FAMILIES OF GENERATING FUNCTIONS FOR THE
JACOBI AND RELATED MATRIX POLYNOMIALS
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ABSTRACT. The Jacobi matrix polynomials and their orthogonality
only for commutative matrices was first studied by Defez et. al.
{Jacobi matrix differential equation, polynomial solutions and their
properties. Comput. Math. Appl. 48 (2004), 789-803]. It is known
that orthogonal matrix polynomials comprise an emerging field of
study, with important results in both theory and applications con-
tinuing to appear in the literature. The main object of this paper is to
derive various families of linear, multilateral and multilinear generat-
ing functions for the Jacobi matrix polynomials and the Gegenbauer
matrix polynomials. Recurrence relations of Jacobi matrix polyno-
mials are obtained. Some special cases of the results presented in
this study are also indicated.

1. INTRODUCTION

The book by Gohberg, Lancaster and Rodman [6] is a good source for
matrix polynomials considering orthogonal matrix polynomials. Recently,
the classical orthogonal polynomials have been extended to the orthogonal
matrix polynomials (2, 10, 11, 14]. In [4] the authors introduced and studied
Jacobi matrix polynomials. Jédar and Cortés introduced and studied the
hypergeometric matrix function F(A, B;C;z) and the hypergeometric ma-
trix differential equation in [9] and the explicit closed form general solution
of it has been given in {12]. In [3] the authors introduced the Chebyshev
matrix polynomials and gave some result with Chebyshev matrix polyno-
mials. In (8] the authors introduced a new system of matrix polynomials,
namely the Gegenbauer matrix polynomials (see also [15]).
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Throughout this paper, for a matrix A € CV*¥ its spectrum is denoted
by o(A). The two-norm of A, which will be denoted by ||A]|, is defined by

p 14zl

A
141 =sup 2,

where, for a vector y € CV, |ly|l, = (¥"v) 1/2 is the Euclidean norm of y. I
and 6 will denote the identity matrix and the null matrix in CV*¥, respec-
tively. We say that a matrix A in CV*¥ is a positive stable if Re(A) > 0 for
all A € 0(A) where o(A) is the set of all eigenvalues of A. If Ag, Ay, ..., An
are elements of CV*V and A, # 6, then we call

P(z) = Apz™ + Ap 1z V. + A1z + Ap

a matrix polynomial of degree n in z. From [9], one can see

(1.1) (P)yp=PP+D(P+2I).(P+(n—-1)I); n>1 (P)=1I
From (1.1), we can obtain

(12) (P)n—tk = (=1)¥(P)a[(I = P—nI)k]™; 0S k <,
where P + nl is invertible for every integer n > 0. From the relation (1.3)
of [13], we see that

(= 1)" _ (=nDk,
(n— k) n!
The }Ey]pergeometric matrix function F(A, B;C;z) has been given in the
form (9

(1.3)

(14) F(ABiCiz) = Y B () )1 on

n=0

for matrices A, B and C in CV*¥ such that C + nl is invertible for all
integer n > 0 and for |z| < 1. For any matrix A in CV*V the authors
exploited the following relation due to [9]

(1.5) (1-z)"4 Z(A)" "zl < 1
n=0

The Jacobi matrix polynomials have been given as in [4] so that PAB)(z)
for parameter matrices A and B whose eigenvalues, z, all satisfy Re(z) >

—1. For any positive integer n, the nth Jacobi matrix polynomial P ()
is defined by

PAB g = )F A+B+(m+1)I -nIB+1“2'””)
F B+ (B + (n+1)).

(1.6)
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We can write that

1-
PPN (z) = $F (A+B+(n+1)1a—"-’;A+I; m)

(1.7) 3
xT-1(A + DT(A + (n+ 1)I),
or
(1.8) )
PAP (@)= = (x - 1) F (—nI, ~(B+nl);A+1T; iT_i) (A+Da.

In (3], for D and C € CN*¥, suppose that D is positive stable, DC =
CD, and that C — D + kI and C + kI are invertible for all nonnegative
integers k. Then, for || < 1,

(1.9) F(—nI,D;C;t) = (1-t)"F (—nI,C’— D;C; 1———t_t) ,n=0,1,2,...

In [4] if f(z) and g(z) are holomorphic functions in an open set §2 of the
complex plane, and if 4 is a matrix in CV*¥ for which o(A) C Q, then

f(A)g(A) = g(A)F(A).

Hence, if B € CV*¥ is a matrix for which ¢(B) C Q so, and if AB = BA,
then

(1.10) f(A)g(B) = g(B)f(A).

Furthermore, in [4], the reciprocal scalar Gamma function, I'"1(2) =
1/I'(z), is an entire function of the complex variable z. Thus, for any C €
CN*N | the Riesz-Dunford functional calculus [5] shows that I'=1(C) is well
defined and is, indeed, the inverse of I'(C). Hence: if C € CN*¥ is such
that C + nl is invertible for every integer n > 0, then

(1.11) (C)n =T(C +nI)T~}(O).

The aim of this paper is to derive various families of linear, multilinear
and multilateral generating functions for the Jacobi matrix polynomials
and the Gegenbauer matrix polynomials. We consider the special cases of
them. Some recurrence relations for Jacobi matrix polynomials are also
obtained.

2. GENERATING FUNCTIONS FOR THE JACOBI MATRIX POLYNOMIALS

In this section, we derive families of linear generating functions for the
Jacobi matrix polynomials. We have the following main theorem.

Theorem 2.1. Assume that all eigenvalues z of the matrices A and B of
the Jacobi matriz polynomials P,(,A’B)(:z:) satisfy the condition Re(z) > —1.

259



Then we have

i(A +B+Dn PAPY @) [(B+1)a) 1"
n=0

_ A+B+1 A+B+2I 2r(z + 1)
(A+B+1I) . .
21 (1+7) F( 5 , 5 i B+ I (1+T)2),

where |r| <1 and A, B € CVXN,

Proof. By (1.6), we easily see that

i (A+ B+ D)W PSP () (B+Da) ™ " = i A+B+ Dt nl!)n

n=0

) 5; {( (n+ DI+ A+ B),;c!(—nl)k B+

k
X (HT:C) Y (B+I)'[{B+ (n+1)I] [(B_'_I)n]—lrn}.

Using (1.10) and (1.11) we get
(B+1),=T"Y(B+I)['[B+(n+1)]].

Also using (1.3) we have

i (A+ B+ P (z) [(B+ D] 7"

n=0
_ f: " (A+ B+ Da(=1)"*( (n+1)I + A+ B)x
=1~ (n—k)! k!

k
x[(B+ 1)) (“2”‘) .
Then it follows from (1.1) that
(A+B+Da((n+ 1)+ A+ B) =(A+ B+ 1ptr,

we obtain

oc

3 (A+B+DaPAB (@) (B+1)a) ' 1

n=0

k
ZZ (A+B+i'),:'+2k( n” (B+1),]" (1*2'37) Fntk
n=0 k=0

260



(A+B+1 1) (1+z\*
Zz{ + )2k( ) ( 23:)

k=0n=0

A+B+T+2kl), r -
( + +k' ) [(B+I)k] 1}.

By (1.5), since

i (A+B+1+2kD), (-1)"" _ (1 +47)~(A+B+CRHDD)
n!
n=0

we get

i (A+ B+ D)aPMB) () (B4 D] ™

n=0
X (A+B+1 1 + )~ (A+B+(2k+1)I) .k L /1+z\*
k=0 )
From (1.1) we may write that
(A+ B+ Iy = 2% A+B+1 A+B+21
2 k 2 .
which implies
o0
D (A+B+DaPAB(2) [(B+ 1), e
n=0
2k AiBj; A;tB-_|;2
= (1+7r)" <A+B+[)i2 ( ) ( ) rt
k(1+ r)2’°
/(1 k
< (B +1), ( ’;”)
- A+B+1 A+B+21 2r(z +1)
= (A+B+I) . .
(147) F( 3 , 5 s B+ 1, 1)
The proof is completed. O

In a similar manner as in the proof of Theorem 2.1, (1.7) and (1.8) yield
the following results, respectively.

Theorem 2.2. Assume that all ezgerwalues z of the matrices A and B of
the Jacobi matriz polynomials P{*® (a:) satisfy the condition Re(z) > —1.
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Then we have

S (A+B + DaPAB@) (A4 Da ™ "
n=0

_ A+B+1 A+B+21 2r(z - 1)
2) (A+B+1) p A+
(2 (1-r) ( 2 ’ 2 ' 5 (1-r)2 ) '

where |r| <1 and A, B € CV*N.,
Theorem 2.3. Let A,B,C,D € CN*N, We get

<]
EJ%AMQNW=E(I+BJ+AJ+AJ+B; TR

n=0

where AB = BA and Fy (A, B; C, D;z,y) is the matriz version of the Ap-
pell’s function of two variables which is defined by

(z-nt¢x+1ﬂ)

el _ _ xk n
Fi(4,B;C.Dizy) = Y (g Blars (D)7 (O i
n,k=0 )

where C + nl and D + nl are invertible for every integer n > 0.
Theorem 2.4. Let A,B,C,D € CN*N, We have

i(C)n(D)n(I+B);’P,(.A’B)(z)(f +A)he

n=0

= Fy (C,D;I+A,I+B; (z-1)t (z+ l)t)

2 2
where A + nl and B + nl are invertible for every integer n > 0.

3. MULTILINEAR AND MULTILATERAL GENERATING FUNCTIONS FOR THE
JACOBI MATRIX POLYNOMIALS

In this section, we derive several families of bilinear and bilateral gener-
ating functions for the Jacobi matrix polynomials generated by (2.1) and
given explicitly by (1.6).

We first state our result as the following

Theorem 3.1. Corresponding to a non-vanishing function Qu(y1, .., ¥s )
of s complex variables y1,...,ys (s € N) and of complez order u, let

o0
(3'1) Au,u(yly ey Yss z) = Z a’kQ[J+Vk(y17 e Ys )zk
k=0

(ak940, “1V€C)
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and

(3.2)
(n/p] (A,B)
en.p,y,u(““? Yis-y Ys; C) = kzo a'k(A + B+ I)n—pk Pn—;:k (.'II)

X (B + Dn-pk) ™ Quavk Wi, vs )¢

where A,B € CN*N_ n p € N and (as usual) [\ represents the greatest
integer in A € R. Then we have

)
(3-3) Z @n,p,u,u (m;yla <y Yss tEp) "

n=0

XApw (Y15, Ysi M)
provided that each member of (3.3) exists.

A+B+I A+B+2l . 2z+])
2 2 Ui aree

Proof. For convenience, let S denote the first member of the assertion (3.3)
of Theorem 3.1. Then, upon substituting for the polynomials

e“-P-II,V (:E; Y1y Yss tip)

from the definition (3.2) into the left-hand side of (3.3), we obtain

oo (n/p] (A,B)

X [(B + I)n—pk]_l Qu+uk(y1, ey Ys )ﬂkt"_"k .

Upon inverting the order of summation in (3.4), if we replace n by n + pk,
we can write

S = 33 a(A+B+1D)n PAPN2) (B + Dl ™ Qussi (1, oy ys "

n=0 k=0
o o0

= D (A+B+D)n PP @) [(B+Dal ™ " axQussk @1, o )0
n=0 k=0

- A+B+1 A+B+21 2t(z + 1)

= (1 (A+B+I) p . . A
(1+¢) 2 2 B hgy
XApu (Y15 Ysi M)y

which completes the proof of Theorem 3.1. O

By expressing the multivariable function

Qu+uk(yla -~-)ys) (k €N, s€ N)
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in terms of simpler function of one and more variables, we can give further
applications of Theorem 3.1. For example, if we set

c,
s=1and Qu.k(y)= qu+,f,)c(y)

in Theorem 3.1, where the nth Laguerre matrix polynomials Lg{q"\)(:c) is
defined by (7]

AN i 1) A -1 _k
LAY (z) = zk' e (A+ D), [(A+ D))" 2%,

where A is a matrix in CV*V | A 4 nl is invertible for every integer n > 0
and ) is a complex number with Re (A) > 0 and generated by

AN n —(A+]) — Azt
( ' ) — —
(3.5) E LA a)i"=(1-1) exp ( 1 t)

[t| <1, —o0 < z < 00,

then we obtain the following result which provides a class of bilateral gener-
ating functions for the Jacobi matrix polynomials and the Laguerre matrix
polynomials polynomials.

o0
Corollary 3.2. If A, .(y;2) = 3 axlL i,’),i(y)z where (ax #0, p,v €
k=0
C); and
[n/p]

Onpun(@ivi€) = =3 au(A+ B+ Dampe FED()
k=0

x [(B + I)n—pk]—l i::)c(y)C

where n,p € N. Then we have
(3.6)
o0
TN in _ —(A+B+1I)
nz=:o On,pouw (x Y tl’)t = (1+1¢)

xF (—‘lﬁ‘—" Bl A+Bi2l, p 4 I; 2HIH )A,,,.,(y;n

provided that each member of (3.6) exists.
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Remark 3.1. Using the generating relation (3.5) for the Laguerre matriz
polynomials and taking ap, =1, u =0, v = 1, we have

oo [n/p)
S S (At B+ Do P22 () (B + Dnprl ™ LTV (y)nken—*

n=0 k=0
2t(z + 1))

A+B+1 A+B+21
= + ) (A+B+h p . it Sl

s 2
x (1=n) "D exp (—Iiyg) ,

where |n] < 1, —00 <y < oo.

B+1

Choosing s =1 and Qp4.k(y) = P’E'_?_’Ui) (v), (1, v € Np), in Theorem 3.1

we obtain the following class of bilinear generating function for the Jacobi
matrix polynomials.

(o2}
Corollary 3.3. If A, .(y;2) :== ) akPF(‘ﬁﬁ)(y)z" where (ap #0, p,v e
k=0
C); and
{n/p] B
Onpun(@¥iC) 1 =Y ak(A+ B+ Dupi PA2)(2)
k=0
X [(B+ Da-pl ™ PR (0)C*
where n,p € N. Then we have
3.7
= care T 4n —(A+B+1)
nZ;:O e"apaﬂr" (x’ ' tp) "= (1 + t)

X F (ﬁ-_zé.ﬂ AB2l. B 4 I e ) Apu(yin)

provided that each member of (3.7) exists.

Remark 3.2. Using Theorem 2.3 and taking ar, = 1, p =0, v = 1, we
have

oo [n/p)
2 D (A+ B+ Daopk BLD(@) [(B+ Dnpil ™ PP (y)en ok
n=0 k=0

= (1 +t)—(A+B+1)F(

A+B+1 A+B+2l _ 2t(z+1)
2 g Btk (1+t)2)

x Fy (I+B,I+A;I+A,I+B; w "21)’7; (y*;)").

Furthermore, for every suitable choice of the coefficients ai (k € Ny),
if the multivariable function Q,4yk(¥1,.-,¥s), (s € N), is expressed as an
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appropriate product of several simpler functions, the assertions of Theorems
3.1 can be applied in order to derive various families of multilinear and
multilateral generating functions for the Jacobi matrix polynomials.

4. GEGENBAUER MATRIX POLYNOMIALS VIA JACOBI MATRIX
POLYNOMIALS

Let A be a positive stable matrix in CV*N. Then, the Gegenbauer
matrix polynomials are defined by (8]

(4.1) (1=2zr+r?)~4 = i Ci(z)r™.

n=0

Observe that (4.1) yields the following ezplicit representation

(/2]
CA ) _ Z (kll()n( 2);;)'k (2x)n—2k .

By taking A = B in Theorem 2.1 we get
o0
Y @A+ D PAN@) (A4 DalT' " = (1+7)7@AD

n=0
24+1  2r(z+1)
XF( 2 ’(1+r)2)

Using (1.5) we have
(4.2)
o0

2(2’4 + 1) PAD (@) [(A+ D] rh = (141)-@A+D (1 _ 22&:-12)-(4

n=0
= (1 — 2zr +72)~(A+1/2),

Comparing (4.1) and (4.2), we can write
(43) CAH/%(2) = @A+ Da P (@) [(A+Da] ™

Now by (4.1), we can write the following result for the Gegenbauer matrix
polynomials via Theorem 3.1 without its proof:

Theorem 4.1. Corresponding to a non-vanishing function Q.(y1,...,ys)
of s complez variables y1, ...,ys (s € N) and of complezx order p, let
o0
(44) Au,v(yls vy Ysi Z) = Z akQu+vk(yl, e Ys )zk
k=0
(ak .-,éO’ HV € C)
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and
[n/p] .
@n,p,p,u(m;yl: vy Yss C) = Z akC:—pk(z)Qp+vk(yla - Ys )C )
k=0
where A,B € CN*N_ n,p € N and (as usual) [\] represents the greatest
integer in A € R. Then we have

(4'5) Z @n,p,y,u (:l:; Yis - Ysy t%) t" = (1 -2z + Tz)—AAp,u(yly ey Ysay "7)

n=0
provided that each member of (4.5) ezists.

The generating relation (4.1) yields the following addition formula for
the Gegenbauer matrix polynomials

n
(4.6) CitB(z) =) Cii(@)Ce(a),
k=0
where AB = BA and A, B € CV*N,
Precisely the same manner as described Theorem 3.1 and using (4.6),
we can prove the following result.

Theorem 4.2. For a non-vanishing function Q,(y1,...,ys) of complez
variables y1,...,ys (s € N) and for pe N; pu,v € C; let
[»/p]
ALY o (@ YL Ui 2) 1= D akCAt B (@) ik (Y1, e ¥ )25,
=0
(ax #0; n,k € No; No =NuU{0}).
Then we have
4.7
n_[k/p]
Z Z a; C;?_k(x)CkB—pl(x)Qp-{-ul(yl, < Ys )zl = AZ:Z‘a,ﬁ(m;yl’ ey Yoy Z)
k=0 (=0
provided that each member of (4.7) exists.

If we set
s=2 and QI-H-Vk(y?z) = Hu-i-l/k(ya z, B)
in Theorem 4.1, where the two-variable Hermite matrix polynomials
Hy(z,y, A) is defined by means of the generating function [1]

(e <]

1

(4.8) exp (:z:t\/2A - yt2I) =Y SHa(my At < oo, A€ CVXV,
n=0 "

then we obtain the following result which provides a class of bilateral gen-

erating functions for the two-variable Hermite matrix polynomials and the

Gegenbauer matrix polynomials defined by (4.1).
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o0

Corollary 4.3. If Ay y(y,zi7) := Y arHuruk(y, 2, B)rk where (ar #
k=0

0, u,veC); and

[n/7]

eﬂv?z#ﬂll(l’l’ ey Ty Yy 25 C) = Z akcﬁ—pk(m)Hﬂ+W¢(y: 2, B)Cks
k=0

where n,p € N and A, B € CN*N. Then we have

[> ]
(49) > Onpuy (wl, e Tri Yy 23 t%) t" = (1 - 2ar +7°) " * A4 (y, %)

n=0
provided that each member of (4.9) exists.

Remark 4.1. Using the generating relation (4.8) for the two-variable Her-
mite matriz polynomials and taking ar, = 1, p =0, v = 1, we have

oo [n/p]
Z Z Cf-pk(m)Hk(yyz,B)ﬂkt"_pk = (1-2zr+7r%)74

n=0 k=0
X exp (yn\/ 2B - zn2I) ,
where |n] < 0.

ChOOSing s=1 and Qli-l-uk(yl) '":y‘r‘) = C;Iz)-}-uk(y)a (“,V € NO); in The-
orem 4.2 we obtain the following class of bilinear generating function for
the Gegenbauer matrix polynomials.

Corollary 4.4. If

[n/p]
AB(ziy32) = ) axCAt B (2)C iy )2,
k=0

where ax #0, n,p €N, p,v €Ny, A, B, D € CV*N. Then we have

n [k/p]

(4.10) 3 aCh(@)CE u(@)Cluy)2 = AL (z;y; 2)
k=0 I=0

provided that each member of (4.10) exists.

5. RECURRENCE RELATIONS FOR JACOBI MATRIX POLYNOMIALS

Assume that ¥(u) has the formal power-series expansion

(5.1) Tu) =Y 1.u® , Y#0, 7, €CV*N.

n=0
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In order to derive (5.4),(5.5) and (5.6), put

Gz, t)=(1—-1t)"CV ((1 4”;;2)

Then

6G_ -c-2Iy’
. = —4t(1-1) v,

%? =C(1-8)"C 1w —az(1+t)(1-t)" 3T

Therefore G satisfies the partial differential equation
oG oG
(5.7) z(1+ t)% —t(1 - t)—a-t— = —CtG.

Equation (5.7) can be put in the forms

L9606 _ 280G ,8G

BG oG Ct 2zt 0G
(59) *% ' T T1=i° 1-ids’

8G |, 0G Ct 22 8G
(5.10) z% —tgt- = —I_-I-tG_ m%

Since
Gzt = fal@)t",
n=0

(5.8) yields that

oo o

-C Z fn(:v)t““ _ Z nfn(:z:)t““

5 [efut@) —nsate)]

n=0 n=0 n=0
=Y afp(apnt!
n=0
= Y [FC+m-1)Dfar(@) - 2fr (@) "
n=1

which leads to (5.4).
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Equation (5.9) implies that

$ frir-atie - —o(E0) (S
n=0 n=0 k=0
-2z (i t"“) (i f,;(m)tk)

n=0
= -C) Z fe(@)t™* — 22 Z Z fel@)tn*!
n=0 k=0 n=0 k=0
- -0y S a3 s
=1 k=0 n=1 k=0

which leads to (5.5).
From (5.10) we obtain

Z[wfn(x) @]t = -C (Z(—l)"t"“) (kau)tk)

n=0 n=0 k=0
[o <] o0
-2 (Z(_l)ntn+1) (Z kfk(ﬁc)tk)
n=0 k=0
[} n
= =) ) (-1)"H(C + 2KI) fi(z)tmH
n=0 k=0
oo n-—1
= >3 (-1)"*C + 2k) fi(2)t",
n=1 k=0
which gives (5.6). ]
If we choose
C=A+B+I ; ~,= UJ“‘:*J’B)""(HA);I
22np)

in Theorem 5.1, we see that the matrix polynomials f, is

fa(v) = (I + A+ B),PAAB (1 - 20)(1 + AL
Hence, Theorem 5.1 gives following results, when put in therms of z rather
than v.

Corollary 5.2. The Jacobi matriz polynomials have the following recur-

rence relations:

P D) | dRL ()
dz dz

(zx—1) [(A+B+n1) (A+nl)

= (A+ B+nl) [nPAB) @) - PP (@)(4 + 'n,I)]
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(A,B) n-1
(- 1)2‘&“_@) —nPAB) ) = (A4 B+ D)7 kgo {(A+B+1I)
(A,B)
x [(A+ B+ NP () + 2(z - 1)%-@ I+ AN A+ 1),,} :
(AvB) n-1
(z- l)ﬂj% —nP*B(z) = (A+ B+ )3} :L:(,) {(=1)n=*

x (A+ B+ 2kl + I)(A+ B+ IWPAP @)+ A7 A+ 1),,} ,

where all eigenvalues z of the matrices A and B of the Jacobi matrix poly-
nomials P,(,A'B)(a:) satisfy the condition Re(z) > —1 and A+ B +nl is
invertible for every integer n > 0.
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