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1 Introduction

Throughout this paper only undirected connected graphs (strongly con-
nected digraphs) without loops and multiple edges (arcs) are considered.
Unless stated otherwise, we follow Bondy and Murty [1] for terminology
and definitions.

Let G = (V, E) be a connected graph. The edge — connectivity A\(G) of
G is the cardinality of a minimum edge cut S of G. The edge connectivity
A(G) is an important feature for determining reliability and fault-tolerance
of networks {4, 5, 6]. In the definition of A(G), no restrictions are imposed
on the components of G — S. Hence, restricted edge connectivity was
proposed in (7, 8].

An edge set S C E is said to be a restricted edge cut, if G — S is
disconnected and every component of G — S has at least two vertices. The
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restricted edge connectivity of G, denoted by A'(G), is the cardinality of
a minimum restricted edge cut of G. Esfahanian and Hakimi proved the
existence of restricted edge cuts and an upper bound for the restricted edge
connectivity:

Theorem 1.1. [7] For any connected graph G with at least four vertices
which is not isomorphic to the star Ky n—1, N(G) is well defined. Further-
more, N (G) < £(G).

G is said to be M-optimal, if N'(G) = £(G), where §(G) = min{d(z) +
d(y) — 2: zy € E} is the minimum edge degree of G. The restricted edge
connectivity is the generalization of the classical edge connectivity and has
received much attention in recent years (see, for example, (13, 2, 14, 18, 9,
10, 11]).

We consider D = (V, A) to be a digraph without loops and parallel arcs.
For a vertex v € V we denote the indegree, the outdegree of v, the mini-
mum indegree and the minimum outdegree in D by dp,(v),df(v) (simply
d=(v),d*(v)), 6=(D),8*(D), respectively. We denote the minimum de-
gree of D by §(D) = min{6—(D),6*(D)}, and d(v) = min{d~(v),d*(v)}.
Moreover, for S C V, D — S denotes the subdigraph of D induced by the
vertex set of V\ S. Forve Vlet N E;(v) be the set of out-neighbors and
Np{v) the set of in-neighbors of v. For X,Y C V, (X,Y) denotes the
set of all arcs with tail in X and head in Y, and [X,Y] the set of edges
of G with one end in X and the other in Y. If X = V\Y, then denote
9t (X) = (X,Y) or 8~ (Y) = (X,Y) A triangle is the subgraph of D which
is isomorphic to K3 in the underlying graph of D.

The concept of restricted arc-connectivity was introduced by Volkmann
[15]. Let D be a strongly connected digraph. An arc set S of D is a
restricted arc cut of D if D — S has a non-trivial strong component D; such
that D — V(D) contains an arc. The restricted arc connectivity \'(D) is
the minimum cardinality over all restricted arc cuts S. A strongly con-
nected digraph D is called X-connected, if (D) exists. Let D be a di-
graph with finite girth g = g(D). If Cg = ujuz - - - ugu; is a g-cycle, then let

£(Cq) = min{3"7_, d*(w) — 9, 2°7_, d” (w:) — g} and §(D) = min{£(C,) :
C, is a g-cycle}. Volkmann proved that each strong digraph D of order
n > 4 and girth g = 2 or ¢ = 3 except some families of digraphs is \'-
connected and satisfies A(D) < M (D) < &(D).
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Wang and Lin presented the concept of minimum arc degree [17]. If zy is
an arc with yz ¢ A(D), then call §'(zy) = min{d*(z) +d*(y)—1,d" (z)+
d~(y) — 1,d*(y) + d~(z),d* () + d~(y) — 1} the arc degree of zy. If zy is
an arc with yz € A(D), then call §'(zy) = min{d*(z) +d*(y) - 2,d"(z) +
d~(y) —2,d*(y) +d~(z) — 1,d*(z) + d~(y) — 1} the arc degree of zy. The
minimum arc degree of D is £'(D) = min{¢'(zy) : zy € A(D)}.
Theorem 1.2. [17] Let D be a strongly connected digraph with 6% (D) > 3
or 6=(D) > 3. Then D is X'-connected and X' (D) < €'(D).

In the same paper the authors propose £'(D) < £(D) for various digraphs.
A X-connected digraph is called XN-optimal if X' (D) = &'(D).

In this paper, we give some sufficient conditions for digraphs to be A’-
optimal.

2 Sufficient conditions for N-optimal digraphs

We start this section with a simple, but very useful lemma.

Lemma 2.1. Let D be a strongly connected digraph with §¥(D) > 3 or
0= (D) > 3. If there is a minimum restricted arc cut S = 8+(X) such that
there exists an arc xy in D[X| and yz € A(D) with the property that
[(X\{=z, v}, X 2] (N* (@) n XO\(N*(y) U {g})]| + 2IN*(z) n N*(y) n X|
H(NF(y) N XNV F (z) U {=2})],

then D is M -optimal.

Proof. The hypotheses implies
€(G) < d¥(z)+d*(y) -2

= IN*(@)\{g}| + IN*(y)\{z}|

= |(N* (@) n X)\{g} + IN* () 0 X| + (N (y) n X)\{=}]
+IN*(y) n X|

= [({z, v}, )|+ [(N*(z) n X\(N*(y) U {y})| +
[((NF(y) N X)\(N*(z) U {z})] + 2|N*(z) "\ N*(y) n X|

< {=vh X1+ 1(X\{=z, 9}, X))

= |(X,X)|=N(G).
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Since M(G) < €'(G), we deduce that X' (G) = £'(G), and thus D is M-
optimal. a

Remark 1. If yz is not an arc in D, then we also obtain a similar result.
Let D be a strongly connected digraph with §*(D) > 3 or 6~ (D) > 3. If
there is a minimum restricted arc cut S = 8% (X) such that there exists an
arc zy in D[X] and yz ¢ A(D) with the property that

(X\z,s1 D) 2 (N (@) N XONNH@) U {gh)] + I(N* (5) 0 X)\N* () -
2IN*(z) N N+ (y) N X],

then D is A'-optimal.

Proof. The hypotheses implies

£(G) < d¥(z)+d*(y)-1
= IN*@\{g} +IN* (@)
= |(N*(2) N X\{g}| + [N (@) N X| + [N*(y) N X| + [N* () n X]|
= |({z, 9}, )+ I(N* (@) N XN\(NT(y) Uyl +
I(N* (y) 0 X\N* (2)] + 2AN* () N N* (y) 0 X|
< (= vh X+ [(X\{=z, v}, X))
= |(X,X)|=X(G).

Since M'(G) < €'(G), we deduce that M (G) = £(G), and thus D is X-
optimal.

Remark 2. By symmetry we have a similar result for X. Let D be a
strongly connected digraph with §+(D) > 3 or 6=(D) > 3. If there is a

minimum restricted arc cut $ = 8+ (X) such that there exists an arc zy in
D[X] and yz € A(D) with the property that

I(X\{z,9}, X)| 2| (N (@) 0 XNV~ @)U {g}]+2IN" (&) NN~ () N X]|
+(N~ () N\~ (z) U {=})],
then D is A-optimal. Analogue to Remark 1 the statement holds for yr ¢

A(D} as well.
If G is a graph with §(G) > 3, then we have
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Corollary 2.2. [13] Let G be a X' -connected graph with §(G) > 3. If there
is a X' -cut S with the vertez sets X and X of the two components of G — S
such that there exists an edge xy in G| X with the property that

IX\{z, 9}, X]I 2 [(N(2) N XN () U {y})] +2IN(z) N N(y) N X|
+H(N(y) N X\(N(z) U {=})],

then G is A -optimal.

Corollary 2.3. Let D be a strongly connected digraph with §*(D) > 3 or
0=(D) > 3. If there is a minimum restricted arc cut S = 8+(X) such that
there ezists an arc zy in D[X] and yx € A(D) with the property that each
verter in [(N'*+(z) N X)\(N* (4) U {y D] U[(N* (5) N XO\(N+(2) U{z})] has
at least one out-neighbor in X, and each vertez in Nt(z)N N+t (y)N X has
at least two out-neighbors in X, then D is X'-optimal.

Corollary 2.4. [13] Let G be a X -connected graph with §(G) > 3. If there
is a X -cut S with the vertez sets X and X of the two components of G— S
such that there exists an edge zy in G[X| with the property that each vertex
in [(N(z) 0 X)\(N(y) U {y)] U [(N(y) 0 X)\(N(z) U {z})] has at least
one neighbor in X, and each vertex in N(z) N N(y) N X has at least two
neighbors in X, then G is N -optimal.

By combining Lemma 2.1 and Remark 2, we obtain

Corollary 2.5. [17] Let D be a strongly connected digraph with §+(D) > 3
oré~—(D) > 3, and let S = % (X) be a minimum restricted arc cut. If there
is an arc zy in D[X] such that [N*(z2)NX| > 2 for any z € X \ {z,y}, or
there is an arc xy in D[X) such that N~ (2)NX| > 2 for any z € X \{z, v},
then D is M -optimal.

Let D be a strongly A’-connected digraph and S = 87 (X) be a minimum
restricted arc cut. Let X; = {z € X : [INt(2)nX| =4}, X; = {ye X :
IN“(y)n X| = i},i = 0,1, and X5 = {z € X : |[N*(z) nX| > 2},
Xz ={y e X :|N~(y)n X| > 2}. The strong components of a digraph
D can be labeled Dy,---,D; such that there is no arc from D; to D;
unless j < ¢ (3]. We call such an ordering an acyclic ordering of the strong
components of D.
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Lemma 2.6. [17] Let D be a strongly connected digraph with §*(D) > 3 or
§—(D) > 3 and let zy be an arc. Then 8*({z,y}),0~({z,y}),0 " (z)udt(y)
and 8*(z) U8~ (y) are restricted arc cuts of D.

Lemma 2.7. Let D be a strongly connected digraph with §¥(D) > 3 or
6= (D) > 3. Furthermore, let S = 8*(X) be a minimum restricted arc cut,
and for all vertices u,v with uv ¢ A(D) we have [Nt (u)NN~(v)| > 2. If
D|[X] contains no ercs, then D is X'-optimal.

Proof. Assume that D is not A’-optimal and § = 0%(X) is a minimum
restricted arc cut.

Claim 1. Xo = @ or Xo = @. Suppose there is z € X and y € Xo.
Then zy ¢ A(D) and |[N*¥(z) N N™(y)] = 2. Since N*(z) C X and
N-(y) € X, we have a contradiction.

Assume Xg = @. Let Dy, Do, - - -, D; be an acyclic ordering of the strong
components of D[X].

Claim 2. t > 2. Since D[X] contains no arcs, by the definition of
restricted arc cuts, we have t > 2.

Claim 3. |X| > 2. For any y1 € D1, y: € D¢, we have yiyn ¢ A(D)
and |[N*(y) NN~ (y1)| = 2. Since yy € D1, y: € Dy, N~(1n) CV(Dy)U X
and N*(y,) CV(D;)U X, and so N*(y) NN~ (1) C X, that is [ X| > 2.

Claim 4. Both D, and D; are not trivial. Suppose that D; is trivial
and let V(D;) = {y1}. Since D is strong, there exists z € X such that
zy; € A(D). Noting that %(z) U9~ (y1) € S, we have that X'(D) =
|S] > &'(zy1) > €'(D), contrary to the assumption. Suppose that D,
is trivial and let V(D;) = {y:}. Since D is strong, there exists r € X
such that y,x € A(D). Let S’ = 8*({y:,z}). By Lemma 2.6, §' is a
restricted arc cut of D. For any z/,z” € X, by assumption, we have
INt(z') " N=(z")] > 2, and so |[N*(z')] > 2. It follows that |§'| <
d*(z) + |X| -1 < d*(z) + 2(]X| — 1) < |S|, which is contrary to the
minimality of S. Therefore, both D; and D are not trivial.

This implies that S = (V\(V(D1)), V(D1)) = (X, V(Dy)) is a restricted
arc cut of D. Noting that S’ C S, it follows that $” = S from the
minimality of S. Let y, € V(D,). Then for any y € V(D;), we have
wmy ¢ A(D). By assumption, |[N*(y;) N N~ (y)| > 2. Combining this
with the fact that N*(y;) " N~ (y) C X, we have [N~ (y) N X| > 2 and so
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[N~(y) N (V\ (V(D1))| = 2. Since D; is non-trivial, there exists an arc
¥1y] in Dy. By Corollary 2.5, D is N-optimal, a contradiction. a

Lemma 2.8. [17] Let D be a N -connected digraph with X' (D) < €'(D).
If D has no minimum restricted arc cut of the form 8%(X), where X is a
subset of V(D), then D is X -optimal.

Theorem 2.9. Let D be a strongly connected digraph with §+(D) > 3 or
0=(D) = 3. If for all vertices u,v with wv ¢ A(D) we have |N*(u) N
N~=(v)| > 2, and for each triangle T there is at least one vertezx v € V(T)
such that d*(v) > |n/2] + 1, then D is X -optimal.

Proof. Clearly, 6(D) > 2. Suppose D is not M'-optimal. By Lemma 2.8,
there is X C V(D) such that S = 8*(X) is a minimum restricted arc cut.
Without loss of generality, we assume |X| < |n/2].

Similar to Lemma, 2.7 we obtain X, = @ or Xo = @. We assume Xy = @

Case 1. Xl =

Subcase 1.1. D[X ] contains at least one arc. Then by Corollary 2.5, D
is XM-optimal, a contradiction.

Subcase 1.2. D[X] contains no arcs. Then by Lemma 2.7 D is M-
optimal, a contradiction.

Case 2. X, # 2.

By Lemma 2.7 D{X] contains at least one arc.

Subcase 2.1. If there is no arc in X3, then take u € X; and [N*(u) N
X| = 1. Since §(D) > 2, thereis v € X such that uv € A(D). Ifvu € A(D),
then uv satisfies the condition of Lemma 2.1. Hence D is M-optimal, again
a contradiction. If vu ¢ A(D), then by Remark 1 we also get the desired
result.

Subcase 2.2. There is an arc v in X). So d*(u),d*(v) < |n/2], and
for any y € Nt(u) N N*(v), d*(y) > [n/2] + 1. Thus, by Remark 1 on
Lemma 2.1 we get the desired result. O

The proof of the following result is similar to the proof of Theorem 3.2
in [14].

Theorem 2.10. Let D be a strongly connected digraph with 6%(D) > 3
or 6=(D) > 3. If for all vertices u,v withuv ¢ A(D) we have |[N*(u) N
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N~=(v)] = 2, and D[N*(u) N N~ (v)] contains a 2-cycle, then D is X'-
optimal.

Proof. Suppose D is not N-optimal. By Lemma 2.8, there is X C V(D)
such that § = 8*(X) is a minimum restricted arc cut.

Claim 1. Xy = @ or X = @. The proof is similar to Lemma 2.7.

We assume Xg = @. Let Dy, D,,---, D, be an acyclic ordering of the
strong components of D[X].

If X = X,, then, by Corollary 2.5, D is A-optimal, a contradiction.
Hence

Claim 2. X; # @. Let z; € X; and N*(z;) nX = {y1}.

Claim 3. D[X] contains at least one arc. By Lemma 2.7 we obtain the
result.

Claim 4. |X| > 3. By Claim 3 D[X] contains an arc. Hence |X| > 2.
Assume D[X] contains an arc zy. If [ X| = 2, then M (D) = |5| > &(zy) >
&'(D), a contradiction. So [X| > 3.

Claim 5. X, = @. By the definition of z;, for any y € X — v,
z1y ¢ A(D). Then 2 < [N*(z1)NN~(y)| = [N*(z1)) " N~ (¥) 0 X| +
IN*(z1) A N=(9) n X| < IN~() N X|+IN+@) X = [N~() N X| +1,
we have [N~ (y) N X| > 1.

Similarly, [X| > 3, D[X] contains at least an arc.

Claim 6. |X;| > 2 and |X;| > 2.

If |X;] =1 and |X;| = 1. Let X; = {u} and since §(D) > 2, there is
v € X such that uv € A(D). According to Corollary 2.5 D is A’-optimal, a
contradiction.

Claim 7. A(D[X1]) # @ and A(D[X,]) # @.

If there is no arc in X, then for any u € X; each vertex ve N*t(u)NnX
has at least two out-neighbors in X. Hence, if vu € A(D), then uv satisfies
the condition of Lemma 2.1; if vu ¢ A(D), then uv satisfies the condition
of Remark 1 to Lemma 2.1, and D is A’-optimal, a contradiction. Similarly,
if there is no arc in X;, then for any v € X; each vertex u € N~ (v) N X
has at least two in-neighbors in X. So according to Remark 2 on Lemma
2.1 we are done.

So A(D[X)]) # @ and A(D[X1]) # @. Set Nx, = N*(X;)nX and
Ng; =N~ (X1)NX. Suppose that there exists a vertex u € Nx, N X, then
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all pairs of vertices v, w, where v € X; NN~ (u) and w € X1, w # u, vw ¢
A(D) and D[N*(v) N N~ (w)| does not contain a 2-cycle, a contradiction.

Consequently Nx, N X, = @ and thus each vertex in N x, has at least
two in-neighbors in X. Analogously, we obtain Ng-NX =2.

If there exist two vertices u € N7 and v € Nx, such that uv ¢ A(D),
then the vertices u’,v’, where v' € X1,v'v € A(D) and v’ € X;,uu’ €
A(D), v'v' ¢ A(D) and D[N*(v') N N~(u')] does not contain a 2-cycle,
which is a contradiction. Consequently, there exists each arc uv, where
ue€ NXTv v € Nx,.

Thus

|(Nge, )1 2 [X3] + [ NIV, | (1)

since N-X—lﬁ X1=2.If
I)('ll_2 < IX_1|+IN')T,'”NX1|_2INX—,I’ (2)

then we consider an arbitrary arc uv € A(D[X;]). Then by using (1) and
(2) we obtain

(X\{w,2},X)] = (X, X)] -] ({u, v}, X)| =(X,X)| -2
2 2|X\(X1UNYI-)|+|X11+|(N3?;,Y)|—2
> 2AX\(X1 U Nxp)| + 1 Xa] + Xa| + |[Nx7l|[Nx, | - 2
2 2X\(X1 UNz)| + [ Xa| + | Xi| — 2+ 2| Ny - 2
= 2X\(X1UNg)| + 21X | — 4 + 2| Nx|
= 2[X\(X1 UNg)| + 21X\ {u, v} +2|{u, v}| — 4 + 2| Nx]
= 2JX\(X1 U Ngp)| + 2|1 X1\ {u, v} + 2|Nx7| = 2| X\{u, v}|
2 2(NF(w) N X)\(N*(v) U {v})| +
2/(N*(v) N X)\(NF(u) U {u})] + 2|N*(u) N N*(v) N X|
2 [(NTw)n X)\(NF(v) U {o})| + 2Nt (u) N Nt (v) N X]|

HINF () NXONNF () U {u})].

If vu € A(D), then this is a contradiction to Lemma 2.1. In case vu ¢ A(D),
we have a contradiction according to Remark 1.

If [X1| -2 < | X1 |+ | Ng7|| Nx,| — 2| Nx, |, then we also can get the desired
result.
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Hence
[X1] — 2 > [Xa| + [NglINx, | = 21N ] + 1, (3)

and
(X1l = 2> |X3| + [Nx;]|Nx,| — 2INx,| +1, (4)
Then
— (3) 4)
|X1] + INg7l|Nx, | = 2INg7 +3 < | X] < | X1 =3 = {Nx7||Nx, |+ 2|Nx, |,

which implies

2|Ng-||Nx,| - 2|Nx;| — 2|Nx,| +6 <0
& INxrllNx, | =] Mgl =| N, | +8 < 0
& (|Ng7| = D(INx, | -1)+2 <0,

a contradiction to |Nx, |, [Ng;| 2 1. O
Theorem 2.11. [17] Let D be a connected digraph with order n > 4. If
for all vertices u,v with wv ¢ A(D) we have [N*(u) N N~ (v)] > 3, then
D is X -optimal.
Corollary 2.12. Let D be a connected digraph with order n > 4. If for all

vertices u,v with uv ¢ A(D) we have d*(u) +d~(v) 2 n+1, then D is
N -optimal.

Corollary 2.13. [16] Let G be a connected graph with order n > 4. If for
all vertices u,v with wv ¢ E(G) we have d(u) + d(v) > n+1, then G is
N -optimal.

Corollary 2.14. Let D be a connected digraph with ordern > 4. If6(D) >
(n+1)/2, then D is X' -optimal.

The following example shows that Theorem 2.10 is independent of The-
orem 2.9 and Theorem 2.11.

Example 1. Let H; be a copy of the complete graph Ky,—6,p > 4 with
V(H,) = {z1,%2, " ,T4p-6} and let Hy be a copy of the complete graph
K3 with V(Hy) = {y1,¥2,y3}. We define the vertex set of graph G as
the union of V(H;), V(H,) and three additional vertices z;,z3,w. Apart
from E(H,), E(H3), the edge set of G contains the edges z;22,2iz,i = 1,2
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for all z € V(G) \ {21, 22} and wz;,i = 2p —2,2p— 1,--- ,dp — 6, and
vizjt = 1,2,3;57 = 1,2,--- ,2p — 4. Then n(G) = 4p. We replace each
edge of E(G) by two arcs in opposite directions and denote D the new
obtained digraph. £(G) = d*(y1) +d*(y2) —2 = 2(2p) — 2. In the triangle
Y1y2y3y there is no vertex y; with d*(y;) > |n/2| +1 and the nonadjacent
vertices w, y; only have two common neighbors 21, 2. Hence Theorem 2.9
and Theorem 2.11 do not show that D is M-optimal. But Theorem 2.10
shows that D is M-optimal. The example graph G is obtained by Hellwig
[13]. We use it to get digraph D.

The following example shows that Theorem 2.9 is independent of Theo-
rem 2.10 and Theorem 2.11.

Example 2. Let G’ be the graph obtained by adding the edges y;z9p—3,i =
1,2,3 and by removal of the edge z;z2 in the graph G in Example 1. We
replace each edge of E(G’) by two arcs in opposite directions and denote
D’ the new obtained digraph. It is d(z) > (n(D’)/2] + 1 for all z # w,z €
V(D'). w and y3 have only two common neighbors and D[N+ (w)NN~(y3)]
does not contain an arc. But Theorem 2.9 shows that D’ is X’-optimal. The
example graph G’ is obtained by Hellwig [13]. We use it to get digraph D’'.
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