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Abstract

Let m > 2 be an integer and let G be a finite Abelian group of order p",
where p is an odd prime and n is a positive integer. In this paper, the necessary
and sufficient conditions for the existence of an m-adic splitting of G, and hence
for the existence of polyadic codes (as ideals in an Abelian group algebra) of
length p*, are derived. An algorithm to write down all the m-adic splittings of
G is also given. This generalizes the results of Ling & Xing [9] and of Sharma,
Bakshi & Raka [14].
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1. Introduction

Let G be a finite Abelian group, written additively, of order |G|. Let F,
be the finite field of order ¢ with ged(q,|G|) = 1. Let F,4[G] be the group

algebra of G over F,. The elements of F4[G] are formal sums Zang , g €

9€G
Fg, with addition and multiplication defined as follows :
DoagY?+ Y BYT =3 (ag+B,)Y?
9€G g€eG geC
and
(D eV ) mY™) =3 (3 agb)Y™.
g9€G heG keG g-(;lhezck
9

Abelian group algebra codes are ideals in the group algebra Fy[G], which
are natural generalizations of cyclic codes and have good error-correcting
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properties. The motivation behind the study of non-cyclic group algebra
codes relies on the fact that many important codes can be realized as ideals
of a non-cyclic group algebra. For reference, see [2, 5, 7 & 11].

Quadratic residue codes is a classical family of cyclic codes, which ex-
ist for prime lengths only. Quadratic residue codes have been general-
ized in two directions. Duadic codes defined by Leon, Masley & Pless
[8] over binary fields and by Smid [15] over arbitrary fields, triadic codes
defined by Pless & Rushanan [12], cyclic polyadic codes and cyclic m-adic
residue codes by Brualdi & Pless [3] are generalizations of quadratic residue
codes. All these generalizations belong to the family of cyclic codes. In
another direction, quadratic residue codes have been generalized to gen-
eralized quadratic residue codes by Camion [4] and developed further by
van Lint & MacWilliams [10]. They are defined as ideals in Abelian group
algebras. Rushanan [13] defined duadic codes as ideals in an Abelian group
algebra setting, which are generalized to split group codes by Ding, Kohel
& Ling [6]. Analogous to cyclic m-adic residue codes, a generalization of
duadic codes in an Abelian group algebra setting was given by Ward &
Zhu [16]. The idea of polyadic codes was revisited by Ling & Xing [9] to
include non-cyclic Abelian codes.

The necessary and sufficient conditions for the existence of polyadic
codes of prime length p was given by Brualdi & Pless [3]. Ling & Xing [9]
studied the necessary and sufficient conditions for the existence of polyadic
codes, which arise from a restricted kind of splittings. The necessary and
sufficient conditions for the existence of cyclic polyadic codes of prime power
length was given by Sharma, Bakshi & Raka (14]. Extending (14], in this
paper, we give the necessary and sufficient conditions for the existence of
Abelian polyadic codes of prime power length p™, where p is an odd prime
and n is a positive integer.

The organization of this paper is as follows : In Section 2, we give a brief
background of Abelian group algebra codes on the lines we shall follow. We
also include the definition of polyadic codes (in terms of an m-adic splitting
of G) as ideals in the Abelian group algebra F¢[G], which is given by Ling
& Xing [9]. In Section 3, we compute g-cyclotomic classes in G when G is
an Abelian group of order p™, where p is an odd prime and » is a positive
integer. In Section 4, we answer the following three natural questions:

Q 1: For what values of m, does G admit a non-trivial m-adic splitting?

Q 2: For a given value of m, what are the possible multipliers a, w.r.t.
which G admits a non-trivial m-adic splitting?

Q 3: For a given m and a given multiplier a,, how to write down all
possible non-trivial m-adic splittings of G w.r.t. a.?
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We give the necessary and sufficient conditions for the existence of
Abelian polyadic codes of length p™, where p is an odd prime and n is
a positive integer (see Theorems 2 & 3). We also give an algorithm to
write down all possible non-trivial m-adic splittings of G.

2. Some Preliminaries

Let F4[G] be the group algebra of a finite Abelian group G over the field
Fy with g elements. We assume that ged(g, |G|) = 1. Let the exponent of
G be N and let E be an extension of F, containing a primitive Nth root of
unity ¢. Let G* = Hom(G, E*), where E* is the multiplicative group of E.
The set G* of all the characters of G is an Abelian group under pointwise
multiplication given by

(x1x2)(9) = x1(g)x2(g) forall g€ G, x1,x2 € G*.

It is well known that G ¢ G*. We see below little more explicitly, how

the elements of G and G* correspond under ¢.
By the fundamental theorem of finite Abelian groups,

G2Z/MZ®Z/nZ® - -DZ/nZ, n; > 2.
For z = (21,22, -+ , 1) € G, define xz : G — E* by (91,92, * 1) —
" giz:N

¢i=1 e One can check that x, € G* and the mapping ¢ : G — G*
defined by z — x. is an isomorphism, and we say that the character x,
corresponds to the element z in G. Further, any character x € G* extends
to an Fy-algebra homomorphism yx : F¢[G] — E given by

XD oY) = agx(g).

g€eq gec

By a g-cyclotomic class of z € G, we mean the set C, = {z, gz, ¢°z, - - - ,
g°~ 1z}, where s is the least positive integer such that ¢°z = z in G. The
q-cyclotomlc class C; in G corresponds to the g-cyclotomic class C,,
{Xzs Xzq) Xzq?»**  Xzq+-1} in G* under . It is known that each 1deal in
F4[G] corresponds uniquely to a union of ¢g-cyclotomic classes in G*, which
is described as follows :
Given an ideal C in F,[G], the set

(C)={x€G :x(c)=0 forall ceC}

is called the root set of C. It can be verified that R(C) is a union of ¢-
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cyclotomic classes in G*. Conversely, given any union, say Uz¢;Cy,, there
is an ideal in F,[G) whose root set is Uz¢;Cy, . For reference, see [11, Ch.
9].

We next recall the definition of polyadic codes as given by Ling & Xing
[9]-

Under the componentwise multiplication, denoted by *, G = ®!_,Z/n;Z
is also a ring with unity. We denote this ring by R. Thus G is the underlying
Abelian group of R.

For a unit a € R, the map a. : R — R defined as a.(z) = a*z for every
T € R, is called a multiplier.

For an integer m > 2 and a unit a € R, an m-adic splitting of G w.r.t.
the multiplier a, is an (m + 1)-tuple (Xo, Xo, X1, - , Xm—1) such that
(i) each of the sets X0, Xo, X1, "+ , Xm—1 is a union of g-cyclotomic classes
of G ;

(i) Xoo, X0, X1, -+ , Xm-1 form a partition of G, i.e.,

GC=XooUXoUX U---UX,,_1 (a disjoint union );

(iii) @s(Xoo) = Xoo and a.(X;) = Xiyg for 0 < i < m — 1, where the
subscripts are taken modulo m.

We say that G admits an m-adic splitting if there exists an m-adic
splitting of G w.r.t. some a..

Note that 0 € G always lies in Xo. Let X/, = Xoo \ {0}. Associated
with an m-adic splitting of G, the four families of codes having root sets
as {xz :Z € Xoo UX;}, {Xz:2 € XL UXi}, {Xxz: 7 € (Xoo U X;)°} and
{xz : z € (X, UX;)} for 0 < i <m— 1, are called polyadic codes in
Fq[G].

Since polyadic codes are defined in terms of an m-adic splitting of G,
the problem of existence of polyadic codes in F¢[G] is equivalent to the
existence of an m-adic splitting of G. In the following sections, we explore
the existence of an m-adic splitting of G when G is a finite Abelian group
of order p™, where p is an odd prime and n is a positive integer.

3. q-cyclotomic classes in G

Let G be a finite Abelian group of order p™, where p is an odd prime
and n is a positive integer. G can be written as

C=Z/p"T®L/p"L® - &L/p™Z,

wheren=n;+no+---+ng withn; >2ne>---2neg > 1.
For a non-zero k-tuple (¢,%2,--- , &), 0 < ¢ <n; (1 <4< k), define

Gerty-t =G, ® G, @ --- B Gy,
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where Gy, is a reduced residue system modulo p’. It is clear that Gy, ¢,...¢, is
a group under componentwise multiplication *. Since ged(p,q) = 1, ¢ € Gy,
for all <. Therefore the k-tuple (g,q, - ,q) € Ge,e5---0,.- Lt Qeyep--2, be
the subgroup of Gy,e,...e, generated by the k-tuple (g,q,--- ,q). Clearly
Qe,6;...¢, has order Ope, (q), where O, () denotes the multiplicative order
of ¢ modulo p% with £, = max{¢;,, - ,4}.

For any a € G and a subset H of G, let

a*H={a*h:h€H}.

Let g be a primitive root modulo p* for all positive integers k. Such a
g always exists. For reference, see [1, Ch. 10].

Theorem 1. All the distinct non-zero g-cyclotomic classes in G are given
by a*Qe,¢,...¢, for 0 < ¢; < n; (1 <i < k), where for each non-zero k-tuple
(¢1,8,- -+ ,€), a runs over the set (p™—% pr2=tz ... , P & Serts--tx
with Sp,¢,...¢, defined as the following set :

o . 0y <g(pY)—1for 1<j<k, j#tand
ta gtz ... glk): :
(g%, g%, -, g) OSizthlplq -1, & = max{, s, - , &}
pht
This result follows as a consequence of the following two lemmas :

Lemma 1. For a non-zero k-tuple (1,82, , &), let Se,e,.-¢, be a set of
representatives of the distinct cosets of Qg,¢,...¢, in Ge,¢,...¢,- Then all the
distinct non-zero g-cyclotomic classes in G are given by a * Qq,4,...¢, for
0< ¢ <n; (1 <1i< k), where for each non-zero k-tuple (¢4, %, - o), a

runs over the set (p™ =4 pr2—f2 ... pr—b)x G, 4.
Proof. Note that
G\ {0} = U(pnl—el!pnz—zzv e 1pnk_ek) * Gf;ezn-fk! (1)

where the union is over all the non-zero k-tuples (¢;, s, - k), 04 <
n; (1 < ¢ < k). Further for each non-zero k-tuple (41,82, -- , L), we have

Gelgz...gk = U bx Qelgz...gk, (2)

bE€ESe ey..-¢,

as Se,e,.-¢, 18 a set of representatives of the distinct cosets of Qg s,...¢, in
Ge,e,--¢,.- Observe that both the unions in (1) and (2) are disjoint and
(P8, pr2=ta ... g =b) s b Qg p,...z, iS & g-cyclotomic class in G con-
taining (p"~—%, pn2—f2 ... pnr—f) x b, Therefore all the distinct non-zero
g-cyclotomic classes in G are given by (p™ =% pn2—f ... pre—&) 4 p«



Qeregt, for 0 < & < my (1 <i<k), (b,€,-++,€) # 0, where b runs
over the set S¢,¢,...¢, for each non-zero k-tuple (£,¢€s,- - -, &). This proves
the lemma.

Lemma 2. For a non-zero k-tuple (¢, %5, - - - , &) with £, = max{¢y, s, - ,;
all the representatives of the distinct cosets of Qg ¢,...c, in Geye,...¢, are
given by

0<iy, <p(pf)—1for 1<j<k, j#t

- i¢ it ... Al - ¢
Sey--8, {(g 4,972, ,gtk) and 0 <ig < g:"‘g -1
plt

Proof. To prove this lemma, it is enough to prove that (g1, gi¢z, - - - , g% }*
Qeyeyt, With 0 < ig, < p(p¥) —1for 1 < j <k, j#tand 0 < g <

¢
% — 1, are all the distinct cosets of Q¢ ¢,...¢, in Ge ey...0,-
Suppose, if possible, that there exist i, i'e,- (1<j<k)witho<

I3 ., . . . . . ‘
it iy, S @(PY) —1 (1 S G <k j#1)and0< g, 4 < -1,
satisfying

. . . ol - !
(gul ’gllz [ ’g"k) * Qlllz'"lk = (gzll ’g112 [ ’g'lk) * Q21£2---8k-

Then there exists an integer u such that (g1, g4z, - - , g*x )*(g*, g%, -+ ,q") =
(g'c, g2, g'tx }, which gives
ie

g% g* =1 (mod p%) for 1< j < k. (3)

For each j, 1 < j < k, g is a primitive root modulo p%. Therefore there
exists an integer ; such that

g=g" (mod p%) for 1<j<k. (4)

For 1 < j £ k, we note that

BO%) i
Opz,- @ divides r; and (5)
re = r; (mod $(p%)). (5)'

From (3) and (4), we have

g'izj —iéj +ury _ 1(mod plj),



which gives
ig; —ig, +ur; = 0 (mod ¢(p%)) for 1<j<k. (6)
In particular, for j = t, we have

t, — ig, +ury = 0 (mod ¢(p%)).

From (5), we have Oﬂ;t’%}; divides ¢, which implies that “’(ﬁ”— divides
e
tg, — 1y, This gives i, = 1) , as 0 < 4¢,, 1j, < oﬁ% — 1. This further gives
t t plt
ury = 0 (mod ¢(p%)), which, by (5)’, implies that ur; = 0 (mod ¢(p%)) for
1 < j < k. This gives, by (6), that ’iel — iy, =0 (mod $(p%)) for 1<5<
k, j # t. This implies that i,, = z¢ ,as 0 < N,,Zz,. < ¢(p%) — 1 for every
J#FL 1<j<k
Moreover, these are all the distinct cosets of Qg,¢,...¢, in Ge,ey.-t, - This
is because

oY lege g * Qe

il,=0 i¢,=0
1<]<k, J#t

sp)-1 DhTH
Z Z |Q81€2 ekI_H¢(peJ O

te; =0 ig,=0
1<J<k j#t

4. Existence of an m-adic splitting of G

By a non-trivial m-adic splitting of G, we mean an m-adic splitting
(Xoo» X0, X1, + y Xm—1) With Xo # &.

For b € Gy ¢,...¢,,, let H(e,e,--.ek) be the subgroup of Ge,e¢,...e, /Qe, 0521
generated by the coset b * Qg e,...¢,, of order |H, (brtz- e*)[

For an integer m > 2 and a unit a € R, we define an m-adic splitting of
Ge -8, W.I.t. a, to be an (m+ 1)-tuple (Yoo, Yo, Y1, -, Yin_1) such that

(i) each of the sets Yoo, Yy, Y1, -+, Yin—1 is & union of cosets of Qe 58, In
Goerta
(ii) Geyeg-t, = Yoo WYoUY U+ - U Y1 as a disjoint union ;

(iii) ax (Yoo) = Yoo and a.(Yi) = Yi4y for 0 < i < m—1, where the subscripts
are taken modulo m.

The following proposition relates m-adic splitting of G w.r.t. a, to those
of Gglgz...ek.



Proposition 1. G admits an m-adic splitting (X0, Xo, X1, , Xn-1)
w.r.t a, if and only if each Ge, ¢,..., admits an m-adic splitting ( éf,‘ e”"e“),

X(()e,e«,,mek)’X%e,z,-nek)’___ , Xl 8)y w1 t. a.. Moreover,

Xéo - U (pnl—ll ’pnz—ez’ e ,pﬂk—zk) * Xc()gll'z"'gk)’

0<t;<n; (1Sigk)
(€1,82,&x)#0

- - -t —¢ (182 )
Xj'— U (pnl lapnz 2’,_,,pﬂk k)*Xj 2
0S4 <n; (1Kigk)
(€1,82,-£,)#0

for 0<j<m—-1.

Further if (Xo0, X0, X1, ; Xm—1) is non-trivial, then (X},ﬁ‘”""*’,
Xée‘eg---ek)’X§1142~--ek), e ,X,(,f‘_ef"'e")) is non-trivial for some (£y, 2, - - €x)
and vice versa.

Proof. Let (Xo, X0, X1, , Xm-1) be an m-adic splitting of G w.r.t. a..
For a non-zero k-tuple (¢1, %z, - ,£;), define Xx$&828) a5 the union of all
those bxQg, ¢,..-¢, € Ge, e,/ Qey¢,.-¢, Such that (pm—4,pratz ... , P8k
b*x Qe e,--0. C X, and for 0 < j < m—1, define XJ(-“e’"'Z") as the union of
all those bxQy,¢,...¢, € Getytn /Qelgz.,.gk such that (p"’—e‘ ,p""’_eQ, s, pe!
b* Qelez...gk C Xj.

It is clear that

X;o = U (pnx—h,pnz—lz’ . ’pnk-tk) *Xf,f,‘e?"“k),
0<¢;Sny; (1Kigk)
(€1,82,+8,)#0 (7)
X; = U (M4, pr—te .. prele) X}e,gz...gk)

0<e;<n; (1€igk)
(€1,82,"--8x )50

for0<j<m-1.

We assert that (X168, x{tet) x(@br-bo . x{hbbdy i gn m.
adic splitting of Gy, ¢,..¢, W.I.t. a, for each non-zero k-tuple (¢y,€3,- - €x).
We have

05t <n; (1KiSk)
(€1,82,++Lx)#0

From (7) and (8), it follows that
U (p""e‘ ’pnz—lz, .. ,p""_e")*(ng‘ez"'l")UX((,e‘ZT"e") . ‘UXr(:’-efmek

0t <ny(1<i<k)
(€1,82,--€x)#0
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=G \ {O} = U (pm—el ,pnz—lz’ te :Pnk—ek) * Gl’lez-"ek' (9)
0<e;<n; (1<i<k)
(€1,82,-€x)#0

But for each non-zero k-tuple (¢;, 45, - - , &), the union c(,f,‘b"'e“)UXét’e""e“)U

x{tet) .y X,(,f‘_ef"'e“) is contained in Gg,¢,...e, and the unions on
both sides of (9) are disjoint. So we obtain X &%)y x{htrt)
Xl(e‘e’"'l“) . —UX,(,ff_el’"'e") = Gy, ¢,.--¢, for each non-zero k-tuple (£y, 82, - , &),
Now to prove the assertion, it remains to prove that a.(Xéﬁ“?""“) =
X et ang a,.(XJ(M’"'e")) = Xﬁ_‘f""z") for 0 < j < m — 1, where the
subscripts are taken modulo m.

For 0 < j < m — 1, we have a.(X;) = X;4,. Using (7), we get

U a *x (pm—el ,pne—lz, . ’pmg—-lk) * X;e,[,...ek)

0<e;<n; (1<i<k)
(81,82, i )#0

= U mhprh, prerty s Xt (10)

0Ke;Sn; (1SiSk)
(81,82,78)#0

But for each (€1, 0, -+ , ), the set ax(pnt =%, pn2=ts ... pra=te), x (f1t2=t0)
is contained in a.(X;) N ((p™1 =4, p"2=%, .. ,p"*=%) x Gy,¢,..¢, ) , which is
equal to the set Xj4) N ((p™ =4, p"2=0, ... p—8) x Go,...0, )

= (pm~h,pre—fa ... pre—li) X;i'fz'"e"). Also the unions on both sides
of (10) are disjoint, so it follows that a,,(XJ(-e‘e""e")) = Xj(i‘fz"'e") for

0<7<m-1.
Similarly, it can be seen that a,(Xég'e""l“)) = Xéﬁ‘ eg---ek)’ which completes

the proof of the assertion.
The converse is clear. G

In the next proposition, we give a method to write down all possible
non-trivial m-adic splittings of Gy,¢,...¢, W.I.t. a,, provided they exist.

Proposition 2. Let (Yoo, Yo, Y1, , Ym-1) be a non-trivial m-adic split-
ting of Gy e,...¢, W.r.t. a, and let C be a set of coset representatives of
HS ™) in Goe,. 00 /Qusty.. .t Then

(i) m divides |H %)),

(ii) there exists a non-empty subset D of C and for each b € D, there exists
an integer ¢, such that
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Yo = | bxHSBEW,
beC\D

Yo = Ua“’ xbx HEO M),
beD

Y) = U attl x b bt
beD

Yoo1 = Uatb+m—l *b* Hg’}fz'"ek)
beD

and conversely.
Proof. Let C = {by,b2, -+ ,by}. Then

Certy..te/Qestn...tr, = by % HEE ) Uby x H 28 U U by » H{ 00,

It is easy to see that each of the cosets b; x Ha {f1€2-80) ig either contained in

Y., or is disjoint with Yao. Let D = {b; € C : bjxH %) is disjoint with Yo

Since the splitting is non-trivial, D # ®. Now let b € D. Then bxH, (Br6a-ti)
YouYU- - -UY;,—;. In particular, bxQy, ¢,...¢, € Yjforsomej, 0 < j < m—1.
Let £, = m — j. Then we have

bxH{rbe8) = a"’*b*H,Eﬁez"'z")Uat"“*b*H,(,ﬁez"'l")U' Uaterm=lype G2

where ato+i xbx H(E% %) C Y} and a.(at* xb* H{Gt b))y = gteki+l
b HGE% for all j, 0 < j < m — 1. So we obtain that if b+ HL %)
is disjoint with Yo, then it splits equally into m parts a® xbx H,m (brba-b)
‘b"":n:bat:H(e‘e2 e") oo gletm=l *b*H(e‘e’ %) that lie in Yo, Y1, Ym_l
respectively, and that each of the parts satisfy a.(a®*7 b Hym (18- e,,))
atrtitl b« H(e“"‘ %) for all j, 0 < j < m— 1. Therefore m must divide

the cardinality of b; x Hg (B162-8)  which is equal to |[H® {frfa e")l Also we
have

Yoo = U bx HG bl
beC\D

Yo = U at* xbx HEE ),
beD

Y, = U a*t! xbx H‘Sf.!""""’,
beD



- Oo
Yooy = Uatﬁ-m l*b*Hifnl 2 lk)'
beD

Proof of the converse is an easy verification. This proves the proposition.

In the next theorem, we find the necessary and sufficient conditions
for the existence of a non-trivial m-adic splitting of G, which completely
answers Q 1 posed in the introduction.

Theorem 2. G admits a non-trivial m-adic splitting if and only if m

. . . o(p™)
divides either or n2),
Op"l (Q) d’(P )

Proof. Suppose that G admits a non-trivial m-adic splitting w.r.t. a..
By Proposition 1, there exist ¢;,%,--- ,£; for which Gy,g,...., admits a
non-trivial m-adic splitting w.r.t. a,. By Proposition 2, m must divide
|H{B 80| Byt |H£“£2"'ek)| divides |H¢£"‘"2"'"")|, which implies that m
is a divisor of | H{™ ™ ™)),

To prove the theorem, it is enough to prove that |H{™"™ ™| divides

either ™) or ¢(p"?).

Op“l (q)
Now |H{™™ ™ )| is the least positive integer L satisfying
a¥ % Qninyeomy = Qnyngeomy- (11)
As a is a unit in R, a is of the form (g™, g2, - - - , g**) for some non-negative
integers 41,42, ,ix. Thus (11) becomes

(gix’gie, - ,g“‘)L * anﬂz”'ﬂk = anz...nk.
That is, |H{™ ™ "™)| is the least positive integer L satisfying

nl gl gLy s (g%, q%,-- ,q%) = (1, 1,--- ,1) for some integer u,

(9

which is equivalent to saying that L is the least positive integer for which
there exists an integer u satisfying

g%q* = 1(mod p™) forall j, 1<j<k. (12)

Write g = g"i(mod p™) for 1 < j < k. Then for 1 < j < k, we note that

g:fjn(jq)) divides r; and (13)
r; = ri(mod ¢(p™’)). (13)’
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And (12) can be rewritten as g' L% = 1(mod p™) for 1 < j < k, which
implies that

i;L +rju =0(mod ¢(p™7)) for 1 <j<k. (14)

Now the following two cases arise :
I il'ig'--ik 75 0 and
II. 4129 -+ -4 = 0.
Case I. Let iyig---ip #0.
"
From (13) and (14), we have 2P divides ;L for all j, 1 < j < k. This

Op"i (Q)
. e ¢(p™)/0p: (9)
ves L is divisible by lem; < - o

g y lemy <<k [gcd (5, (p™ )/ Opns (9))

] = L'(say). Also

note that

WL iL’ . ix L’ —
’ y g ) * innz"'nk - innQ"'nki

(9" ,9

which implies that L divides L’. Therefore we get

¢(pn,- )/Op"i (Q)
ng (iji d)(pnj )/Op"i (Q))

|H{mme )| = L= L' = lemug;gh [ ] W

$(p™)

which clearly divides ——=.

¢ Opms (@)
Case II. Let i14p---ix = 0. Let S={j:1 < j < k,i; #0}.
Here (14) becomes

i;L + rju = 0(mod ¢(p™7)) for all j € S and
reu = 0(mod ¢(p™)) for all 6 € S, (14)'

(where S° denotes the complement of S w.r.t. the set {1,2,---,k}).
Further, in view of (13), (14) implies that

i;L + ryu = 0(mod ¢(p™)) for all j € S and
r1u = 0(mod @(p™?)) for all 8 € S°,

which further implies that ged (¢(p™ ), lemgese [¢(p™?)]) divides ;L for all
ged (#(p™), lemges< [#(p™))) ]
ged (45, (™), lemge s [#(p0)])

j € S. This gives L is divisible by lcmjes
L"(say). Also note that

ian is L . ik L _
g ytt ) * innz-“ﬂk = in"T""k’

(9 ' g



which implies that L divides L”. Therefore we get

ng (¢(pnj)1 lcm9€S° [¢(pn9)]) } , (16)

H(nxnz“-ﬂk) =L=L" =1 R -
|Hg | emses | oed (45, #(p™ ), lemge s [d(p™?)])

which is clearly a divisor of ¢(p™2).
é(p™)
Opri(9)

of Propositions 1 & 2, it is enough to produce a unit @ € R and a non-zero
k-tuple (43,¢s,--- ,¢) for which m divides lHt(f‘e’"'e")l. We shall consider
the following two cases separately :

Conversely, suppose that m divides either or ¢(p"2). In view

o $(p™)

I. m divides ——ZL and
Op"l (Q)
II. m divides ¢(p™?).
Case I. Let m divide M
Opmi(9) ™)

c=n (1< ] = (gi1. gi2 ... gk T 4"

Take £; =n; (1 < j < k)anda=(g,9, - ,g*), where i, MmO (0)’

3= 22 for 2.< j < k. By (15), we gt [H{™™ ™) = m
p"J (Q)

Case II. Let m divide ¢(p™?).
Take ¢; = n; (1 < j < k) and a = (g*,g%2,---,g**), where i) = 0,

2
ip = ¢(p ) = ¢(p™) for 3 < j < k. By (16), we get |H‘"‘“’*‘ "")l
This completes the proof. O

Lete = ﬁ and write q%l = 1+p?c, wherep t ¢, d > 1. It is clear that

Opni () = (222) pmax{0 m=d} which gIVes $(r™) = epmin{ni=1, d=1}

p"l (g)
Remark 1. It is clear from the proof of Theorem 2 that
(i) when the multiplier is of the kind a., where a = (g%, g%, - - - , g'*) with
¢(p"1) — ppmin{n;—1, d-1}

1182 - -+ i 7 0, then m must be a divisor of ep

Op"l (9)
(ii) when the multiplier is of the kind a., where a = (g%, g%, - - - , g**) with
t122 - - -ix = 0, then m must be a divisor of ¢(p"?).

Remark 2. Since Gp,p,...n, is the unit group of R, so by Lemma 2, it is
enough to consider m-adic splittings w.r.t. the multipliers (g%, g2, - - - , g%*),.,

where 0 < i; < ¢(p (lq)) 1= epmi"{"l-l» d-1} _ 1, 0<i; < ¢(p™) —1
"!
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for2<j<k.

Definition. Let m > 2 be an integer and let @ € Gnjny.n,. Write
m = m'p*, where p { m’ and ) is a non-negative integer, and also write
a = (g', g%, - ,g'*) for some non-negative integers 4,4z, -+ ,ix. Let 3;
be the highest power of p dividing ¢; for 1 < j < k. We say that m and a
are compatible if either the conditions

(i) drd2---ig#0,
(ii) ged(iy, i, - ,ik,e) divides

£
ml

(iii) incase A>1, B; <min{n; -1, d—1} - for some j(1<j<k

and

hold, or the conditions
(i) dyde---ix =0,
(i) ged (ged (i5,p — 1) divides Z=
JjES

iii) in case A>1, B; < min{n; — 1,max{ng — 1}} — X for some j€ S
1 J gese

! and

hold, where § = {j : 1 £ j < k,%; # 0} and S° denotes the complement of
Swrt. {1,2,---,k}.

Remark 3. If m and a are compatible, it can be easily seen that m divides
ep™in{m1—1, d=1} jj the case when (i), (ii) and (iii) hold, or m divides ¢(p"?)
in the case when (i)', (ii)’ and (iii)’ hold.

In the next theorem, we give the necessary and sufficient conditions for
the existence of a non-trivial m-adic splitting of G w.r.t. a., which com-
pletely answers Q 2 posed in the introduction.

Theorem 3. G admits a non-trivial m-adic splitting w.r.t. the multiplier
a, if and only if m and @ are compatible.

Proof. First suppose that G admits a non-trivial m-adic sphttmg W.I.t.
a,. Write a = (g%, g%, -+ , g**) for some non-negative integers iy, %, - - , ix.

Working as in Theorem 2, we see that m must divide |H (",‘l";,z k) ,k)|

Now the following two cases arise :
I. dyip---ix #0and
II. 4yip---ix =0.

To show that m and a are compatible, it is enough to show that (ii) and
(iii) hold in the case when iyia---ix # 0, and that (ii)’ and (iii)’ hold in
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the case when i1ip -4 = 0.

Case I. Let %145 --ig # 0. Here, by Remark 1(i), m must be of the type

m/p*, where m'le and 0 < A < min{n; — 1,d — 1}.

Using (15) and after a little simplification, we see that |H ("“l";,z ) x| 18

equal to meaxl<J<k{mm{n,»—l d- 1}-mm{ﬁ,,mln(nj-l,d—l}}} Thus
1322, 4tk

m = m'p* divides |H, ("(‘!”g"z ™) gix)| if and only if
! divi ¢ 17
m' divides P AP and 17)

A< lIél;akxk{min{nj —1,d -1} — min{;, min{n; — 1,d - 1}}}.  (18)
But (17) holds if and only if ged(éy, 42, - - , ik, €) divides -, which proves
condition (ii).

For A =0, (18) always holds.

Now let A > 1. We assert that not all 3}s are greater than or equal to
min{n; — 1,d — 1}. For if, this is so, then (18) implies that A < 0, which
contradicts our assumption that A > 1. Thus 8; < min{n; — 1,d — 1} for
some j, 1< j<k.

Let U={j:1<j <k B; <min{n; —1,d — 1}}. Then (18) becomes

m”

< i L -1} - 3.
1< 1;;'1€'<1(3c{mm{nJ 1,d -1} — 8;},

which implies that 8; < min{n; — 1,d — 1} — A for some j € U. That is,
B; < min{n; —1,d — 1} — X for some j, 1 < j < k. This proves condition
(ii).

Case II. Let ¢1i2---i, = 0. Let S = {j : 1<]<I<:zJ # 0}. Here, by
Remark 1(ii), m must be of the type m’p*, where m’ divides p — 1 and
0<A<n -1

Using (16) and after a little simplification, we get

1
g'du;p—l)]”" ’

h = in{n. — —1V — . _ -
where u rJr'leag({mm{nJ 1’52%75{"9 1}} — min{B;, min{n; 1,52%35{715;

1}}}}.

Thus m = m'p* divides ll'-I((;',‘l"g’,2 ) jixy| if and only if

|H((;.1lﬂ;x2 nk) .k)l lemjes [

p—1

ged(iyp = i)} and (19)

m’ divides lcmjes[
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A< 1}1€a§({m1n{n]~ - 1’52%",5{'“9 —~ 1}} — min{B;, min{n; — 1’52&3)5{”9 - 1}}1}(C

But (19) holds if and only if ged;eg (ged (¢j,p — 1)) divides ;nL,l, which
proves condition (ii)’.

For A =0, (20) always holds.

Now let A > 1. We assert that not all §is are greater than or equal to
min{n; — 1, maxgesc{ng — 1}}.

For if, this is so, then (20) implies that A < 0, which contradicts our
assumption that A > 1. Thus 8; < min{n; — 1, maxges<{ng — 1}} for some
JjES.

Let T = {j € S : B; < min{n; — 1,maxges<{ng — 1}}}. Thus (20) can be
rewritten as

A< x}éai‘x{mm{nj - 1'5%%’5{1“ -1}} - Bih

which implies 8; < min{n; — 1, maxges-{ng — 1}} — A for some j € T. This
gives 8; < min{n; — 1, maxgesc{ns — 1}} — A for some j € S, which proves
condition (iii)’.

Conversely, let m and a be compatible. Here, in view of Proposition 1,
one needs to produce a non-zero k-tuple (£, 4z, -+ ,£;) such that Ge,¢,...e,
admits a non-trivial m-adic splitting w.r.t. a,. In fact, in the next theorem,
we produce all non-zero k-tuples (£;,42,--- ,8),0< ¢ <n; (1 €1 <L k),
such that Ge,¢,...¢, admits a non-trivial m-adic splitting w.r.t. a., provided
m and a are compatible. 0

From now onwards, we assume that m = m'p* and a = (g%, g%2,- - - , g%*)
are compatible, and we proceed to find all non-zero k-tuples (¢, 82, - - , €x),
0 <¥¢ <n; (1 <i<k), for which Ge,,..., admits a non-trivial m-adic
splitting w.r.t. a..

For a k-tuple (¢1,8,--- , &), define Ry ¢,...e, = {7 :1 <7 <k, & #0}.
We fix some notations for the two different cases, 71i3---7x # 0 and
t1is - - - i = 0, separately.

Case I. For iyip-- i # 0, define

B={j:1<j<k, Bj <min{n; —1,d -1} - A}.
Further, in case A = 0, define W as
0<¥¢;<n; for 1<i<k and

(61,62, ,lk) #0: ged  (ged(ij,e)) divides Ee;, (21)

JERe ty...tp
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and in case A > 1, define W as
0<¥{;<n; for 1<i<k,
. - e
(81,82, ,€) #0: ged  (ged(ij,e)) divides g . (22)

jeR;, [P 7%

and ¢; > A+ (;+1 forsome j€ B

Case II. For iyip--- i = 0, define
B={jeS:B; <min{n; — 1,52835{110 —1}} - A}

Further in case A = 0, define W as

0< ei <n; (1 <i < k)) 1/8132'--& 7l" ¢s

_ : - 23
(61,82, 1) #0 ged  (ged(éj,p—1)) divides p ,1 (23)
jevlllzu-lk m
and in case A > 1, define W as
( 0<&<n (1Si<k), Vgt #60 )

_ged  (ged(zj,p — 1)) divides p_—_,_l’
< (elael’"' ' ,ek) # 0: JGVt,tgn-tk i f ! (24)
and for some j € SN B,

Bi + X < min{¢; — l,aeuma.x {¢s — 1}} J

L1tz -ty

\

where Vglgz...ek = SﬂRe‘e,...gk and Ug,e,...gk = Rhlgmlk \Velg,‘,...gk for each
elveZa' e aek'

Note that since m and a are compatible, the sets B and W are non-empty.

Theorem 4. Let m and a be compatible. Then Geypy.q, for 0 < ¢; <
ni (1 <4 < k), admits a non-trivial m-adic splitting w.r.t. a, if and only
if (¢1,%2,-- ,€) € W, (where W is as defined by (21),(22), (23) and (24)).
Proof. In view of Proposition 2, we see that Gy, e,...,, admits a non-trivial
m-adic splitting w.r.t. a, if and only if m divides |H¢(,e"""l") |. We have a =

(9,9, -+ ,g%). Working as in Theorem 2, we find that |H ((;}f ’g';'f’f_)_ g,-k)l
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is equal to
¢(p)/0,; (q)
ged (is, #(p)/O, (0))

gccicﬁ(p" )lemocu,, o,..., [$(P* )D
ged (i5,6(0 ) lemoeuy, o ..o, [6(%0)])

lcijRllzz...zk if t182 -« - ik # 0;

lcmjevqt;-~~tk [ ] if dy80---4 =0,
which, after a little simplification, gives
lcmjeamzmtk { )] 11'6 ]pl‘lltz -ty if 4320 - 2% 99 0;

-1 I :
lcmjev,llz...,,‘ [gcd ij.P—l)] p“"l‘? 4 if f18g -l = 0,

where ¢, ¢,...¢, is given by

(162 bx) —
IH(gil »9‘2 [ |Qik)| -

max [min{¢; — 1,d — 1} — min{B;, min{¢; — 1,d — 1}}]

JERe ey,
and wy,¢,...¢, is given by
max min{¢; — 1, max {{p—1}} —min{G;,min{¢; —1, max {fg—
JE€EVe ey--ty J ’9€U¢1¢2...1k{ }} { 7 { J ,GGU(lgz...¢k{

We consider the two cases, i34z - i, # 0 and i1ip- - - i = 0, separately as
follows :

Case I. Let iyig---ix #0.

Now m = m'p* divides |H ((;‘f ’gif") ik)l if and only if m’ divides

lemjer,, ey e, [m] and A < pig,¢,.-¢, by (25). Arguing as in Theorem
3, we obtain that this holds if and only if (¢1,%2,--- ,¢;) € W.

Case II. Let i1ia-- i =
Now m = m'p* divides |H (48 e"). g.«k)l if and only if m’ divides

(g%1,9'2
lcmjev,l,z,,.,k [gﬁ(i;}l,;_l)] and A < we,¢,...¢, by (25). Again arguing as

in Theorem 3, we obtain that this holds if and only if (¢,%2,--- ,4) €
w. O

Using Propositions 1 & 2 and Theorem 4, we get an algorithm to write
down all non-trivial m-adic splittings of G w.r.t. a..
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An algorithm to write down all non-trivial m-adic splittings of
G.

Step I.  Choose an integer m > 2 dividing either Wlf or ¢(p™2).

Step II. Choose a € Gy, n,...n, such that m and a are compatible.

Step III. Given m and a, compute the set W in the respective case, as
defined by (21) and (22).

Step IV. Using Proposition 2, write all m-adic splittings (Xoo (r62--Li) , Xo (Er€a--e)
X(e,e, ) L ,X,S,f‘_e"' )Y of Gee,.t, WIt. the multiplier a, for all
(01,0, ) & W

Step V. By Proposition 1, all the non-trivial m-adic splittings of G
w.r.t. the multiplier a, are given by

’ -2 - E4 818y---¢
X!, = U (pm—b pra=la, ... p k)*Xéol2 k),
0<¢;<n; (1Ki<k)
(€1,82,--8;)#0

X_‘i = U (p"x—lx’pnz—fz,. .. ,pnk—lk) *X](.elb'"ek)

0<¢;<n; (1Ligk)
(61,82,--£5)70
for 0 < j < m—1, where X {14 — Ge,gz...g,‘,X(e’e2 ) = X(e'&" ) =
= X,(,f'_ef ) = @ for all (61,82,--- ,€) ¢ W and the m-adic splitting

(XSt y(0tate)
Xfe‘e""e"),--- ,X,(,f‘_zf"'e")) is non-trivial for some (¢;,05,--- , ) € W.
To illustrate the algorithm, we give below an example :

An example
Let G=Z/TZSZJ/TZ and g=2.Herep=7, ny=np=d=1,e=2
and g = 3. Define Tx, = {b € G1; : b*x Q11 C Xo}. Then we have Xy =
U b * Q11. Note that an m-adic splitting of G w.r.t. a, is completely
b€Tx,
determined by Xg or T'x,. This is because X; = a.(Xp), X2 = a 2(Xo),
©+ Xm-1=al"1(Xo) and Xoo = G\ (XoUX; U---U X,,_1). Also the
splitting is non-trivial if and only if Tx, # ®.
By Theorem 2, m has exactly three choices, viz 2, 3 and 6. And by
Remark 2, it is enough to consider m-adic splittings w.r.t. the multipliers
a., where a is of the type (g%,¢%),0<i; <land 0 <ip < 5.

I. Let m =2. Now m =2 and a = (¢%!, g*?) are compatible if and only if
either (i) 7142 # 0 and ged(iy,iz,2) =1

or (ii) 4, = 0 and ged(i2,6) = 1

or (lll) i3 = 0 and i =23
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or (iv) iy =1 and i3 =0.

(i) When m = 2, 41i2 # 0 and ged(é;,42,2) = 1, we always have i; = 1 in
this case and we need to consider the following sub-cases separately :

(a) Let i2 = 1. Here T, equals any non-empty subset of the following set :

{Cl) C?a C31 C4) CS) 06) C7’ CS}:

where €, € {(1 1), (9.9}, C2 € {(L9) (9, 99} Cs € {(1,4%),(9,9°)},
Cs € {(1 ) (g, “)}, Cs € (1,69, (5,9}, Cs € {(1,6°),(9, 1)}, C7 €
{(1,0),(g,0)} and Cs € {(0,1), (O,g)}

(b) Let iz = 2. Here Tx, equals any non-empty subset of the following set:

{Cl) 02) C3}1

where C1 € {{(1,1),(1,9%),(1,9%}.{(9.6°), (9,9"), (9, 1)}}, C2 € {{(1, 9),

(1,6),(1,6°)},{(9,9%), (9, 9°), (9, 9)}} and C3 € {(1,0), (9, 0)}-
(c) Let i3 = 3 or 5. Here Tx, equals any non-empty subset of the following

set :
{Ol) 02? C3y C4}7

where C € {{(17 1)» (1’92)’ (1194)}’ {(g,g), (g:ga)’(g,gs)}}a Ce € {{(1)9)»
E(]; g;;! (1’95)}’ {(g, 1), (g, 92)’ (9 94)}}’ Cs € {(1: 0), (g,O)} and Cy € {(O: 1),
»8)1-

(d) Let i4 = 4. Here T, equals any non-empty subset of the following set

{C], C2’ C3> C4, C51 Cﬁy 07}:

where C) € {(1,1),(9,94)}, C; € {(lvg)s(gags)}’ Cs € {(l,gz),(g,l)},
Ci € {(1,6%),(9,9)}, Cs € {(1,%),(9:99)}, Cs € {(1,9°),(9,9°)} and
Cre {(la 0), (9’0)}

(ii) When m = 2, i; = 0 and gcd(é2,6) = 1, all the non-trivial m-adic split-
tings of G w.r.t. (g%, g*?). are given, for 0 < i, j,k,¢ < 1, by the following
possible choices for Tx, :

{(1,6%), (1,¢*+%2),(1,9'**2),(9,9°): (9, g’“") (9,971%2), (¢%,0), (0, g")},
{(1,4%), (1,g+%2),(1, g**2), (g, ¢%), (9, 9“ iz),(g,9742), (¢%,0)},

{(s, ), (g, ’*2") (9,97742), (¢%,0), (0, g*)},

{(g% ),(0 9%), (1, 4%, (1,g"%2), (1,g7142)},

{(0,6%),(1,9%), (1,4+22), (1,972), (9, ), (9,9772), (9, 97**"2)},
{(1, g) (1,9%+%2), (1, g"+42), (g, ¢%), (9, 97T #2), (9, g7 +*2)},
{(g,9%), (9, J""”’) (9,97+4%2),(¢%,0)},

{(g‘,O),(O 9%, o

{(0,4%),(1,4%), (1,%+%2), (1,g'T42)},
{(1,6%),(1,g"*%2),(1,4"+2), (¢4, 0)},
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{(9:9°),(9,977%2), (9,97 **2),(0,¢%)},
{(1,4%), (1,¢"*%2),(1,g*+4%2)},
{(g,g’) (9,977%2),(g,97%%2)},
{(¢%,0)},

{(0,g’°)}-

(iii) When m = 2, i; = 1 and iy = 0, all the non-trivial m-adic splittings
of G w.r.t. (g1, g'2). are given, for 0 <1, 5,¢ < 1, by the following possible
choices for Ty, :

{(¢°,1), (¢*2,1),(¢"*%,1), (¢, 9), (¢7*%, 9), (974, 9), (¢4, 0)},
{(¢',1),(¢'*%,1),(¢"4, 1), (g’ 9), (92,9, (¢, 9)},

{(g’ 9),(9°%%,9), (¢7%4,9), (¢, 0)},

{(¢%,0), (¢", 1), (g2, 1), (64, 1)},

{(.1), (g, 1 1), (g, 1)},

{(9J 9), 67+, 9), (97, 9)},

{(¢%,0)}.

(iv) When m = 2, ¢; = 0 and ip = 3, T’x, equals any non-empty subset of
the following set :
{Cl ’ CZa 031 C41 CS; Cﬁy C’h }1

where C; € {(1, 1) (Lg®)}, C2 € {(1,9),(1,6Y}, Cs € {(1,9%),(1,6%)},
Cs € {(9,1),(9,9°)}, Cs € {(9,9): (9,9} Cs € {(9,9%),(9,9%)} and
C7 € {(0,1),(0,9)}.

II. Let m = 3. Now m = 3 and a = (g%,g%) are compatible if and
only if either (i) z; = 0 and ged(i2,6) = 1

or (ii) 4, = 0 and ged(i2,6) = 2

or (iii) ¢4, =1 and i, = 0.

(i) When m = 3, ¢; = 0 and ged(i2,6) = 1, all the non-trivial m-adic
splittings of G w.r.t. (g%, %), are given, for 0 < 4,j < 2, by the following
possible choices for T, :

{(1,6%),(1,4°%%2), (g,47), (g, g7 +%2)},
{(1,4%), (1,g"*32)},
{(9,¢%), (9,47 32)}.

(ii) When m = 3, i; = 0 and gcd(i2,6) = 2, all the non-trivial m-adic
splittings of G w.r.t. (g%,g%), are given, for 0 < 7,5 < 2 and k,¢ =
1 (mod 2), by the following possible choices for T, :

{(1,9%),(1,4%%%),(9,9%),(g,9%*")},
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{(1,9%), (1, 9%+, (9,9%)},
{(1,9%%),(9,9%), (9,9%%")},
{(9,9%), (9,9%%%), (1,6},
{(9,4%7%%),(1,4%),(1,6%+9)},
{(1,6%), (1,69},

(iii) When m = 3, i; = 1 and i3 = 0, all the non-trivial m-adic splittings
of G w.r.t. (g*,g™). are given, for 0 < 4,5 < 2, by the following possible
choices for T, :

{(", 1), (9"ra 1),(¢%,9), (¢7+%, 9)}s
{(g', 1), (63, 1)},
{(¢%,9), (y’+3,g)}

III. Let m = 6. Now m = 6 and a = (g%, g*?) are compatible if and only
if

either (i) 2; = 0 and ged(i2,6) =1

or (ii)i; = 1 and i, = 0.

(i) When m = 6, iy = 0 and ged(é2,6) = 1, all the non-trivial m-adic
splittings of G w.r.t. (g%, g%). are given, for 0 < ¢,5 < 5, by the following
possible choices for T, :

{(1,4'),(9:9°)},
{(1,9')},
{(g’gj)}‘

(ii) When m = 6, i; = 1 and i3 = 0, all the non-trivial m-adic splittings
of G w.r.t. (g*,g%). are given, for 0 < 4,5 < 5, by the following possible
choices for Ty, :

{(g' l (9%, 9)},
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