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Abstract. The notion of SDVFA of order (s,t) has alreday been
introduced by the author [12]. In this paper, we show the equivalence
of SDVFA of order (s,t) with DFA, VDFA, NFA and ¢-NFA. The
equivalence has been established by converting an SDVFA to DFA,
VDFA and NFA (e-NFA) and vice-versa.
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1. Introduction

The notion of SDVFA of order (s, t) has alreday been introduced by the
author {12]. In this paper, we show the equivalence of SDVFA of order (s, t)
with DFA, VDFA, NFA and ¢-NFA. The equivalence has been established
by converting an SDVFA to DFA, VDFA and NFA (e-NFA) and vice-versa.
We begin with the definition of SDVFA of order (s, t) [12].

Definition 1.1. A semi-deterministic virtual finite automaton (SDVFA) of
order (s,t) is a finite automaton that can make atmost “s”(s > 1) transi-
tions on receiving a real input and atmost “¢” (¢ > 0) transitions on virtual
input (or no input). (Zero transition means the automaton remains in the

same state).

Remark 1.1. For an SDVFA having n states, we have the following:

(i) If s =1 and t = 0, then an SDVFA of order (1,0) is simply a DFA
(2,6,15].

(i) If s =1 and ¢t = n, then an SDVFA of order (1,n) is simply a VDFA
(8).

(iii) If s =n and ¢ = 0, then an SDVFA of order (n,0) is simply an NFA
[2,6,15).
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(iv) If s = n and t = n, then an SDVFA of order (n, n) is simply an e-NFA
[2,6,15).

We formally define a semi-deterministic virtual finite automaton
(SDVFA) of order (s, t) as follows:

Definition 1.2. A semi-deterministic virtual finite automaton (SDVFA) of

order (s, t) consists of
1. A finite set of states (including the dead state) often denoted by Q.

2. A finite set of input symbols including the empty string symbol e.
This is often denoted by X U {e}. I is called real alphabet.

3. A transition function d(s) that takes as arguments a state and an
input symbol. On real input symbol i.e. if the symbol is a member
of real alphabet I, d(,,) rcturns a set of atmost “s” states while on

“t”

virtual input e, the transition function returns a set of atmost

states.
4. A start state S which is one of the states in Q.

5. A set of final or accepting states F.. The set F is a subset of Q. Dead
state is never an accepting state and it makes a transition to itself on
every possible input symbol.

We can also denote an SDVFA of order (s,t) by a “five tuple” notation:

V= (Q,Z U {6},5(s,z),QO,F)

where V' is the name of the SDVFA, Q is the set of states, £ U {€} is the
set of input symbols, J(,) is the transition function, go is the start state
and F is the set of accepting states.

We now define the meaning of equivalence of two finite automata:

Definition 1.8. Two finite automata Al and A, are said to be equivalent
if L{A;) = L(A2) i.e. if they accept the same language.

In the following section, we show the equivalence of SDVFA of order
{s,t) with DFA, VDFA, NFA and eNFA.
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2. Conversion of an SDVFA of order (s,t) to
DFA and vice-versa

Given an SDVFA V of order (s,t), we can find a DFA D that accepts
the same language as that of V. The construction we use is very close to the
subset construction, as the states of D are subsets of the states of V. The
only difference is that we must incorporate e-transitions of V', which we do
through the mechanism of v-closure. Let V = (Qv, X U {€},(5.), 90, Fv')
be an SDVFA of order (s,t). Then the equivalent DFA

D = (Qp,%,0p,qp, Fp)
is defined as follows:

1. Qp is the set of subsets of Qy. More precisely, we shall find that the
only accessible states of D are v-closed subsets of Qv, that is, those
sets S C Qv such that S = v-close(S). Put another way, the v-closed
sets of states S are those such that any e-transitions out of one of the
states in S lead to a state that is also in S. Note that @ is a v-closed
set.

2. gp = v-close(qo); that is, we get the start state of D by v-closing the
start state of V.

3. Fp is those sets of states that contain at least one accepting state of
V. That is, Fp = {S | Sis in @p and SN Fy # 0}.

4. dp(S,a) is computed, for all @ in ¥ and sets S in Qp by:

(a') Let S = {pl,P2, et 1pk}'
(b) compute Uf=1 d(s,ty(Pi, a); let this set be {ry,rq, -+, 7 }.
(c) Then 6p(S,a) = ;L. v-close (r;).

We now give an example to illustrate the above procedure:

Example 2.1. Consider the SDVFA V of order (1,1) in Fig. 2.1
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Fig. 2.1: SDVFA of order (1,1) that accepts all strings of 0’s and
1’s such that 3rd symbol from the end is 1.

We convert the SDVFA V of Fig. 2.1 to DFA. From V, we construct a DFA
D which is shown in Fig. 2.2.

Fig. 2.2: The DFA constructed from the SDVFA of Fig. 2.1.

Since the start state of V' in Fig. 4.3 is go, the start state of D is v-close (go)
which is {go,q1}. Our first job is to find the successors of go,q) on input
symbols 0 and 1. Since gy goes to go,q1 goes to dead state on input 0. Thus
to compute 5p({qo, q1},0) we compute v-close (go)Uv-close (d) = {qo, q1,d}
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ie. 6p({g0,91,d},0) = {qo,q1,d}. Similarly, 6p({g0,a:1},1) = {g0, 01,42}
We have explained the arcs out of {go, g1} in Fig. 2.2. The other transitions
are computed similarly. Since ¢4 is the only accepting state of V, the accept-
ing states of D are those accessible states that contain q4. We see that the
five sets {qo, g1, 92, 93,94}, {90, 91,94, d}, {90, 91, 92, 94, d}, {90, @1, 93, 4, d} and
{90,91,92,93,494,d} indicated by double circle in Fig. 2.2 are accepting
states of D.

Now, we prove a theorem establishing the equivalence between SDVFA and
DFA:

Theorem 2.1. A language L is accepted by some SDVFA if and only if L
is accepted by some DFA.

Proof. (If) This direction is easy: Suppose L = L(D) for some DFA. Turn
D into an SDVFA A by adding transitions d; 9)(g, €) = ¢ for all states q of
D. Thus, the transitions of V and D are the same, but V explicitely states
that there are no transitions out of any state on e.

(Only-if) Let V = (Qv,Z U {€},8(5,¢), 90, Fv) be an SDVFA of order (s, t).
Eliminating multiple transitions on real input and all transitions on virtual
input € from this SDVFA by the procedure discussed above, we get a DFA
D where

D= (QD) E,éD,QD,FD)-

We need to show that L(D) = L(A), and we do so by showing that the
extended transition functions of V and D are the same. Formally, we show
5(s,t)(qo,w) = dp{gp,w) by induction on the length of w.

Basis. If |w| = 0, then w = €. we know 3(3,” (go, €) = v-close(gg). We
also know that gp = v-close(qp), because that is how the start state of D
is defined. Finally, for a DFA, we know that §(p, €) = p for any state p,
so in particular, ép(gp, €) = gp = v-close(gp). We have thus proved that

Jb(qu G) = S(s,t) (qu 6).

Induction. Suppose w = za, where a is the final symbol of w, and assume
that the statement holds for x. That is, 3(3_,)(qo,a:) = ép(gp,x). Let both
these sets of states be {p;,p2,- -, ¢}
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By the definition of 3(,,” for SDVFA, we compute 3(,,0 (go,w) by:

k
1. Let {7‘1,7'2,"‘ ,Tm} be Ua(s,t)(piya)'

i=l1

2. Then &, 4 (go, w) = Uv—close(r,)
Jj=1
If we examine the construction of DFA D described before Theorem 2.1,
we see that 6p({p1,p2,- -, Pk}, a) is constructed by the same two steps (1)
and (2) above. Thus, Jb(qD, w) which is 6p({p1,p2, -, Px},a) is the same
set as 5(_.,,¢)(q0,w). We have now proved that S(S,z)(%,w) = 6})(qp,w) and
completed the inductive part. m]

3. Conversion of eNFA to SDVFA of order
(1,n) and vice-versa

Let E = (Qg,ZU{e},dE, 0, FE) be an -NFA [2,6). We convert this e-
NFA to an SDVFA of order (1,n). We construct an SDVFA of order (1,n),
say V = (Qv,ZU{e},8(1,n), {20}, Fv) such that L(V) = L(E). Notice that
the input alphabets of the two automaton are the same and the start state
of V in the set contain only the start state of E. The other components of
V are constructed as follows:

1. Qv is the set of subsets of Qg i.e. Qv is the power of set of Qg. Note
that if Q¢ has n states, then Qy will have 2" states. Often, not all
theses states are accessible from the start state of Qv. Inaccessible
states can be “thrown away”, so effectively, so that the number of
states of V may be much smaller that 27,

2. Fy is the set of subset S of Qg such that SN Fg # 0. That is, Fy is
all sets of E’s states that include atleast one accepting state of E.

3. (i) For each set S C Qv and for each input symbol ¢ in ¥
Sam(Sa)= | e, a)

pin S

(ii) For each set S C Qv and for virtual input symbol €
5(1,71)(8) E) = U JE(P, G)’

pin S
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That is, to compute d(; n)(S, @) (or 8(1,,)(S,€)), we look at all the states p
in S see what states N goes to from p on input a (or €), and take the union
of all those states.

We now give an example to illustrate the conversion of e-NFA to an
SDVFA of order (1,n).

Example 3.1. Consider the e-NFA of Fig. 3.1. Here, & = {a,b,c}. The
transitions table for the newly constructed VDFA using the above procedure
is given in Table 3.1.

€
Start [ a

Fig. 3.1: ¢~NFA accepting the language {a“b’c” | u,v,w > 0}

State a b c €
] 0 1] 0 [
— {90} {90, q1} | © 0 {g0, a1}
{q} 0 {a1} 0 {91, 92}
* {g2} 0 0 | {g} {g2}

{90, a1} {go,q1} | {1} | © | {90,91,02}
{90, 92} {01} | 0 | {a} | {90, 91,02}

* {q1,92} ) {1} | {22} | {q1,92}
* {q0,q1,92} | {90,a1} | {@1} | {g2} | {g0, 1,92}

Table 3.1: Transition table for the SDVFA of order (1,n)
constructed from the ¢-NFA of Fig. 3.1.

Note that the state {go, g2} is not accessible in the newly constructed
SDVFA and is, therefore, thrown away and not shown in the transition
diagram of the newly constructed SDVFA. The three accepting states of
the newly constructed SDVFA are {2}, {g1,92} and {qo,q1, g2}
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Fig. 3.2: SDVFA of order (1,n) constructed from the ¢-NFA of
Fig. 3.1.

We now prove a theorem.

Theorem 3.1. A language L is accepted by some €-NFA if and only if L
is accepted by some SDVFA.

Proof. (if) Since every SDVFA of order (n, n) is e-NFA where n is the total
number of the states in the automaton, so this part follows trivially.

(only if) Let V = (Qv,Z U {€},(1,n), {90}, Fv} be an SDVFA of order
(1,n) constructed from e-NFA F = (Qg,X U {€},0E, {qo0,}, FE} by subset
construction, then we show that L{V) = L(E). What we actually prove
first, by induction on |w| is that S(l,n)({qo},w) = 3E(qo,w).

Notice that each of the 4 function returns a set of states from Q, but
3(1',,) interprets this set as one of the states of Qv which is the power set
of Qg, while s g interprets this set as a subset of Qg.

Basis. Let |w| = 0, i.e. w=e. By the definition of §, ;) for SDVFA and
e-NFA, we have

Bc1.m (a0} €) = & (do, €) = v-close(qo) = E-close(go).[2, 6]

370



Induction. Let w be of length n+ 1, and assume the statement for length
n. Break w as w = za where a is the final symbol of w. By the in-
duction hypothesis 3(1,7;)({(10},2?) = 5E(qo, z). By the induction hypothesis
3(1',1)({%}, z) = dg(qo, ). Let both these sets of E’s states be {p1,p2,- -, px }-

Now, let
k
Jsei,a) = {ri,r2, -+, 7m} (3.1)
i=1

Then
6e(qo, w) = UjZ E-close(r;) = UJL, v-close(r;) (3.2)

The subset construction, on the other hand tell us that

k
a(l,n)({p17p2a e °pk}7 a) = U 5E(pi1 a)- (33)
i=1

Now, let us use (3.1) and the fact that 5(1,n)({q0},:c) = {p1,p2,-**,Px} in
the inductive part of the definition of 3(1,,,) for SDVFA,

81,m ({20}, w) = (1,n)({P1, P2, -, PR}, @) = U™ v-close(r;) = d5(go, w)

where r;’s are given by (3.1).

Thus S(I,H)({qo},w) = 85((}0,11)). When we observe that V' and E both
accept w if and only if 3(1‘n)({qo},w) or 3E(qo,w) respectively contain a
state in Fg, we have a complete proof that L(V) = L(E).

Hence the theorem. |

We now prove a theorem for the equivalence of SDVFA, VDFA and
NFA.

Theorem 3.2. A language L is accepted by an SDVFA if an only if L is
accepted by some NFA if and only if L is accepted by some VDFA.

Proof. We have shown that,

A Language L is acccepted by a DFA
<= L is acccepted by a SDVFA (Theorem 2.1)
<= L is acccepted by some ¢-NFA (Theorem 3.1). (3.4)
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Also, we know that for a language L,

L is accepted by an eNFA &= L is accepted by some NFA
<= L is accepted by some
VDFA[2,6, 8]. (3.5)

Combining (3.4) and (3.5), we get the result. o
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