On \mathcal{D} -equivalence class of complete bipartite graphs

G. Aalipour-Hafshejani^a, S. Akbari^{b,a}, Z. Ebrahimi^a

^aDepartment of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

^bSchool of Mathematics, Institute for Research in Fundamental Sciences (IPM)

alipour_ghodrat@mehr.sharif.ir, s_akbari@sharif.edu, ebrahimi8@yahoo.com

Abstract

Let G be a simple graph of order n. We mean by dominating set, a set $S \subseteq V(G)$ such that every vertex of G is either in S or adjacent to a vertex in S. The domination polynomial of G is the polynomial $\sum_{i=1}^n d(G,i)x^i$, where d(G,i) is the number of dominating sets of G of size i. Two graphs G and H are said to be \mathcal{D} -equivalent, written $G \sim H$, if D(G,x) = D(H,x). The \mathcal{D} -equivalence class of G is $[G] = \{H \mid H \sim G\}$. Recently, the determination of \mathcal{D} -equivalence class of a given graph, has been of interest. In this paper, it is shown that for $n \geq 3$, $[K_{n,n}]$ has size two. We conjecture that the complete bipartite graph $K_{m,n}$ for $n-m \geq 2$, is uniquely determined by its domination polynomial.

Keywords: Domination polynomial, Dominating set.

2000 Mathematics Subject Classification: 05C69, 05C75.

1 Introduction

Throughout this paper, G denotes a simple graph with vertex set V(G) and edge set E(G). The order of G is the number of the vertices of G. For every vertex $v \in V(G)$, the open neighborhood of v is the set $N(v) = \{u \in V(G) | uv \in E(G)\}$ and the degree of v, denoted by d(v) is |N(v)|. The closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. We denote $min\{d(v) \mid v \in V(G)\}$ by $\delta(G)$. We mean by dominating set, a set S of vertices of G that every vertex is either in S or adjacent to a vertex in S. An i-dominating set of G is a dominating set of size i and the number of i-dominating sets of G is denoted by d(G,i). The cardinality of the minimum dominating set of G is denoted by $\gamma(G)$. A dominating set with cardinality $\gamma(G)$ is called a γ -set and the set of all γ -sets is denoted by $\Gamma(G)$. The domination polynomial of G, D(G,x), is a polynomial of degree |V(G)| = n in which the coefficient of x^i is d(G, i)for each $i, 1 \leq i \leq n$. For the further information about the properties of domination polynomials, see [3]. Two graphs G and H are said to be dominating equivalent or simply, D-equivalent, written $G \sim H$, if D(G,x) = D(H,x). It is evident that the relation \sim of being \mathcal{D} -equivalent is an equivalence relation on the the family \mathcal{G} of graphs and thus \mathcal{G} is partitioned into equivalence classes, called the \mathcal{D} -equivalence classes. Given $G \in \mathcal{G}$, let $[G] = \{H \in \mathcal{G} \mid H \sim G\}$. We call [G] the \mathcal{D} -equivalence class of G. A graph G is said to be dominating unique, simply \mathcal{D} -unique, if $[G] = \{G\}$. In [1], it is proved that all cycles are \mathcal{D} -unique. Also in [2], the \mathcal{D} -equivalence class of a path of order n, for $n \equiv 0 \pmod{3}$, is completely determined. There are two interesting problems on \mathcal{D} -equivalence classes:

- (i) Which graphs are D-unique?
- (ii) Determine the *D*-equivalence class of some families of graphs.

As usual, for two natural numbers m and n, we denote the complete bipartite graph with part sizes m and n and the complete graph of order n by $K_{m,n}$ and K_n , respectively. The cartesian product of two graphs G and H, $G \boxtimes H$, is a graph whose vertex set is $V(G) \times V(H)$ such that two vertices (u, v) and (x, y) are adjacent in $G \boxtimes H$ if and only if u = x, v and y are adjacent in H or v = y, u and x are adjacent in G. In this paper, we show that the \mathcal{D} -equivalence class of $K_{n,n}$ has just two elements and we study the \mathcal{D} -equivalence class of $K_{m,n}$ for two natural numbers m < n. Furthermore, we conjecture that if $n - m \ge 2$, then $K_{m,n}$ is \mathcal{D} -unique.

2 The \mathcal{D} -equivalence class of $K_{n,n}$

In this section we prove that the \mathcal{D} -equivalence class of $K_{n,n}$, for $n \geq 3$, has cardinality 2 and it contains $K_{n,n}$ and $K_n \boxtimes K_2$. Before proving our theorems, we need two following lemmas.

Lemma 1.(Theorem 13, [1]) For two natural numbers m and n, $D(K_{m,n},x) = ((x+1)^m - 1)((x+1)^n - 1) + x^m + x^n$.

Lemma 2.(Lemma 4, [1]) Let G be a graph of order n with domination polynomial $D(G,x) = \sum_{i=1}^n d(G,i)x^i$. If $d(G,j) = \binom{n}{j}$ for some j, then $\delta(G) \geq n-j$. More precisely, $\delta(G) = n-l$, where $l = \min\{j|d(G,j) = \binom{n}{j}\}$, and there are at least $\binom{n}{n-1-\delta(G)}-d(G,n-1-\delta(G))$ vertices of degree $\delta(G)$ in G. Furthermore, if for every two

vertices of degree $\delta(G)$, say u and v, we have $N[u] \neq N[v]$, then there are exactly $\binom{n}{n-1-\delta(G)} - d(G,n-1-\delta(G))$ vertices of degree $\delta(G)$.

Corollary 1. If G and H are two graphs and D(G, x) = D(H, x), then $\delta(G) = \delta(H)$.

Corollary 2.(Theorem 14, [1]) Let H be a k-regular graph with $N[u] \neq N[v]$, for every $u, v \in V(H)$. If D(G, x) = D(H, x), then G is also a k-regular graph.

In the next theorem, we determine the \mathcal{D} -equivalence class of the complete bipartite graph $K_{n,n}$.

Theorem 1. For every natural number n, $[K_{n,n}] = \{K_{n,n}, K_n \boxtimes K_2\}$.

Proof. For n=1,2 the assertion is obvious. So assume that $n\geq 3$. Let G be a graph and $D(G,x)=D(K_{n,n},x)$, for some natural number n. The equality $D(G,x)=D(K_{n,n},x)$ implies that |V(G)|=2n, $\gamma(G)=\gamma(K_{n,n})=2$ and $|\Gamma(G)|=|\Gamma(K_{n,n})|=d(K_{n,n},2)=n^2$. By Corollary 2, we deduce that G is an n-regular graph. Therefore; $|E(G)|=n^2$. So, the number of nonadjacent pairs of the vertices of G is n^2-n . Since $|\Gamma(G)|=n^2$, there exist two adjacent vertices $u,v\in V(G)$ such that $\{u,v\}$ is a γ -set of G. Since $\{u,v\}$ is a γ -set and d(u)=d(v)=n=|V(G)|/2, we have $N(u)\cap N(v)=\varnothing$. Thus G has the following graph as a spanning subgraph,

Now, we consider two cases:

(i) There is no γ -set $\{x,y\}$ such that $x=u, y\in N(v)$ or $x=v, y\in N(u)$. By this assumption, we deduce that $|\Gamma(G)|\leq (n-1)^2+2(n-1)+1=n^2$. Hence for every $x\in N(u), \{x,u\}$ is a γ -set of G. This implies that every vertex of $N(u)\setminus \{v\}$ should be adjacent to the every vertex of $N(v)\setminus \{u\}$. Therefore; G has the complete bipartite graph $K_{n,n}$ as a subgraph. Since $|E(G)|=n^2$, we have $G=K_{n,n}$.

(ii) Without loss of generality, we assume that there exists $\omega \in N(u) \setminus \{v\}$ that $\{v,\omega\}$ is a γ -set. So, $N(u) \setminus \{v,\omega\} \subseteq N(\omega)$. Since $|N(u) \setminus \{v\}| = n-1$, we conclude that there is a unique vertex $\omega' \in N(v) \setminus \{u\}$ that $\omega\omega' \in E(G)$. Since $n \geq 3$, $N(u) \setminus \{v,\omega\} \neq \emptyset$. Thus for every $x \in N(u) \setminus \{v\}$, $N(u) \cap N(x) \neq \emptyset$ and so $|N[u] \cup N[x]| \leq 2n-1$. This implies that $\{u,x\}$ is not a γ -set, for every $x \in N(u) \setminus \{v\}$. Also for every $y \in N(v) \setminus \{u,\omega'\}$, $\omega \notin N(y) \cup N(v)$. Thus $\{y,v\}$ is not a γ -set. Now, we claim that there are at least n-2 vertices of $N(u) \setminus \{v\}$, say u_1,\ldots,u_{n-2} , such that for every $1 \leq i \leq n-2$, $\{v,u_i\}$ forms a γ -set. By contradiction, suppose that there are at most n-3 such vertices. This implies that

$$|\Gamma(G)| \le (n-1)^2 + (n-3) + n + 1 = n^2 - 1,$$

where $(n-1)^2$ is counted for the maximum number of γ -sets with one element in $N(u) \setminus \{v\}$ and another in $N(v) \setminus \{u\}$. Also, n is counted for the maximum number of γ -sets $\{u, x\}$, where $x \in N[v]$. Finally, we add 1, because $\{v, \omega'\}$ may be a γ -set. So, the claim is proved. Similarly, one can see that there are at least n-2 vertices of $N(v) \setminus \{u\}$, say v_1, \ldots, v_{n-2} , such that for every $1 \le i \le n-2$, $\{u, v_i\}$ forms a γ -set. Therefore, the subgraphs induced on $N[u] \setminus \{v\}$ and $N[v] \setminus \{u\}$ are isomorphic to K_n . Since the degree of each vertex of G is n, so G is isomorphic to $K_n \boxtimes K_2$.

3 The \mathcal{D} -equivalence class of $K_{m,n}$

In this section we would like to determine the \mathcal{D} -equivalence class of $K_{n,n+1}$. Let n be a natural number. Consider the graph $K_{n+1} \boxtimes K_2$ and remove one of its vertices. Call this graph by H_n . It is not hard to see that $D(H_n, x) = D(K_{n,n+1}, x)$. It seems that $[K_{n,n+1}] = \{K_{n,n+1}, H_n\}$. We will show that if G is a graph, $D(G,x) = D(K_{n,n+1},x)$ and G contains a γ -set containing two vertices of the minimum degree, then $G \cong H_n$. Among other results, we prove that if G is a triangle-free graph and $D(G,x) = D(K_{m,n},x)$, then $G = K_{m,n}$.

Lemma 3. Let G and H be two graphs whose domination polynomials are the same. If G contains k vertices of degree $\delta(G) = \delta(H)$ (see Corollary 1) whose closed neighborhoods are distinct, then H contains such k vertices too.

Proof. Let $S \subseteq V(G)$, $|S| = |V(H)| - \delta(H) - 1$ and S is not a dominating set. It suffices to prove that $S = V(H) \setminus N[u]$, for some $u \in V(H)$, where $d(u) = \delta(H)$. There exists $u \in V(H)$ such that $S \cap N[u] = \emptyset$. So, $N[u] \subseteq V(H) \setminus S$. Since $|V(H) \setminus S| = \delta(H) + 1$, we have $d(u) = \delta(H)$. Since there exist k such subsets in V(G) and D(G, x) = D(H, x), the proof is complete.

Theorem 2. Let G be a graph and n be a natural number. If $D(G,x) = D(K_{n,n+1},x)$ and there exist two vertices of degree n such that these vertices form a γ -set of G, then $G \cong H_n$.

Proof. By Lemma 2, there are at least n+1 vertices $X = \{x_1, \ldots, x_{n+1}\}$ of degree $\delta(G) = n$ such that for every $1 \le i < j \le n+1$, $N[x_i] \ne N[x_j]$. Let $\{a_1, b_1\}$ be a γ -set containing two vertices of degree n. We can assume that $a_1, b_1 \in X$. To see this, by Lemma 3, we note that there exist $1 \le i, j \le n+1$ such that $N[a_1] = N[x_i]$ and $N[b_1] = N[x_j]$. Since $\{a_1, b_1\}$ is a γ -set, we conclude that $i \ne j$. Two cases may be considered:

Case 1. There are three vertices $x_i, x_j, x_k \in X$ such that $\{x_i, x_j\}$ and $\{x_i, x_k\}$ are two γ -sets. With no loss of generality we assume that i = 1, j = 2, k = 3. Since $d(x_1) = d(x_2) = d(x_3) = n$, $x_2, x_3 \notin N(x_1)$. Let $W = V(G) \setminus N[x_1]$. We have $x_2, x_3 \in W$. Since $\{x_1, x_2\}$ and $\{x_1, x_3\}$ are γ -sets, $W \subseteq N[x_2]$ and $W \subseteq N[x_3]$. On the other hand $|W| = d(x_2) = d(x_3) = n$. This implies that $|N(x_1) \cap N(x_2)| = |N(x_1) \cap N(x_3)| = 1$ and so there are two vertices $z_2, z_3 \in N(x_1)$ such that $x_2z_2, x_3z_3 \in E(G)$. Since $N[x_2] \neq N[x_3]$, we conclude that $z_2 \neq z_3$. We note that

- (1) If $\{u, v\} \subseteq N[x_1]$ is a γ -set, then $\{u, v\} = \{z_2, z_3\}$.
- (2) No pair of W forms a γ -set, because $W \cap N[x_1] = \emptyset$.

We claim that the induced subgraph on W is a complete graph. If there are at least n-1 vertices of W, say w_1, \ldots, w_{n-1} , such that for every $j, 1 \leq j \leq n-1$, $\{x_1, w_j\}$ forms a γ -set, then the induced subgraph on W is a complete graph and the claim is proved. So, we may assume that there are at most n-2 vertices of W with this property. Hence we find

$$|\Gamma(G)| \le 1 + (n-2) + n^2 = n^2 + n - 1.$$

But for $n \neq 2$, $|\Gamma(G)| = d(K_{n,n+1}, 2) = n^2 + n$, and so $|\Gamma(G)| \geq n^2 + n$, for every $n \geq 2$, a contradiction, and the claim is proved. Now, we show that there are at least n-1 vertices of $N(x_1), u_1, \ldots, u_{n-1}$, such that $\{x_2, u_j\}$ forms a γ -set, for $1 \leq j \leq n-1$. By contradiction assume that there are at most n-2 vertices of $N(x_1)$ with this property. By (1) and (2) no pair of W is a γ -set and at most one pair of $N[x_1]$, i.e. $\{z_2, z_3\}$ forms a γ -set. Hence we find

$$|\Gamma(G)| \le n+1+(n-2)+n(n-1)=n^2+n-1,$$

a contradiction. Hence $\{x_2,v\}$ is a γ -set for at least n-1 vertices $v\in N(x_1)$. Thus the induced subgraph on $N[x_1]\setminus \{z_2\}$ is a complete graph. Similarly, the induced subgraph on $N[x_1]\setminus \{z_3\}$ is also a complete graph. By a similar counting as we did for the previous inequality, at least one of the sets $\{x_2,z_2\}$ and $\{x_3,z_3\}$ is a γ -set. Hence $z_2z_3\in E(G)$ and the induced graph on $N[x_1]$ is a complete graph. We claim that $X\cap N(x_1)=\varnothing$. Let $x\in X\cap N(x_1)$. We know that $d(x)=d(x_1)=n$. Since the induced subgraph on $N[x_1]$ is a complete graph of order n+1, we find that $N[x]=N[x_1]$, a contradiction. This yields that $X\setminus \{x_1\}\subseteq W$ and so $G\cong H_n$.

Case 2. For every $a \in X$, there exists at most one vertex $b \in X$ such that $\{a,b\}$ forms a γ -set. By the assumption and with no loss of generality, assume that $\{x_1,x_2\}$ forms a γ -set. Now, for every $3 \le j \le n+1$, we conclude that none of the $\{x_1,x_j\}$ and $\{x_2,x_j\}$ is a γ -set. Since $\{x_1,x_2\}$ is a γ -set, we deduce that $|N(x_1) \cap N(x_2)| = 1$.

Let $N(x_1) \cap N(x_2) = \{z\}$. Then G has the following graph as a spanning subgraph,

Figure 2

Note that, for i = 1, 2,

- (i) no pair of $N(x_i) \setminus \{z\}$ forms a γ -set.
- (ii) Also, for every $u \in N(x_i) \setminus \{z\}$, $\{x_i, u\}$ is not a γ -set.

We would like to find an upper bound for $|\Gamma(G)|$. Assume that $|N(x_1) \cap X| = t$. Thus $|X \cap (N(x_2) \setminus \{z\})| = n - 1 - t$. Therefore, by (i) and (ii), we find

$$|\Gamma(G)| \le (n-1)^2 + 2(n-1) + 2n - (t + (n-1-t)) + 1 = n^2 + n + 1, (*)$$

where $(n-1)^2$ is counted for the maximum number of γ -sets with one element in $N(x_1)\setminus\{z\}$ and another in $N(x_2)\setminus\{z\}$. Also, 2(n-1) counts the maximum number of γ -sets $\{z,f\}$, where $f\in (N(x_1)\cup N(x_2))\setminus\{z\}$. We prove that the number of γ -sets which contains x_1 or x_2 is at most 2n-(t+(n-1-t))+1. Let

$$\Omega = \{ \{x_i, x_i'\} \mid x_i' \in N(x_{3-i}), i = 1, 2 \}.$$

Clearly, $|\Omega| = 2n$. Since none of the $\{x_1, x_j\}$ and $\{x_2, x_j\}$ is a γ -set, for $3 \leq j \leq n$, and $|N(x_1) \cap X| = t$, the number of elements of Ω containing x_2 which is not a γ -set, is at least t. Moreover; since $|X \cap (N(x_2) \setminus \{z\})| = n - 1 - t$, the number of elements of Ω containing x_1 which is not a γ -set, is at least n - 1 - t. Finally, we add 1, because $\{x_1, x_2\}$ is a γ -set.

Remark 1. We note that if $z \in X$, one can replace $n^2 + n + 1$ with $n^2 + n$ in the inequality (*). This follows from the fact that $\{x_1, z\}$ is not a γ -set, and so we obtain 2n - (t + (n - t)) instead of 2n - (t + (n - 1 - t)). Thus by counting in the inequality (*), $\{z, v\}$ is a γ -set for every $v \in V(G) \setminus \{z, x_1, x_2\}$.

Since $|\Gamma(G)| = |\Gamma(K_{n,n+1})| = n^2 + n$, there is at most one vertex $t_1 \in N(x_1) \cap X$ and one vertex $t_2 \in X \cap (N(x_2) \setminus \{z\})$, such that $\{t_1, t_2\}$ is not a γ -set. Since by assumption, for every $a \in X$, there exists at most one vertex $b \in X$ such that $\{a, b\}$ forms a γ -set, we obtain t = 0 or n - 1 - t = 0 or $1 \le t$, $n - 1 - t \le 2$. Now, we consider four subcases:

Subcase 2.1. If n-1-t=2 and t=2, by the pigeonhole principle, there exist $x_i, x_j, x_k \in X$ such that $\{x_i, x_j\}$ and $\{x_i, x_k\}$ are γ -sets, a contradiction.

Subcase 2.2. t = 0 or n - 1 - t = 0. First assume that t = 0. Thus $X \setminus \{x_1\} = N[x_2] \setminus \{z\}$. If both $\{x_1, z\}$ and $\{x_2, z\}$ are γ -sets, then $\{z\}$ is a γ -set, a contradiction. Thus at least one of them is not a γ -set. Since $z \notin X$, according to the counting in the inequality (*), we conclude that for every $u \in V(G) \setminus \{z, x_1, x_2\}, \{u, z\}$ is a γ -set for G. Assume that there exists $v \in N(x_2) \setminus \{z\}$ such that $zv \notin E(G)$. Since $\{p,z\}$ is a γ -set, for every $p \in N(x_2) \setminus \{v,z\}$, we deduce that $pv \in E(G)$. Thus $\{x_1, v\} \subseteq X$ is a γ -set, a contradiction. Hence z is adjacent to every vertex in $N[x_2] \setminus \{z\}$. Since $\{z\}$ is not a dominating set, there exists $y \in N(x_1) \setminus \{z\}$ such that $yz \notin E(G)$. Thus $\{z, x_2\}$ is not a γ -set. Since $\{u, z\}$ is a γ -set for every $u \in N(x_2) \setminus \{z\}$, we conclude that $N(x_2) \setminus \{z\} \subseteq N(y)$. We claim that the induced subgraph on $N[x_2]$ is a complete graph. Suppose on the contrary that there exist two vertices $x_i, x_i \in X \setminus \{x_1, x_2\}$ such that $x_i x_i \notin E(G)$. Since $\{z, x_2\}$ is not a γ -set, according to the counting in the inequality (*), we conclude that for every $h \in N(x_1)$, $\{x_j, h\}$ is a γ -set. Thus $x_i h \in E(G)$, for every $h \in N(x_1)$. This implies that $d(x_i) \geq n+1$, a contradiction. Therefore the claim is proved. Let $b \in N[x_2] \setminus \{z\} = X \setminus \{x_1\}$. Since $y \in N(b)$ and the induced subgraph on $N[x_2]$ is a complete graph, we obtain $d(b) \ge n+1$, which contradicts $b \in X$.

Now, assume that n-1-t=0. The proof of this case is similar to the case t=0, if $z \notin X$. Assume that n-1-t=0 and $z \in X$. If n=1, then since $K_{1,2}$ is \mathcal{D} -unique and $H_1=K_{1,2}$, we are done. If n=2, then G is a cycle of order 5. But $D(K_{2,3},x) \neq D(C_5,x)$, a contradiction. Thus assume that $n \geq 3$. So $t \geq 2$. Let $\{z,a\} \subseteq N(x_1) \cap X$. By Remark 1, for every $q \in (N(x_1) \cup N(x_2)) \setminus \{z\}$, $\{q,z\}$ is a γ -set. This yields that $az \in E(G)$, since otherwise $aq \in E(G)$ for each

 $q \in (N(x_1) \cup N(x_2)) \setminus \{z, a\}$ and so $d(a) \ge n + 1$, a contradiction. Hence $az \in E(G)$. Since d(z) = d(a) = n, thus $\{z, a\}$ is not a γ -set, which contradicts Remark 1.

Subcase 2.3. t=1 and n-1-t=2. With no loss of generality, suppose that $N(x_1)\cap X=\{x_3\}$ and $(N(x_2)\setminus\{z\})\cap X=\{x_4,x_5\}$. If $x_3=z$, then by Remark 1, $\{z,v\}$ is a γ -set, for every $v\in V(G)\setminus\{z,x_1,x_2\}$. Thus $\{z,x_4\}$ and $\{z,x_5\}$ are γ -sets, a contradiction to the assumption of Case 2. So let $x_3\neq z$. Since at least one of the pairs $\{x_3,x_4\}$ and $\{x_3,x_5\}$ is not a γ -set, by taking note of the counting of γ -sets in the right hand side of the inequality (*), we conclude that for every $h\in N(x_1)\setminus\{x_3\}, \{x_2,h\}$ is a γ -set. This implies that for every $h\in N(x_1)\setminus\{x_3,z\}, hx_3\in E(G)$. Thus $\{x_2,x_3\}\subseteq X$ is a γ -set, a contradiction. The case t=2 and n-1-t=1 is similar.

Subcase 2.4. t=1 and n-1-t=1. Thus n=3. With no loss of generality, suppose that $N(x_1)\cap X=\{x_3\}$ and $(N(x_2)\setminus\{z\})\cap X=\{x_4\}$. If $x_3=z$, then we claim that $zx_4\in E(G)$. If $zx_4\not\in E(G)$, then by Remark 1, $\{z,v\}$ is a γ -set, for every $v\in V(G)\setminus\{z,x_1,x_2\}$ and so $vx_4\in E(G)$. Thus $d(x_4)=4$, a contradiction. This proves the claim. Since $d(z)=d(x_4)=3$ and $zx_4\in E(G)$, thus $\{z,x_4\}$ is not a γ -set, which contradicts Remark 1. So, assume that $x_3\neq z$. According to the counting in the inequality (*), either for every $u\in N(x_1)\setminus\{x_3\}$, $\{x_2,u\}$ is a γ -set or for every $v\in N(x_2)\setminus\{x_4\}$, $\{x_1,v\}$ is a γ -set. So, either $N(x_1)\subseteq N[x_3]$ or $N(x_2)\subseteq N[x_4]$. Hence, at least one of the $\{x_2,x_3\}$ and $\{x_1,x_4\}$ is a γ -set, a contradiction. \square

Conjecture 1. $[K_{n,n+1}] = \{ K_{n,n+1}, H_n \}.$

The following remark has a simple proof and we omit it.

Remark 2. Let G be a graph such that $D(G, x) = D(K_{m,n}, x)$ and G contains $K_{m,n}$ as a subgraph, for some natural numbers m and n. Then $G = K_{m,n}$.

Theorem 3. Let G be a graph and n > m be two natural numbers. If $D(G, x) = D(K_{m,n}, x)$ and G contains at most m - 3 triangles, then $G = K_{m,n}$.

Proof. If m = 1, then by Corollary 2 of [2], we are done. Thus assume that $m \geq 2$. First suppose that $m \geq 3$. By Corollary 1, there exists $x_1 \in V(G)$ such that $d(x_1) = m$. Assume that $N(x_1) =$ $\{y_1,\ldots,y_m\}$. Set $V(G)\setminus N[x_1]=\{x_2,\ldots,x_n\}$. Note that if $m\geq 3$, then for every $1 \le i < j \le m$, $\{y_i, y_j\}$ is not a γ -set. Suppose on the contrary that there exist $i, j, 1 \le i < j \le m$, such that $\{y_i, y_i\}$ is a γ set. Thus for every $k \in \{1, \ldots, m\} \setminus \{i, j\}, y_k \in N(y_i) \cup N(y_j)$. This implies that G has at least m-2 triangles, a contradiction. Also for every $2 \le i < j \le n$, $x_1 \notin N(x_i) \cup N(x_j)$. Hence $\{x_i, x_j\}$ is not a γ -set for every $2 \le i < j \le n$. We claim that there exists at most one x_j , $j=2,\ldots,n$ such that $\{x_1,x_j\}$ is a γ -set. With no loss of generality assume that both $\{x_1, x_2\}$ and $\{x_1, x_3\}$ are γ -sets. Therefore, for every $k, 4 \le k \le n, x_2x_3x_k$ is a triangle, a contradiction, since n > m, and the claim is proved. If there is no γ -set of the form $\{x_1,x_j\},\ 2\leq j\leq n$, then by noting that $|\Gamma(G)|=mn$, then we conclude that $\{x_i, y_j\}$ is a γ -set for every $1 \le i \le n, 1 \le j \le m$. Then G contains $K_{m,n}$ as a subgraph. Now, by Remark 2, the proof in this case is complete. Now, with no loss of generality suppose that x_2 is the unique vertex of X such that $\{x_1, x_2\}$ is a γ -set. This yields that for every $3 \le j \le n$, $x_j \in N(x_2)$. Clearly, there exists y_i , $1 \le i \le m$,

such that $\{x_1, y_i\}$ is a γ -set. Thus $\{x_2, \ldots, x_n\} \subseteq N(y_i)$ and G contains triangles $x_2y_ix_j$ for every $j, 3 \leq j \leq n$, a contradiction.

Now, assume that m=2. If $n\geq 4$, then by a similar method as we did for the case $m\geq 3$ and using the equality $|\Gamma(G)|=2n+1$, we obtain a contradiction. Thus suppose that $n\leq 3$. If n=2, then using Theorem 1, we obtain the result. If n=3, then $D(G,x)=D(K_{2,3},x)$. The uniqueness of G in this case is proved by considering all graphs of order 5 and minimum degree 2.

Lemma 4. Let G be a triangle-free graph and m, n be two natural numbers. If $D(G, x) = D(K_{m,n}, x)$, then $G = K_{m,n}$.

Conjecture 2. Let m and n be two natural numbers such that $n-m \geq 2$. Then $K_{m,n}$ is \mathcal{D} -unique.

Acknowledgements. The second author is indebted to the School of Mathematics, Institute for Research in Fundamental Sciences (IPM) for support. The research of the second author was in part supported by a grant from IPM (No. 88050212).

References

- [1] S. Akbari, M.R. Oboudi, Cycles are determined by their domination polynomials, Ars Combin., to appear.
- [2] S. Akbari, S. Alikhani, Y. Peng, Characterization of graphs using domination polynomials, submitted.
- [3] S. Alikhani, Y. Peng, Introduction to domination polynomial of a graph, Ars Combin., to appear.