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Abstract

Let G be a simple graph of order n. We mean by dominating
set, a set S C V(G) such that every vertex of G is either in S
or adjacent to a vertex in S. The domination polynomial of G
is the polynomial }_; | d(G,i)z?, where d(G,i) is the number
of dominating sets of G of size ¢. Two graphs G and H are said
to be D-equivalent, written G ~ H, if D(G,z) = D(H,z). The
D-equivalence class of G is [G] = { H| H ~ G }. Recently, the
determination of D-equivalence class of a given graph, has been
of interest. In this paper, it is shown that for n > 3, (K, .)
has size two. We conjecture that the complete bipartite graph
K for n—m > 2, is uniquely determined by its domination

polynomial.
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1 Introduction

Throughout this paper, G denotes a simple graph with vertex set
V(G) and edge set E(G). The order of G is the number of the ver-
tices of G. For every vertex v € V(G), the open neighborhood of
v is the set N(v) = {u € V(G)|uwv € E(G)} and the degree of v,
denoted by d(v) is |[N(v)|. The closed neighborhood of v is the set
N[v] = N(v) U {v}. We denote min{d(v)|v € V(G)} by §(G). We
mean by dominating set, a set S of vertices of G that every vertex
is either in S or adjacent to a vertex in S. An i-dominating set
of G is a dominating set of size ¢ and the number of ¢-dominating
sets of G is denoted by d(G,7). The cardinality of the minimum
dominating set of G is denoted by ¥(G). A dominating set with
cardinality 7(G) is called a «y-set and the set of all y-sets is denoted
by I'(G). The domination polynomial of G, D(G,z), is a polyno-
mial of degree |V (G)| = n in which the coefficient of z* is d(G, 1)
for each ¢, 1 < i < n. For the further information about the prop-
erties of domination polynomials, see [3]. Two graphs G and H are
said to be dominating equivalent or simply, D-equivalent, written
G ~ H, if D(G,z) = D(H,z). It is evident that the relation ~ of
being D-equivalent is an equivalence relation on the the family G of
graphs and thus G is partitioned into equivalence classes, called the
D-equivalence classes. Given G € G, let [G] = {H € G|H ~ G}. We
call [G] the D-equivalence class of G. A graph G is said to be dom-
inating unique, simply D-unique, if [G] = {G}. In [1], it is proved
that all cycles are D-unique. Also in [2], the D-equivalence class of a
path of order n, for n = 0 (mod 3), is completely determined. There

are two interesting problems on D-equivalence classes:
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(i) Which graphs are D-unique?

(ii) Determine the D-equivalence class of some families of graphs.

As usual, for two natural numbers m and n, we denote the complete
bipartite graph with part sizes m and n and the complete graph of
order n by K, , and K, respectively. The cartesian product of two
graphs G and H, GR H, is a graph whose vertex set is V(G) x V(H)
such that two vertices (u,v) and (z,y) are adjacent in G ® H if and
only if u = z, v and y are adjacent in H or v = y, u and z are ad-
jacent in G. In this paper, we show that the D-equivalence class of
K, » has just two elements and we study the D-equivalence class of
K 5 for two natural numbers m < n. Furthermore, we conjecture

that if n — m > 2, then K, , is D-unique.

2 The D-equivalence class of K, ,

In this section we prove that the D-equivalence class of K, for
n 2 3, has cardinality 2 and it contains K, , and K, ® K,. Before

proving our theorems, we need two following lemmas.

Lemma 1.(Theorem 13, {1]) For two natural numbers m and n,
D(Kmn,2) = (e +1)™ = 1)((z +1)" = 1) + 2™ + 2",

Lemma 2.(Lemma 4, (1)) Let G be a graph of order n with dom-
ination polynomial D(G,z) = Y1, d(G,i)z*. If d(G,j) = (5) for
some j, then 6(G) > n — j. More precisely, §(G) = n — 1, where
I = min{j|d(G,j) = (;‘)}, and there are at least (n_lfJ(G))—d(G,n—
1-06(G)) vertices of degree 6(G) in G. Furthermore, if for every two
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vertices of degree §(G), say u and v, we have N[u] # N[v], then
there are ezactly (n_lfa(c)) — d(G,n — 1 — §(G)) vertices of degree
Q).

Corollary 1. If G and H are two graphs and D(G,z) = D(H,z),
then 6(G) = 6(H).

Corollary 2.(Theorem 14, [1]) Let H be a k-regular graph with
N[u] # Nv], for every u,v € V(H). If D(G,z) = D(H,z), then G

is also a k-regular graph.

In the next theorem, we determine the D-equivalence class of the

complete bipartite graph Kp .

Theorem 1. For every natural number n, [Kpyn] = {Knpn,Kn ®
K»}.

Proof. Forn = 1,2 the assertion is obvious. So assume that n > 3.
Let G be a graph and D(G,z) = D(Kp n, ), for some natural num-
ber n. The equality D(G, z) = D(Kp n,z) implies that |V(G)] = 2n,
G) = Y(Knm) = 2 and [D(G)] = [D(Knn)| = d(Enn,2) = n?.
By Corollary 2, we deduce that G is an n-regular graph. Therefore;
|E(G)| = n?%. So, the number of nonadjacent pairs of the vertices
of G is n2 — n. Since |['(G)| = n?, there exist two adjacent vertices
u,v € V(G) such that {u,v} is a y-set of G. Since {u,v} is a y-set
and d(u) = d(v) = n = |V(G)|/2, we have N(u) N N(v) = @. Thus
G has the following graph as a spanning subgraph,
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Figure 1

Now, we consider two cases:

(i) There is no +y-set {z,y} such that z = u, y € N(v) or z =
v, ¥ € N(u). By this assumption, we deduce that |['(G)| < (n —
1)2+2(n—1)+1 = n? Hence for every = € N(u), {z,u} is a y-set of
G. This implies that every vertex of N(u) \ {v} should be adjacent
to the every vertex of N(v) \ {u}. Therefore; G has the complete
bipartite graph K, as a subgraph. Since |E(G)| = n?, we have
G =Kpn.

(i) Without loss of generality, we assume that there exists w €
u) \ {v} that {v,w} is a y-set. So, N(u) \ {v,w} C N(w). Since
u) \ {v}| = n — 1, we conclude that there is a unique vertex

w' € N(v) \ {u} that ww' € BE(G). Since n > 3, N(u) \ {v,w} #

©@. Thus for every z € N(u) \ {v}, N(u) N N(z) # @ and so

|IN[u]UN][z]| < 2n—1. This implies that {u,z} is not a y-set, for ev-
ery ¢ € N(u)\{v}. Alsoforeveryy € N(v)\{u,w'},w ¢ N(y)UN(v).

Thus {y,v} is not a y-set. Now, we claim that there are at least

n — 2 vertices of N(u) \ {v}, say ui,...,un—2, such that for every

1<i<n-2,{v,u;} forms a y-set. By contradiction, suppose that

there are at most n — 3 such vertices. This implies that
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TG <(n-1)%+n-3)+n+1=n2-1,

where (n — 1)? is counted for the maximum number of y-sets with
one element in N(u) \ {v} and another in N(v) \ {u}. Also, n is
counted for the maximum number of -y-sets {u,z}, where z € N[v].
Finally, we add 1, because {v,w'} may be a 7-set. So, the claim is
proved. Similarly, one can see that there are at least n — 2 vertices of
N(v)\{u}, say v1,...,Un_2, such that for every 1 <i < n—2, {u,v;}
forms a vy-set. Therefore, the subgraphs induced on N[u] \ {v} and
N[v] \ {u} are isomorphic to K,. Since the degree of each vertex of
G is n, so G is isomorphic to K, X Kj. a

3 The D-equivalence class of K,

In this section we would like to determine the D-equivalence class of
Kpni1- Let n be a natural number. Consider the graph K4, &
K, and remove one of its vertices. Call this graph by H,. It
is not hard to see that D(Hy,,z) = D(Kpn+1,7). It seems that
[Knn+1] = {Knn+1,Hn}. We will show that if G is a graph,
D(G,z) = D(Knpn+1,z) and G contains a y-set containing two ver-
tices of the minimum degree, then G = H,. Among other results, we
prove that if G is a triangle-free graph and D(G,z) = D(Kmnn, z),
then G = Ky -

Lemma 3. Let G and H be two graphs whose domination polynomi-
als are the same. If G contains k vertices of degree 6(G) = 6(H)(see
Corollary 1) whose closed neighborhoods are distinct, then H con-

tains such k vertices too.
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Proof. Let § C V(G), |S| = |V(H)| - 6(H) — 1 and S is not a
dominating set. It suffices to prove that S = V(H) \ N[u], for some
u € V(H), where d(u) = §(H). There exists u € V(H) such that
SN N[u] =@. So, N[u] C V(H)\ S. Since |V(H)\ S| = §(H) + 1,
we have d(u) = §(H). Since there exist k such subsets in V(G) and
D(G,z) = D(H, z), the proof is complete. a

Theorem 2. Let G be a graph and n be a natural number. If
D(G,z) = D(Kpn+1,z) and there exist two vertices of degree n such
that these vertices form a vy-set of G, then G = H,,.

Proof. By Lemma 2, there are at least n+1 vertices X = {z1,...,Zn4+1}
of degree §(G) = n such that for every 1 <i < j <n+1, N[z;] #
N[z;). Let {a1,b:} be a y-set containing two vertices of degree n.

We can assume that a;,b; € X. To see this, by Lemma 3, we note
that there exist 1 < 4,7 < n + 1 such that Nfa)] = NJ[z;] and
N[b] = N[z;). Since {a;,b1} is a 7y-set, we conclude that i # j.
Two cases may be considered:

Case 1. There are three vertices x;,;,zx € X such that {z;,z;}
and {z;,zr} are two y-sets. With no loss of generality we assume
that ¢« = 1,7 = 2,k = 3. Since d(z1) = d(z2) = d(z3) = n,
r2,23 € N(z1). Let W = V(G) \ N[z;). We have z,z3 € W.
Since {z1,z2} and {z,,z3} are 7-sets, W C N[z;] and W C Nx3].
On the other hand |W| = d(z2) = d(z3) = n. This implies that
IN(z1) N N(z2)| = |[N(z1) N N(z3)| = 1 and so there are two vertices
z2,23 € N(z1) such that zo23,2323 € E(G). Since N{z] # N|z3),
we conclude that 25 # 23. We note that
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(1) If {u,v} C Nfz] is a vy-set, then {u,v} = {22, 23}
(2) No pair of W forms a y-set, because W N N(z1] = @.

We claim that the induced subgraph on W is a complete graph.
If there are at least n — 1 vertices of W, say wj,...,Wn—1, such that
for every j, 1 < j < n—1, {z1,w;} forms a y-set, then the induced
subgraph on W is a complete graph and the claim is proved. So,
we may assume that there are at most n — 2 vertices of W with this

property. Hence we find
ING)| <1+ (n—-2)+n?=n?+n—-1

But for n # 2, [T'(G)| = d(Kn n+1,2) = n?+n, and so |T(G)| > n+n,
for every n > 2, a contradiction, and the claim is proved. Now, we
show that there are at least n — 1 vertices of N(z), u1,-..,%n-1,
such that {z3,u;} forms a v-set, for 1 < j < n—1. By contradiction
assume that there are at most n — 2 vertices of N(z;) with this
property. By (1) and (2) no pair of W is a y-set and at most one
pair of N[z;], i.e. {22,23} forms a v-set. Hence we find

TG) <n+1+(n-2)+nn—-1)=n+n-1,

a contradiction. Hence {z2,v} is a <y-set for at least n — 1 vertices
v € N(z;). Thus the induced subgraph on N[zi]\ {22} is a com-
plete graph. Similarly, the induced subgraph on N[z;] \ {23} is also
a complete graph. By a similar counting as we did for the previous
inequality, at least one of the sets {z2,22} and {z3,23} is a ~y-set.
Hence 2023 € E(G) and the induced graph on N[z;] is a complete
graph. We claim that X N N(z,) = @. Let z € X N N(z,). We
know that d(z) = d(x;) = n. Since the induced subgraph on Nz]
is a complete graph of order n + 1, we find that N[z] = Nz}, a
contradiction. This yields that X \ {z:} C W and so G = H,,.
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Case 2. For every a € X, there exists at most one vertex b € X
such that {a,b} forms a «-set. By the assumption and with no loss
of generality, assume that {z;,z2} forms a vy-set. Now, for every
3 £j <n+1, we conclude that none of the {z;,z;} and {z2,z;} is
a y-set. Since {z1, z2} is a y-set, we deduce that [N (z)NN(z32)| = 1.

Let N(z1)NN(z2) = {z}. Then G has the following graph as a span-
ning subgraph,

Figure 2

Note that, for 1 = 1,2,

(i) no pair of N(z;) \ {2} forms a ~-set.
(ii) Also, for every u € N(z;) \ {2}, {zi,u} is not a -set.

We would like to find an upper bound for |[I'(G)|. Assume that
IN(z1) 0 X| = t. Thus |X N(N(z2) \ {z})| = n — 1 — t. Therefore,
by (i) and (ii), we find

IT(G)] < (n=1)2+2(n—1)+2n—(t+(n—1-1))+1=n2+n+1, (+)
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where (n — 1)? is counted for the maximum number of y-sets with
one element in N(z;)\ {2z} and another in N(z2)\ {z}. Also, 2(n—1)
counts the maximum number of vy-sets {z, f}, where f € (N(z;) U
N(z2))\ {z}. We prove that the number of -sets which contains z;
or zo is at most 2n — (¢ + (n — 1 —1¢)) + 1. Let

Q= {{zi,z}} | 2} € N(z3-:), 1 =1,2}.

Clearly, || = 2n. Since none of the {z,,z;} and {z2,z;} is a -
set, for 3 < j < n, and |N(z;) N X| = ¢, the number of elements
of © containing zo which is not a <y-set, is at least £. Moreover;
since | X N (N(z2) \ {z})] = n — 1 — ¢, the number of elements of
containing z; which is not a v-set, is at least n — 1 — ¢. Finally, we

add 1, because {z,z2} is a y-set.

Remark 1. We note that if z € X, one can replace n? + n + 1
with n2 + n in the inequality (*). This follows from the fact that
{z1,2} is not a 7y-set, and so we obtain 2n — (¢ + (n — t)) instead of
2n — (t + (n — 1 — t)). Thus by counting in the inequality (x), {z,v}
is a 7y-set for every v € V(G) \ {z, 21, z2}.

Since |I'(G)| = |T'(Knn+1)| = n? + n, there is at most one vertex
t; € N(z1) N X and one vertex t; € X N (N(z2) \ {2}), such that
{t1,t2} is not a v-set. Since by assumption, for every a € X, there
exists at most one vertex b € X such that {a,b} forms a vy-set, we
obtaint =0orn—-—1—-t=00rl1 <t n—-1-t <2 Now, we

consider four subcases:
Subcase 2.1. If n—1—¢ = 2 and t = 2, by the pigeonhole principle,

there exist z;,z;,zx € X such that {z;,z;} and {zi,zx} are vy-sets,

a contradiction.
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Subcase 2.2. t = 0orn—1—¢ = 0. First assume that ¢t = 0.
Thus X \ {z1} = N{zs] \ {z}. If both {z1, 2} and {z;, 2} are y-sets,
then {z} is a -set, a contradiction. Thus at least one of them is not
a v-set. Since z ¢ X, according to the counting in the inequality
(*¥), we conclude that for every u € V(G) \ {z,z1,22}, {u,2} is a
v-set for G. Assume that there exists v € N(z3) \ {2} such that
zv ¢ E(G). Since {p,z} is a v-set, for every p € N(z2) \ {v,z},
we deduce that pv € F(G). Thus {z,v} C X is a y-set, a contra-
diction. Hence z is adjacent to every vertex in N[zp]\ {z}. Since
{#} is not a dominating set, there exists y € N(z;) \ {2} such that
yz ¢ E(G). Thus {z,z} is not a y-set. Since {u, z} is a y-set for ev-
ery u € N(z2)\ {2}, we conclude that N(z2)\{z} C N(y). We claim
that the induced subgraph on N[z;] is a complete graph. Suppose
on the contrary that there exist two vertices z;,z; € X \ {z1,z2}
such that z;z; ¢ E(G). Since {z,z2} is not a y-set, according to the
counting in the inequality (), we conclude that for every h € N(z,),
{zj,h} is a y-set. Thus z;h € E(G), for every h € N(z;). This im-
plies that d(z;) > n + 1, a contradiction. Therefore the claim is
proved. Let b € Nzg] \ {2} = X\ {z1}. Since y € N(b) and the in-
duced subgraph on N|[z9] is a complete graph, we obtain d(b) > n+1,
which contradicts b € X.

Now, assume that n—1—¢ = 0. The proof of this case is similar to the
caset =0,if z & X. Assume that n—1—t=0andz€ X. Ifn =1,
then since K 3 is D-unique and H; = K} 5, we are done. If n = 2,
then G is a cycle of order 5. But D(K>3,z) # D(Cs,z), a contra-
diction. Thus assume that n > 3. So t > 2. Let {z,a} C N(z;)NX.
By Remark 1, for every g € (N(z1) U N(x2)) \ {2}, {g, 2} is a v-set.
This yields that az € E(G), since otherwise aqg € E(G) for each
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g € (N(z1) UN(z2)) \ {#,a} and so d(a) > n + 1, a contradiction.
Hence az € E(G). Since d(z) = d(a) = n, thus {z,a} is not a v-set,
which contradicts Remark 1.

Subcase 23. t = 1and n—1—-1¢ = 2. With no loss of gener-
ality, suppose that N(z;) N X = {z3} and (N(z2) \ {z}) N X =
{z4,z5}. If 23 = 2, then by Remark 1, {z,v} is a -set, for every
v € V(G)\{z,71,z2}. Thus {z,74} and {z,z5} are y-sets, a contra-
diction to the assumption of Case 2. So let z3 # 2. Since at least one
of the pairs {z3,z4} and {z3,zs5} is not a y-set, by taking note of the
counting of «y-sets in the right hand side of the inequality (), we con-
clude that for every h € N(z1)\{z3}, {z2,h} is a y-set. This implies
that for every h € N(z1) \ {3, 2}, hzs € E(G). Thus {z3,z3} C X
is a y-set, a contradiction. The caset = 2 and n—1—¢ =1 is similar.

Subcase 2.4. t=1and n—1 -t =1. Thus n = 3. With no loss of
generality, suppose that N(z1) N X = {z3} and (N(z2)\ {z}) N X =
{z4}. If z3 = 2, then we claim that zz4 € E(G). If zz4 & E(G), then
by Remark 1, {z,v} is a y-set, for every v € V(G)\{z, 21,22} and so
vz4 € E(G). Thus d(z4) = 4, a contradiction. This proves the claim.
Since d(z) = d(z4) = 3 and zz4 € E(G), thus {2z,z4} is not a y-set,
which contradicts Remark 1. So, assume that z3 # z. According to
the counting in the inequality (*), either for every u € N(z1) \ {z3},
{z2,u} is a y-set or for every v € N(z2) \ {z4}, {z1,v} is a y-set.
So, either N(z;) C Nz3] or N(z2) C Niz4). Hence, at least one of

the {z2,z3} and {z,,z4} is a y-set, a contradiction. O

Conjecture 1. [K;n+1] = { Knp+1, Hn }-
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The following remark has a simple proof and we omit it.

Remark 2. Let G be a graph such that D(G,z) = D(Ky n,x) and
G contains K, , as a subgraph, for some natural numbers m and n.
Then G = Ky .

Theorem 3. Let G be a graph and n > m be two natural numbers.
If D(G,z) = D(Kmn,x) and G contains at most m — 3 triangles,
then G = K p.

Proof. If m = 1, then by Corollary 2 of [2], we are done. Thus
assume that m > 2. First suppose that m > 3. By Corollary 1,
there exists ; € V(G) such that d(z;) = m. Assume that N(z,) =
{v1,--,ym}. Set V(G)\ N[z1] = {z2,...,z,}. Note that if m > 3,
then for every 1 <i < j < m, {y;,y;} is not a y-set. Suppose on the
contrary that there exist 4,7, 1 <4 < j < m, such that {y;,y;} isa~-
set. Thus for every k € {1,...,m}\ {4,5}, yx € N(y:) UN(y;). This
implies that G has at least m — 2 triangles, a contradiction. Also for
every 2 < i< j <n,z; ¢ N(z;)UN(z;). Hence {z;, z;} is not a y-set
for every 2 <4 < j < n. We claim that there exists at most one z;,
j =2,...,n such that {z1,z;} is a y-set. With no loss of generality
assume that both {z;,z2} and {z,z3} are vy-sets. Therefore, for
every k, 4 < k < n, zoz3z; is a triangle, a contradiction, since
n > m, and the claim is proved. If there is no -y-set of the form
{z1,z;}, 2 < j < n, then by noting that |T'(G)| = mn, then we
conclude that {z;,y;} isay-set forevery 1 <i < mn,1 < j < m. Then
G contains Ky, , as a subgraph. Now, by Remark 2, the proof in this
case is complete. Now, with no loss of generality suppose that z is
the unique vertex of X such that {z1,z2} is a y-set. This yields that
for every 3 < j < n, z; € N(x3). Clearly, there exists y;, 1 <7 <m,
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such that {z1,y;} is a y-set. Thus {z2,...,zp} C N(y;) and G

contains triangles zoy;z; for every j, 3 < j <n, a contradiction.

Now, assume that m = 2. If n > 4, then by a similar method as
we did for the case m > 3 and using the equality |[['(G)| = 2n + 1,
we obtain a contradiction. Thus suppose that n < 3. If n = 2, then
using Theorem 1, we obtain the result. If n = 3, then D(G,z) =
D(K33,z). The uniqueness of G in this case is proved by considering

all graphs of order 5 and minimum degree 2. O

Lemma 4. Let G be a triangle-free graph and m,n be two natural
numbers. If D(G,z) = D(Kmpn,z), then G = Kn .

Conjecture 2. Let m and n be two natural numbers such that

n—m > 2. Then Kp 5, is D-unique.
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