], [i +4,i+5] -+, [ +4m — 2,5 +
4m—1}} for some i € {1,2}. If [z],, = {t,t+1} and [y),, = {t+2,t+3} for
some t € V(K (4m,4)), then {m,n} ¢ E for any m € [z],, and n € [y],,.
Since f is regular, f € hEnd(K(4m,4)). Hence {f(z),f(y)} ¢ E. Let
a,b € V(Iy) and {a,b} € E(K(4m,4). Then f~1(a) = {s,s + 1} and
FYH(b) = {t,t+1} for some s,t € V(K (4m,4)). By discuss above, ¢ s+ 2
and s # t + 2. So there exists z € f~!(a) such that z is adjacent to every
vertex of f~1(b) and there exists y € f~!(b) such that y is adjacent to
every vertex of f~!(a). Hence f € ¢End(K (4m,4)).

(4) Assume py = {[¢,i+1], [i+2], [{+3], [i+4,i+5), [{+6], [i+7],---, [i+
4m — 4,0+ 4m — 3], [i + 4m — 2], [¢ + 4m — 1]} for some i € {1,2,3,4}. If
(2], = {4,5+ 1} and [y],, = {j +t} (t = —2,-1,2,3) for some j €
V(K (4m,4)), then {m,n} ¢ E for any m € [z],, and n € [y),,. Since f is
regular, f € hEnd(K(4m,4)). Hence {f(z), f(y)} ¢ E. Let a,b € V(If)
and {a,b} € E(K(4m,4). If f~}(a) = {s,s + 1} and f~'(b) = {t,t + 1}
for some s,t € V(K (4m,4)), then there exists z € f~!(a) such that z is
adjacent to every vertex of f~!(b) and there exists y € f~!(b) such that
y is adjacent to every vertex of f~!(a); If f~!(a) = {s} and f~1(b) = {t}
for some s,t € V(K (4m,4)), then {s,t} € E since f is half-strong; If
f1(a) = {s,s + 1} and f~1(b) = {t} for some s,t € V(K(4m,4)), hy
discuss above, t # s—2,5—1,5+2,5+3. So {s,t} € E and {s+1,t} € E.
Hence f € gEnd(K (4m,4)).

Let f € sEnd(K(4m,4)). If f(z,) = f(z2) for some z1,z2 € V(K (4m, 4)),
then N(z;) = N(zz). Note that there are no two vertices in K(4m, 4)
having the same adjacent set. Hence f(z;) # f(zg) for any z,,z9 €
V(K (4m,4)) and so f € Aut(K (4m,4)).

The next theorem characterizes the automorphism group of K(n,4).

Define
A=(1 2 3 ... n—-2 n-1 n)
2 3 4 .- n-1 n 1
and
B=(1 2 3 ... n-2 n-1 n)
1 n n-1 ... 4 3 2 )
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Then A, B € Aut(K(4m,4)), A® = (1), B2 = (1), BA = A™'B and
A* £ (1) for any 0 < k < n (where (1) is the identity mapping of V).

Theorem 2.11 Aut(K(n,4)) = D,, the dihedral group of degree n.

Proof Let f € Aut(K(n,4)) with f(1) = j for some j € V(K(n,4)).
Since n — 2,n — 1,n,2,3,4 are the only six vertices in V(K (n,4)) that are
not adjacent to 1, f(n —2), f(n — 1), f(n), f(2), f(3), f(4) are the only six
vertices in V(K (n,4)) that are not adjacent to j. Thus f(n — 2), f(n —
l)if(n)’f(2)sf(3)af(4) € {] - 3$.7 - 27] - 17.7 + 1’] + 2’.7 + 3}° Note
that {n —2,t} € E fort =2,3,4 and {4,n —k} € E for k =0,1,2. Then
f(n—2) is adjacent to f(t) for t = 2,3,4 and f(4) is adjacent to f(n—k) for
t=0,1,2. Sinceonly j—3 and j+3in {j —-3,7-2,7—-1,7+1,7+2,5+3}
are adjacent to threc vertices in {j — 3,5 — 2,7 — 1,5 + 1,5 + 2,5 + 3},
fin—=2),f(4)e{j—-3,j+3}. If f(n—2)=35—3,then f(4) =5 +3. It
follows that f(n—1), f(n), f(2), f(3) € {i—2,5—1,5+1,7+2}. Note that
{n—1,3} € E. Then {f(n ~ 1), f(3)} € E. Since only j —2 and j + 2 in
{i—2,7—-1,5+1, j+2} are adjacent, f(n—1), f(3) € {j—2,j+2}. It is easy
to see that {n — 1,4} € E. Then {f(n - 1), f(4)} = {f(n—1),j+3} € E.
So f(n—1) = j —2 and f(3) = j + 2. Now it follows that f(n), f(2) €
{5—1,7+1}. Note that {n,4} € E. Then {f(n), f(4)} = {f(n),j+3} € E.
So f(n) = j—1and f(2) = j+1. Since f(2) = j+1, f({n—-1,n,1,3,4,5}) =
{i—-27-1,5,+2,5+3,5+4}. Hence f(5) = j+4. A similar argument
will show that f(t) = j+¢—1 for any t € {1,2,---,n}. Therefore f = A7
If f(n—2) = j+3, then f(4) = j — 3. Similarly, we can show that
filn-1) =342, f(n)=7+1, f(2) =j—1and f(3) = j — 2. Since
f(2) = .7 - 1: f({n_ 1,n,1,3,4,5}) = {.7 - 47.7 —31j - 2,j’j + lsJ +2}
Hence f(5) = j—4. A similar argument will show that f(t) = j—t+1 for any
te {1,2,---,n}. Therefore f = BAJ. Consequently, Aut(K(n,4)) = D

Theorem 2.12 | End(K(4m,4)) |= 16m! + 248m.

Proof Let f € End(K(4m,4))\ Aut(K(4m,4)). If py = {[i,i + 1,i +
2,i+3), [i+4,i+5,i+6,i+7),- - -, [i+4m—4,i+4m~-3,i+4m—2,i+4m~1]},
then Iy = K,,. Now it is easy to see that there arc four py wheni =1,2,3,4
and there are four subgraphs in K(4m,4) isomorphic to K,,. Take one ps
and one I; of them. Then the number of mappings from K(4m,4)/ps to
Iy is equal to the number of the automorphisms of graph Iy. It is m! when
Iy = K,,. Hence there are 16m! different endomorphlsms in this case. If
p;—{[zz+lz+2] E+3),[i+4,i+5i+6],[i +7],---,[i+dm - 4,i+
4m — 3,i + 4m — 2], [i + 4m — 1]}, then I; = Cop. Now it is casy to see
that there are four py when ¢ = 1,2,3,4 and there are only six subgraph
in K(4m,4) isomorphic to Com. Take one p; and one Iy of them. Then
there are 4m cases to map K(4m,4)/p; to Cam. Hence there are 96m
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different endomorphisms in this case. If py = {[i,i + 1],[¢ + 2, + 3], [¢ +
4,8 +5),[i+6,i+7], -, [i+4m —4,i+4m 3|, [i + dm — 2,i + 4m — 1]},
then I, = Com. Now it is easy to see that there are two p; when i = 1,2
and there are only six subgraph in K(4m, 4) isomorphic to Ca,,. Take one
ps and one Iy of them. Then there are 4m cases to map K(4m,4)/p;
to Cay,. Hence there are 48m different endomorphisms in this case. If
pr={li+1},[t+2),[i +8),[i +4,i+ 5], i +6],[i + 7], -, i +dm — 4,5 +
4m — 3, [i + 4m — 2], [i + 4m — 1]}, then I; = K(3m,3). Now it is easy to
sec there are four py when ¢ = 1,2, 3,4 and there are only four subgraphs
in K(4m,4) isomorphic to K (3m,3). Take one ps and one Iy of them. By
Lemma 1.2, there are 6m cases to map K(4m,4)/ps to K(3m,3). Hence
there are 96m different endomorphisms in this case . By Theorem 2.11,
| Aut(K(4m,4)) |= 8m. Therefore | End(K(4m,4)) |= 16m! + 248m.

Next we consider the case of n = 4m + 1. It is easy to see that K(9,4)
is Co. Since any odd cycle is unretractive, in the following, let m > 3.

Lemma 2.13 (1) w(K(4m + 1,4)) = m.

(2) K(4m + 1,4) does not contain a subgraph isomorphic to Co,41.

(3) For any clique K, of size m, there are only two vertices z;,zs €
V(K (4m+1,4))\ K, that are adjacent to m — 1 vertices of K,,. They are
non-adjacent.

(4) For any clique K, of size m, there are no two vertices z,z2 €
V(K (4m+1,4))\ K, that are adjacent to the same m — 1 vertices of K,,.

Proof (1) and (2) are obvious.

(3), (4). It is easy to see that the clique K,, of size m has form <
4,i+5,i+9,---,i+4m — 3 > for some i € V(K (4m + 1,4)). Thus only
i+ 1,i+4€ V(K(4m + 1,4)) \ K, that are adjacent to m — 1 vertices of
Km. Clearly, {i + 1,i + 4} ¢ E. In particular, i + 1 is adjacent to every
vertex of K, \ {¢} and i + 4 is adjacent to every vertex of K, \ {i + 5}.

Lemma 2.14 Let f € End(K(4m + 1,4)). Then f(i) # f(i + 3) for
any ¢ € V(K(4m + 1,4)).

Proof Suppose f(i) = f(i + 3) for some i € V(K(4m + 1,4)). Let
A= {i+4,i+8,---,i+4dm}. It is easy to sec that the subgraph of
K(4m + 1,4) induced by A is isomorphic to K,,. Since 7 + 3 is adjacent
to every vertex of A\ {i + 4}, f(i + 3) is adjacent to every vertex of
FAN{f(i+4)}. Now {f(i+3), f(:+4)} = {F(%), f(i+4)} € E implies that
the subgraph of K(4m + 1,4) induced by f(A) U {f( + 3)} is isomorphic
to K,pyy. A contradiction.

Lemma 2.15 Let f € End(K(4m + 1,4)). Then f(i) # f(i + 2) for
any i € V(K (4m + 1,4)).
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Proof Suppose f(i) = f(i + 2) for some i € V(K (4m + 1,4)). In the
following, we will show that f(i +4) = f(i + 6).

Suppose f(i+4) # f(i+6). Let A = {i+2,i+86, - -,i+4m—2}. Then the
subgraph of K(4m + 1,4) induced by A is isomorphic to Kp,. Since i +4 is
adjacent to every vertex of A\{i+2,i+86}, f(i+4) is adjacent to every vertex
of f(AN\{f(i+2), f(i+6)}. Now {f(i+4), f(i+2)} = {f(i+4), f(i)} € E
implies that the subgraph of K(4m + 1,4) induced by f(A) U {f(i +4)} is
isomorphic to K7, ;.

We claim that f(i+4m—1) = f(i+4m—2). Otherwise, since i+4m—1
is adjacent to every vertex of A\ {i +4m — 2}, f(i 4+ 4m — 1) is adjacent to
every vertex of f(A)\ {f(i+4m —2)}. Now f(i+4m —1) # f(i+4m—2)
implies that the subgraph of K (4m+1,4) induced by f(A)U{f(i+4m—1)}
is isomorphic to K, ,,. Note that {f(i +4), f(i +4m — 1)} € E. This is
a contradiction to Lemma 2.13(3). Now f(i + 4m — 5) = f(i + 4m — 6)
for any m > 4. Otherwise, since ¢ + 4m — 5 is adjacent to every vertex of
A\ {i +4m - 2,i + 4m — 6}, f(i + 4m — 5) is adjacent to cvery vertex of
FAN{f(i+4m-2), f(i+4m—6)}. Now {f(i+4m—5), f(i+4m—2)} =
{f(i+4m—5), f(i+4m—1)} € E implies that the subgraph of K(4m+1,4)
induced hy f(A) U {f(i + 4m — 5)} is isomorphic to Kj,,,. Note that
{fG +4), f(i + 4m — 5)} € E. This is a contradiction to Lemma 2.13(3).
A similar argument will show that f(i + 4k + 2) = f(i + 4k + 3) for any
k=23,--,m-3 Now f(i +6) = f(t + 7). Otherwise, since i + 7
is adjacent to every vertex of A\ {i + 6, + 10}, f(i + 7) is adjacent to
every vertex of f(A)\ {f(i +6),f(i+10)}. Now {f(: +7), f(i + 10)} =
{f(i+7), f(i + 11)} € E implies that f(i + 7) is adjacent to every vertex
of f(A)\ {f(i + 6)}. Note that f(i + 4) is adjacent to every vertex of
f(A)\ {f(i + 6)}. This is a contradiction to Lemma 2.13(4).

We claim that f(i +5) = f(i + 6) or f(i +5) = f(i +4). Otherwise,
since 1+ 5 is adjacent to every vertex of A\ {+2,i+6}, f(i+5) is adjacent
to every vertex of f(A)\ {f(: +2), f(¢ + 6)}. Now {f(i +5),f(i +2)} =
{f(i + 5), f(i)} € E implies that f(i + 5) is adjacent to every vertex of
f(A)\ {i + 6}. This is a contradiction to Lemma 2.13(4).

If f(i +5) = f(i +6), then f(i +9) = f(i + 10). Otherwise, since i + 9
is adjacent to every vertex of A\ {i + 6,7 + 10}, f(¢ + 9) is adjacent to
every vertex of f(A)\ {f(i + 6), f(i + 10)}. Now {f(: +9),f(i + 6)} =
{f(i4+9), f(i+5)} € E implies that the subgraph of K(4m + 1,4) induced
by f(A)U{f(i+9)} is isomorphic to K}, . Note that { f(i+9), f(i+4)} €
E. This contradicts Lemma 2.13(3). A similar argument will show that
Fi+4k+1) = f(i + 4k +2) for any k = 3,---,m. If f(i +3) = f(i +4),
then {f(i +4),f(i +6)} = {f(i +3),f(i+7)} € E. Since f(i +4) is
adjacent to every vertex of f(A)\ {f(¢+6)}, the subgraph of K(4m +1,4)
induced by f(A) U {f(i + 4)} is isomorphic to K, 4+1. A contradiction.
Therefore py = [§,i+1,i +2],[i + 3], [i + 4}, (i + 5,0 + 6,4+ 7], [i + 8], [i +
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9,i+10,i 4+ 11),--+,[i + 4m — 8, +4m — 2,i + 4m — 1], [i + 4m]. Clearly,
Iy = K(4m +1,4)/ps = Copmy1. This contradicts Lemma 2.13(2).

If f(i+5) = f(i+4), then f(i+1) = f(i +2). Otherwise, since i + 1 is
adjacent to every vertex of A\ {i + 2}, f(i + 1) is adjacent to every vertex
of f(A)\ {f(i +2)}. Thus f(i + 1) and f(i + 4) are adjacent to m — 1
vertices of f(A). Note that {f(i +1), f(i +4)} = {fi + 1), f(i +5)} € E.
This contradicts Lemma 2.13(3). We claim that f(i + 4k) # f(i + 4k — 1)
for any k = 2,3,.--,m. Otherwise, suppose f(i + 4t) = f(i + 4t ~ 1) for
some t € {2,3,---,m} and f(i +4r) # f(i + 4r — 1) for any r < t. Since
JG+4t-1) = fi+4t-2), fG+4t) = f(i+4t—1) = f(i + 4t - 2).
By our hypothesis f(i + 4¢ — 4) # f(i + 4t — 5). Note that f(i + 4t —
5) = f(i + 4t —6), so f(i + 4t —4) # f(i+ 4t — 6). Since i + 4t — 4
is adjacent to every vertex of A\ {i + 4t — 2,i + 4t — 6}, f(i + 4t — 4)
is adjacent to every vertex of f(A)\ {f(i + 4t - 2), f(i + 4¢ — 6)}. Now
{fE+4t—-4), f(i +4t-2)} = {f(i +4t - 4), f(i+4t)} € E implies that the
subgraph of K'(4m + 1,4) induced by f(A)U {f(i + 4t — 4)} is isomorphic
to K, .. Note that {f(i + 4t — 4), f(i + 4)} € E for any ¢t > 2. This
contradicts Lemma 2.13(3). Note that f(i + 4) is adjacent to every vertex
of f(A)\ (f(i+6)}. If f(i+3) = f(i +4), then {f(i+4),f(i+6)} =
{f(: +3),f(¢ + 7)} € E. Thus the subgraph of K(4m + 1,4) induced
by f(A) U {f(i + 4)} is isomorphic to Kmm4+1. A contradiction. Therefore
f(i+3) # f(i+4). Let B = {i+2,i+4,i+6,---,i+4m—2, i+4m, i+3)}. By
the discussion above, f(z1) # f(z2) for any z,,z2 € B and z; # 2. Then
f(B) contains a subgraph isomorphic to Czp,4;. This is a contradiction to
Lemma 2.13(2). This contradiction yields that f(i +4) = f(i + 6).

A similar argument will show that f(i + 8) = f(i + 10), ---, f(i +
dm —4) = f(i4+4m - 2), fi+4m) = f(i+1), f(E+3) = fGE+5), ---,
fi+4m —1) = f(i). Thus f(i +4m — 1) = f(i) = f(i +2). Thisis a
contradiction since {i 4+ 4m — 1,7+ 2} € E. The proof is complete.

Lemma 2.16 Let f € End(K(4m + 1,4)). Then f(i) # f(i + 1) for
any ¢t € V(K(4m + 1,4)).

Proof Suppose f(i) = f(i + 1) for some i € V(K(4m + 1,4)). In the
following, we show that f(i +4) = f(i + 5).

Suppose f(i+4) # f(i+5). Let A = {i+1,i+9,i+13---,i+4m—3}. It
is easy to see that the subgraph of K(4m+1,4) induced by A is isomorphic
to Kyn,—1. Since ¢ + 4 is adjacent to every vertices of A\ {5 + 1}, f(i + 4)
is adjacent to every vertex of f(A)\ {f(i+1)}. Now {f(i +4), f(i+1)} =
{f(i +4),f(i)} € E implies that the subgraph of K(4m + 1,4) induced
by f(A) U {f(i + 4)} is isomorphic to K. Since i + 5 is adjacent to
every vertices of A, f(i + 5) is adjacent to every vertex of f(A). Note
that f(i +4) # f(¢ + 5). Hence the subgraph of K (4m + 1,4) induced hy
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fAYU{f(i+4), f(: +5)} is isomorphic to K, , .

We claim that f(i +4m — 2) = f({i + 4m — 3). Otherwise, let B = AU
{i+4}. Then the subgraph of K(4m + 1,4) induced by f(B) is isomorphic
to K,,. Since i + 4m — 2 is adjacent to every vertices of B\ {i + 4m — 3},
f(i+ 4m — 2) is adjacent to every vertex of f(B)\ {f(i + 4m — 3)}. Since
f(i +4m — 2) # f(i +4m — 3), the subgraph of K(4m + 1,4) induced
by f(B)U {f(i + 4m — 2)} is isomorphic to K, ,. Note that {i + 5, +
4m — 2} € E for any m > 3. This contradicts Lemma 2.13(3). Now
f(i+4m —6) = f(i +4m —7) for any m > 4. Otherwise, since ¢ +4m — 6
is adjacent to every vertices of B\ {i +4m — 3,{+ 4m — 7}, f(i 4+ 4m — 6)
is adjacent to every vertex of f(B)\ {f(i +4m —3), f(i + 4m — 7)}. Now
{fi+4m —6), f(i + 4m — 3)} = {f(i + 4m — 6), f(i + 4m — 2)} € E and
f(i +4m — 6) # f(i + 4m — 7) implies that the subgraph of K(4m + 1,4)
induced by f(B) U {f(i + 4m — 6)} is isomorphic to K, ,,. Note that
{f(Gi + 4m — 6), f(i + 5)} € E for any m > 4. This contradicts Lemma
2.13(3). A similar argument will show that f(i 4+ 4k — 2) = f(i + 4k — 3)
fork=3,4,---,m—1.

By Lemina 2.15, f(i + 6) # f(i +4). Since i 4+ 6 is adjacent to every
vertices of B\ {i +4,i + 9}, f(¢ + 6) is adjacent to every vertex of f(B)\
{fG + 4), f(i + 9)}. Note that {i +6,i+9} = {i +6,i + 10} € E. If
f(i +5) # f(i +6), then f(i + 5) and f(i + 6) are adjacent to the same
m — 1 vertices of clique f(B). This contradicts Lemma 2.13(4). Therefore
f(i+5) = f(i+6).

Let C = AU{i+5}. It is easy to see that the subgraph of K(4m+1,4)
induced by C is isomorphic to K,,. Then f(C) is also isomorphic to K,,.
Since f(i) = f(i + 1) and f(i +5) = f(i + 6), by Lemma 2.15, f(i + 2) #
f(i+1) and f(i +4) # f(i + 5). Hence f(i +2), f(i +4) ¢ f(C). Since
i+ 2 is adjacent to every vertices of C \ {i + 1,74+ 5}, f(¢ + 2) is adjacent
to every vertex of f(C)\ {f(i +1),f(i + 5)}. Note that {i + 1,7 + 5} =
{i+1,i+6} € E. Then f(i+2) is adjacent to every vertex of f(C)\{f(i+1)}.
A similar argument will show that f(i + 4) is adjacent to every vertex of
FION{f(E+5)}. Thus f(C) C N(f(i+2))UN(f(i+4)). By Lemma 2.13(3),
{fi +2),f(i +4)} ¢ E. Without loss of generality, suppose f(i + 2) <
f(i+4) and f(i+2) = j. Then f(i+4) € {j+1,5+2,j+3}. If f(i+4) = j+1,
then NGJUN@G +1) ={j+4,7+5,---,7 +4m — 2}. But the vertices
in {j+4,7+5,--+,7 +4m — 2} can not induced a subhgraph isomorphic
to K. A contradiction. If f(i +4) = j+ 2, then NG)UN(F +2) =
{j+4,5+5,--,j+4m—1}. But the vertices in {j+4,j+5,---,j+4m—1}
can not induced a subgraph isomorphic to K,,. A contradiction. Therefore
f(i+4)=37+4+3. Now NGUN(G+3)={j+4,j+5,--,j+4m}. Since
only {j +4,7+8,---,j+4m} C { +4,j +5,---,j +4m} can induced a
subgraph isomorphic to K, f(C) = {j+4,j +8,---,5 + 4m}. Note that
only 7 +4 € f(C) is not adjacent to j + 3 and only j + 4m € f(C) is not
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adjacent to 7, then f(i +5) = j+4 and f(i + 1) = 7 + 4m. Since i + 3
is adjacent to every vertex of C\ {i + 1,i + 5}, f(i +3) € {j + 1,5 + 2}.
Without loss of generality, we may suppose that f(i +3) = j + 1. Since
fli+4k—-2) = f(i+ 4k - 3) for k = 3,4,---,m — 1, by Lemma 2.15,
f(i+4k—-3) # f(i+4k —4) for k = 3,4,---,m — 1. Since i + 8 is
adjacent to every vertices of C \ {i + 5,7 + 9}, f(i + 8) is adjacent to
every vertex of f(C)\ {f(¢ + 5), f(: + 9)}. Note that {i + 4,i + 8} € E,
then f(i+8) = j+7 and f(i+9) = j +8. A similar argument will
show that f(i +4t —3) = j+4t—4 and f(i + 4t - 4) = j + 4t - 5 for
t =4,---,m. Since i+4m is adjacent to every vertex of C\{i+1,i+4m—3},
f(i+4m) is adjacent to every vertex of f(C)\{f(i+1), f(i+4m—3)}. Thus
J(i+4m) € {j+4m -3, j+4m—4,j+4m—5}. Now {i+4m,i+4m—-4} € E
implies that f(i + 4m) = j + 4m — 1. Note that {i + 3,i+ 4m} € E, but
now {f(i +3), f(i + dm)} = {j + 1,7 + 4m — 1} ¢ E. This contradiction
yields that f(i +4) = f(i + 5).

A similar argument will show that f(i +8) = f(i +9), f(: + 12) =
FE+13), -+, f(i+4m) = f(i+4m+1). Thus f(i) = fi +1) = f(i +4m).
Note that i + 1 = (¢ + 4m) + 2. This contradicts Lemma 2.15. The proof
is complete.

Theorem 2.17 K(4m + 1,4) is unretractive.
Proof It follows directly from Lemmas 2.1, 2.14, 2.15 and 2.16.

Lemma 2.18 (1) w(K(4m +2,4)) =m.

(2) There are only two subgraphs in K (4m+ 2, 4) isomorphic to Comy1,
say, Gy =< 1,3,---,dm+ 1> and G2 =< 2,4,---,dm + 2 >.

(3) For any t € V(K (4m +2,4))\ G: (i = 1,2), t is adjacent to 2m — 3
vertices of G;.

(4) w(K(4m + 3,4)) = m.

Proof (1), (2) and (4) are obvious.
(3) It is easy to see that ¢ is adjacent to exactly G;\ {t+1,¢—1,¢+3,t—3}.

Lemma 2.19 Let f € End(K(4m + 2,4). If f(z,) = f(z2) for some
z1,z2 € V(K(4m + 2,4)), then |z —x2| =1 or |z) — 29| =n — 1.

Proof Let f € End(K(4m + 2,4)) and z,z2 € V(K (4m + 2,4)) be
such that f(z;) = f(z2). Without loss of generality, we suppose z; < 2
and z; = i. If |2y — 22| # 1 and |21 —22] # n — 1, then o = i + 2
orzy =i+3. Let A= {i,i+4,---,i+4m — 4}. Then the subgraph of
K(4m+2,4) induced by A is isomorphic to K,,. Since i +4m is adjacent to
every vertex of A\ {i}, f(i+4m) is adjacent to every vertex of f(A)\{f(¢)}.
Now if zp = i + 2, then {f(i + 4m), f(i)} = {f(i + 4m), f(: + 2)} € E; if
x2 =i+ 3, then {f(i + 4m), f(i)} = {f(¢ + 4m), f(i + 3)} € E. Thus the
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subgraph of K(4m + 2,4) induced by f(A)U {f(i + 4m)} is isomorphic to
K.41. A contradiction. Therefore |z; — :c2| =lor|z; —z2|=n-1.

Lemma 2.20 Let f € End(K(dm + 2,4)). If f(i) = f(i + 1) for some
i€ V(K(4m+2,4)), then py = {[¢,i+1),[+2,i+3],[¢ +4,i+5],[¢ +6,i+
7, [f+4m — 2,i + 4m — 1], [i + 4m,i + 4m + 1]} and Iy = Comnyy-

Proof Suppose f(i) = f(i + 1) for some i € V(K (4m + 2,4)). Then
fi+4)= f(i+5).

Suppose for contradiction that f(i +4) # f(i + 5). First we claim that
f(i+3) # f(i+4). Otherwise, let A = {i+3,4+7,-,i4+4m~1}. Then the
subgraph of K(4m + 2,4) induced by A is isomorphic to K,,. Since i 41 is
adjacent to every vertex of A\ {i+3}, f(¢+1) is adjacent to every vertex of

AN\{f(E+3)}. Now {f(i+1), f(i+3)} = {f(4), f(i+4)} € E implics that
the subgraph of K(4m +2,4) induced by f(A)U{f(i+1)} is isomorphic to
Kma+1. A contradiction. Let B = {i+1,i+3,---,i+4m—1,i+4m+1}. It
is easy to see that the subgraph of K(4m+2,4) induced by B is isomorphic
to Camt+1. By Lemma 2.18(2), there are only two subgraphs in K(4m +
2,4) isomorphic to Camq1. Furthermore, they are induced subgraphs of
K(4m+2,4). By Lemma 2.19, f(z1) # f(z2) for any z,,z2 € B. Hence the
subgraph of K(4m + 2,4) induced by f(B) is isomorphic to Cam+1. Since

f(i+4) # f(i+5) and f(z+4) # f(i+3), by Lemma 2.19, f(i+4) ¢ f(B).
Since i + 4 is adjacent to every vertex of B\ {i +1,i+3,i+5,i+ 7}, f(i+4)
is adjacent to every vertex of f(B)\ {f(¢ +1), f(i +3),f(¢+5),fE+T7)}.
Now {f(i + 4), f(i + 1)} = {f(i + 4), f(©)} € E implics that f(i + 4) is
adjacent to 2m — 2 vertices of f(B). This is a contradiction to Lemma
2.18(3). Therefore f(i +4) = f{i + 5).

A similar argument will show that f(i +8) = f(¢ +9), -+, f(i+4m) =
fG+dm+1), fi+2) = f(i+3), -+, f(i +4m — 2)—f(i+4m—1).
Therefore py = {[i,i+1),[f+2,i+3),[{+4,44+5],[{+6,i+7],---, [{ +4m —
2,i+4m—1],[i+4m,i+4m+1]}. Clearly, Iy = K(4m+2, 4)/pf 2 Com+1-

Theorem 2.21 Let f € End(K(4m+ 2,4)). Then

(1) f € Aut(K(4m +4,4)), o

(2) py ={lz, i+ 1], +2, z+3] [i+4,i+5,[i+6,i+7,---,[i +4m —
2,i+4m — 1], [i + 4m,i + 4m + 1]} for some i € {1,2} and I —CQm+]

Proof It follows directly from Lemmas 2.1, 2.19 and 2.20.
Theorem 2.22 End(K(4m + 2,4)) (m 2> 2} is regular.

Proof To prove End(K(4m + 2,4)) is regular, let f € End(K(4m +
2,4)) \ Aut(K(4m + 2,4)). We only need to show that there exist two
idemnpotent endomorphisins g and h such that p, = py and I, = Iy.

Define a mapping g from V(K (dm + 2,4)) to itself by g(x) = ¢, where ¢
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is the odd number in [z],,. Then it is easy to check g € End(K (4m+2,4)),
ps =pg and g° = g.

Now Iy = Cypy1- By Lemma 2.18, the subgraphs of K (4m + 2,4)
isomorphic to Copp,y; is Gy or Gs.

Define a mapping h from V(K (4m + 2,4)) to itself hy

if z € V(I),
h(z) = { ro1 ifag V(i)

Then h € End(K(4m + 2,4)), I, = I; and h? = h.

By Lemma 1.1 and Theorem 2.21, there are only two D-classes in M =
End(K(4m + 2,4)), say,

Ji={flI; 2 Comt1} and Jo={f|I; = K(4m +2,4)}.
It is clear that Jo = Aut(K(4m + 2,4)).
Fori=1,2, let
pi={li,i+1],[i+2,i4+3],---,[i+4m —2,i+dm— 1], [i + dm,i +4m +1]}.

Then by Lemma 1.1 and Theorem 2.21, there are two R-classes and two
L-classes in Jy, p; determines an L-class Ly; and G; determines an R-class
R, j in J;. Let

poo (i1 i+2 43 o diddm itdm+1 )

TN E i i42 i42 - id+dm i+4m '
b i i+l i+2 i+3 -+  i+d4m  i+4dm+1
2 i+1 441 i+3 i4+43 -+ i+dm+1 i+4dm+1 /-

Denote e;; = Ay, €12 = hja, €21 = hoa, €39 = hoy. Then it is easy to
verify that e;; (i, = 1,2) is the idempotent endomorphism in Ly; N Ry ;.
Therefore every H-class in J; is a maximal subgroup of End(K (4m+2,4)).
_ Fori,j=1,2 fe€ LiiNRyj, letj be the automorphism of G; such that
f(s) = f(s). Then f = fe;; and {f|f € L1 NV Ry;} = Aut(G;) = Dopmy1,
the dihedral group of degree 2m + 1. It follows that L; N R, j = Damyreij.
The D-structure of End(K(4m + 2,4)) is shown as in Figure 1.
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D4m+2
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p1 p2

G Damiire1nn | Dam+ier2

J

G2 Damyre21 | Damtie22

Figure 1 Structure of End(K(4m + 2,4))

Recall that if every H-class in a semigroup S is a group, then S is a
complete regular semigroup. We have the following theorem.

Theorem 2.23 End(K(4m + 2,4)) is completely regular.

Recall that if @ and b are D-equivalent elements in a semigroup S, then
|Hy| = |Hp|. We have the following theorem.

Theorem 2.24 | End(K(4m + 2,4)) |= 24m + 12.

Proof Clearly, there are two D—classes J; and Ja in End(K(4m+2, 4)).
It follows that |J;| = 4|Dam+1| = 16m + 8. By Lemma 2.12, |J2| = 8m +4.
Therefore | End(K(4m + 2,4)) |= || + |J2] = 24m + 12.

Theorem 2.25 End(K(4m+2,4)) = gEnd(K(4m+2,4)), sEnd(K(4m
+2,4)) = Aut(K(4m + 2,4)).

Proof Let f € End(K(4m + 2,4)) \ Aut(K(4m + 2,4)). Then p; =
{[,i+1),[i+2,i+3],[i+4,i+5)- -+, [i+4m,i+4m+1]} for some i € {1,2}.
If [z],, = {t,t+ 1} and [y],, = {t +2,t + 3} for some t € V(K(4m +2,4)),
then {s,k} ¢ E for any s € [z],, and k € [y],,. Since f is regular,
f € hEnd(K(4m + 2,4)). Hence {f(z), f(y)} ¢ E. Let a,b € V(I;) and
{a,b} € E(K(4m+2,4)). Then f~1(a) = {s,s+1} and f~!(b) = {¢t,t+ 1}
for some s,t € V(K(4m +2,4)). By discuss above, t # s+2 and s # t +2.
So there exists z € f~!(a) such that z is adjacent to every vertex of f~!(b)
and there exists y € f~!(b) such that y is adjacent to every vertex of
f~Ya). Hence f € gEnd(K(4m + 2,4)).

Since there are no two vertices in K(4m+2, 4) having the same adjacent
set, sEnd(K (4m + 2,4)) = Aut(K(4m + 2,4)).

Theorem 2.26 K(4m + 3,4) is unretractive.

Proof Let f € End(K(4m + 3,4)). If there exist z1,z2 € V(K (4m +
3,4)) such that f(z;) = f(z2), by Lemma 2.1, |[; — 22| £ 30orn—-3 <
|zy — 22| € n — 1. Without loss of generality, we suppose z; < z2 and
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zy =4 Thenzy =i+ 1, 0orz; =i+2 orazg =i+3 Let A=
{i,i+4,---,i+4m—4}. It is easy to see that the subgraph of K (4m +3,4)
induced by A is isomorphic to K. Since i + 4m is adjacent to every
vertex of A\ {i}, f(i 4+ 4m) is adjacent to every vertex of f(A)\ {f()}.
Now if z3 = i 4 1, then {f(i 4+ 4m), f(i)} = {f(i + 4m), f(i + 1)} € E; if
T2 =1i+2, then {f(i+4m), f(i)} = {f(i+4m), f(i+2)} € E; if x5 = i +3,
then {f(i + 4m), f(i)} = {f(i + 4m), f(i + 3)} € E. Thus the subgraph
of K(4m + 3,4) induced by f(A) U {f(i + 4m)} is isomorphic to K,.,;.
A contradiction. Hence f is a bijective from V(K (4m + 3,4)) to itself.
Therefore K(4m + 3,4) is unretractive.
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