## A note on the thickness of $K_{l,m,n}$

### Yan Yang

Department of Mathematics Tianjin University, Tianjin 300072, P.R.China yanyang@tju.edu.cn

Abstract The thickness  $\theta(G)$  of a graph G is the minimum number of planar spanning subgraphs into which G can be decomposed. In this note, we obtain the thickness of the complete tripartite graph  $K_{l,m,n}(l \le m \le n)$  for the following cases: (1)  $l+m \le 5$ ; (2) l+m is even and  $n > \frac{1}{2}(l+m-2)^2$ ; (3) l+m is odd and n > (l+m-2)(l+m-1).

**Keywords** thickness; complete tripartite graph; planar subgraphs decomposition.

#### 1 Introduction

The thickness  $\theta(G)$  of a graph G is the minimum number of planar spanning subgraphs into which G can be decomposed. It is a classical topological invariant of a graph and also has important applications to VLSI design [1]. Determining the thickness of a graph is NP-hard [5], so the results about thickness are few, the only types of graphs whose thicknesses have been determined are hypercubes [4], complete graphs [2] and complete bipartite graphs [3]. It is natural to ask, what are the thicknesses for the complete tripartite graphs. On this problem, as far as the author know, the only result was shown in [7], Poranen proved that  $\theta(K_{n,n,n}) \leq \lceil \frac{n}{2} \rceil$ . The reader is referred to [6] for more background on the thickness problems.

In this note, we study the thickness of complete tripartite graph  $K_{l,m,n}$  (we assume  $l \leq m \leq n$  throughout this note), the main result of this note is the following theorem.

**Theorem** The thickness of  $K_{l,m,n}$  is  $\lceil \frac{l+m}{2} \rceil$  when l+m is even and  $n > \frac{1}{2}(l+m-2)^2$ ; or l+m is odd and n > (l+m-2)(l+m-1).

From this theorem and some constructions, we determine the thickness of  $K_{l,m,n}$  for  $l+m \leq 5$ , as follows.

Corollary The thicknesses of  $K_{1,1,n}$ ,  $K_{1,2,2}$  and  $K_{2,2,2}$  are all one; the thicknesses of  $K_{1,2,n}$ ,  $K_{1,3,n}$  and  $K_{2,2,n}$  are all two when  $n \geq 3$ ; the thickness of  $K_{1,4,n}$  is two when  $4 \leq n \leq 12$ , three when  $n \geq 13$ ; the thickness of  $K_{2,3,n}$  is two when  $3 \leq n \leq 12$ , three when  $n \geq 13$ .

# 2 The proofs of the theorem and the corollary

**Prove the theorem** For the complete tripartite graph  $K_{l,m,n}$  with the vertex partition (X,Y,Z), where  $X=\{x_1,\ldots,x_l\},\ Y=\{y_1,\ldots,y_m\}$  and  $Z=\{y_1,\ldots,y_m\}$ 

 $\{z_1,\ldots,z_n\}$ , firstly, we prove

$$\theta(K_{l,m,n}) \le \lceil \frac{l+m}{2} \rceil \tag{1}$$

by constructing a planar subgraphs decomposition of it with  $\lceil \frac{l+m}{2} \rceil$  planar subgraphs as follows:

- (1) Arrange all vertices from Y and Z to a line, place a vertex from X on each side of the line, and join both vertices from X to all vertices from Y and Z, then we will get a planar subgraph of  $K_{l,m,n}$ .
- (2) Repeat this proceduce with different vertices from X, until all of them have been used, then we will get  $\lceil \frac{l}{2} \rceil$  planar subgraphs of  $K_{l,m,n}$ .
- (3) Arrange all vertices from Z to a line, place a vertex from Y on each side of the line, and join both vertices from Y to all vertices from Z, then we will get the  $(\lceil \frac{1}{2} \rceil + 1)$ th planar subgraph of  $K_{l,m,n}$ .
- (4) Repeat this procedure with different vertices from Y, until all of them have been used, if l and m are both odd, then place the last vertex from Y in the  $\lceil \frac{l}{2} \rceil$ th planar subgraph such that the last vertex from X on one side of the line and the last vertex from Y on the other side. A planar decomposition of  $K_{l,m,n}$  with  $\lceil \frac{l+m}{2} \rceil$  planar subgraphs is obtained.

Secondly, we show that  $\theta(K_{l,m,n}) \ge \lceil \frac{l+m}{2} \rceil$  when n is sufficiently large in comparison with l+m. Because the complete bipartite graph  $K_{l+m,n}$  is a subgraph of  $K_{l,n,m}$ , we have

$$\theta(K_{l,n,m}) \ge \theta(K_{l+m,n}) \tag{2}$$

From [3], we have

$$\lceil \frac{l+m}{2} \rceil \ge \theta(K_{l+m,n}) \ge \lceil \frac{(l+m)n}{2(l+m+n-2)} \rceil \tag{3}$$

in which the upper bound comes from a planar subgraphs decomposition of the complete bipartite graph in [3] and the lower bound follows from the Euler's polyhedron formula. And from (3), we get that the thickness of  $K_{l+m,n}$  is  $\lceil \frac{l+m}{2} \rceil$  when l+m is even and  $n > \frac{1}{2}(l+m-2)^2$ ; or l+m is odd and n > (l+m-2)(l+m-1). Combine it with (1) and (2), the theorem follows.

Prove the corollary It is trivial to see the graphs  $K_{1,1,n}$ ,  $K_{1,2,2}$  and  $K_{2,2,2}$  are planar graphs, so their thicknesses are all one. From the theorem, we have  $\theta(K_{1,2,n}) = \theta(K_{1,3,n}) = \theta(K_{2,2,n}) = 2$ , when  $n \geq 3$  and  $\theta(K_{1,4,n}) = \theta(K_{2,3,n}) = 3$ , when  $n \geq 13$ . From (2) and (3), we have  $\theta(K_{1,4,n}) \geq 2$ , when  $4 \leq n \leq 12$ , and  $\theta(K_{2,3,n}) \geq 2$ , when  $3 \leq n \leq 12$ . We construct a planar decomposition of  $K_{1,4,12}$  as illustrated in Figure 1, which shows  $\theta(K_{1,4,12}) \leq 2$ , so we have  $\theta(K_{1,4,n}) = 2$  for  $4 \leq n \leq 12$ . From the planar decomposition of  $K_{1,4,12}$  as shown in Figure 1, we regard  $y_4$  in  $K_{1,4,12}$  as  $x_2$  in  $K_{2,3,12}$ , delete edge  $x_1y_4$  in  $G_1$  and add edges  $y_1y_4, y_2y_4$  and  $y_3y_4$  in  $G_2$ , we will get a planar decomposition of  $K_{2,3,12}$  with two planar subgraphs, which shows  $\theta(K_{2,3,12}) \leq 2$ , so we have  $\theta(K_{2,3,n}) = 2$  for  $3 \leq n \leq 12$ . Summarizing the above, the corollary follows.



Figure 1 A planar decomposition of  $K_{1,4,12}$ 

#### References

- A. Aggarwal, M. Klawe and P. Shor, Multilayer grid embeddings for VLSI, Algorithmica, 6 (1991), 129-151.
- [2] L.W. Beineke and F. Harary, The thickness of the complete graph, Canad. J. Math., 17 (1965), 850-859.
- [3] L.W. Beineke, F. Harary and J.W. Moon, On the thickness of the complete bipartite graph, Proc. Cambridge Philos. Soc., 60 (1964), 1-5.
- [4] M. Kleinert, Die Dicke des n-dimensionalen Würfel-Graphen, J. Combin. Theory, 3 (1967), 10-15.
- [5] A. Mansfield, Determining the thickness of graphs is NP-hard, Math. Proc. Cambridge Philos. Soc., 93(9) (1983), 9-23.
- [6] E. Mäkinen and T. Poranen, An annotated bibliography on the thickness, outerthickness, and arboricity of a graph, Missouri J. Math. Sci., 24(1) (2012), 76-87.
- [7] T. Poranen, A simulated annealing algorithm for determining the thickness of a graph, Inform. Sci., 172 (2005), 155-172.