Nowhere-zero 3-flows in Tensor Products of Graphs*

F.M. Dong[†] E.G. Tay

Mathematics and Mathematics Education

National Institute of Education

Nanyang Technological University, Singapore 637616

K.M. Koh

Department of Mathematics National University of Singapore, Singapore 117543

Abstract

The tensor product of two graphs G_1 and G_2 , denoted by $G_1 \times G_2$, is defined to be the graph with vertex set $\{(x,y): x \in V(G_1), y \in V(G_2)\}$ and edge set $\{(x_1,y_1)(x_2,y_2): x_1x_2 \in E(G_1), y_1y_2 \in E(G_2)\}$. Very recently, Zhang, Zheng and Mamut showed that if $\delta(G_1) \geq 2$ and G_2 does not belong to a well-characterized class $\mathcal G$ of graphs, then $G_1 \times G_2$ admits a nowhere-zero 3-flow. However, it is unclear whether $G_1 \times G_2$ admits a nowhere-zero 3-flow if $\delta(G_1) \geq 2$ and G_2 does belong to $\mathcal G$, especially for the simplest case that $G_2 = K_2$. The main objective in this paper is to show that for any graph G with $2 \leq \delta(G) \leq \Delta(G) \leq 3$, $G \times K_2$ admits a nowhere-zero 3-flow if and only if either every cycle in G contains an even number of vertices of degree 2 or every cycle in G contains an even number of vertices of degree 3. We also extend the sufficiency of the above result to a result for graphs $G \times K_2$, where all odd vertices in G are of degree 3.

Keywords: graph, cycle, nowhere-zero flow, tensor product

^{*}Supported by NIE AcRf funding (RI 5/06 DFM) of Singapore.

[†]Corresponding author. Email: fengming.dong@nie.edu.sg

1 Introduction

Let k be any positive integer and G a (simple) graph with vertex set V(G) and edge set E(G). We say that G admits a nowhere-zero k-flow if there exists an orientation D of G and a function $f: A(D) \longrightarrow \{\pm i : i = 1, 2, \dots, k-1\}$ such that for every $x \in V(G)$,

$$\sum_{a \in A^{+}(x)} f(a) = \sum_{a \in A^{-}(x)} f(a), \tag{1}$$

where A(D) is the arc set of D and $A^+(x)$ (resp. $A^-(x)$) is the set of arcs in D going out from x (resp. coming into x).

This paper focuses on the study of existence of nowhere-zero 3-flows of tensor products of graphs. For any two graphs G and H, the tensor product of G and H, denoted by $G \times H$, is defined to be the graph with vertex set $\{(x,y): x \in V(G), y \in V(H)\}$ and edge set $\{(x_1,y_1)(x_2,y_2): x_1x_2 \in E(G), y_1y_2 \in E(H)\}$. Let G be the family of graphs defined as follows:

- (i) $K_2 \in \mathcal{G}$;
- (ii) for any two graphs $G_1, G_2 \in \mathcal{G}$, the graph obtained by adding an edge joining a vertex in G_1 and a vertex in G_2 is also in \mathcal{G} .

Very recently, Zhang, Zheng and Mamut [4] showed that if G and H are two connected graphs such that $\delta(G) \geq 2$ and $H \notin \mathcal{G}$, then $G \times H$ admits a nowhere-zero 3-flow, where $\delta(G)$ is the minimum degree of G. They left behind the following problem.

Problem Characterize G with $\delta(G) \geq 2$ and $H \in \mathcal{G}$ such that $G \times H$ admits nowhere-zero 3-flows.

In this paper, we study the above problem for the case that $H \cong K_2$ and $\Delta(G) = 3$, where $\Delta(G)$ is the maximum degree of G. While this case looks simple apparently, it actually turns out to be non-trivial. We will characterize all connected graphs G with $2 \leq \delta(G) \leq \Delta(G) \leq 3$ such that $G \times K_2$ admits a nowhere-zero 3-flow. For any integer $i \geq 0$, let $V_i(G) = \{x \in V(G) : d(x) = i\}$, where d(x) is the degree of x. The following is our main result.

Theorem 1 Let G be any connected graph with $2 \le \delta(G) \le \Delta(G) \le 3$. Then $G \times K_2$ admits a nowhere-zero 3-flow if and only if either $|V_3(G) \cap G|$ V(C) is even for every cycle C in G or $|V_2(G) \cap V(C)|$ is even for every cycle C in G.

The proof of Theorem 1 will be given in Sections 2 and 3, and a generalization of the sufficiency of this result will be presented in Section 4.

2 Sufficiency of Theorem 1

Let G be a simple graph and u,v any two vertices in G. An u-v walk in G of length k is a sequence of vertices u_0,u_1,u_2,\cdots,u_k in G, where $u_0=u$ and $u_k=v$, such that u_iu_{i+1} is an edge in G for all $i=0,1,\cdots,k-1$. We denote this walk by $u_0u_1u_2\cdots u_k$. Note that an edge or a vertex may appear in a walk more than once. The walk $u_0u_1u_2\cdots u_k$ is called a path if $u_i\neq u_j$ for all $0\leq i< j\leq k$; a closed walk if $u_0=u_k$; and a cycle if it is closed and $u_i\neq u_j$ for all $0\leq i< j\leq k-1$.

Let x, y denote the vertices in K_2 . Note that a walk between vertices (u_0, x) and (u_k, x) in $G \times K_2$ is of the form $(u_0, x)(u_1, y)(u_2, x) \cdots (u_k, x)$, and a walk between vertices (u_0, x) and (u_k, y) in $G \times K_2$ is of the form $(u_0, x)(u_1, y)(u_2, x) \cdots (u_k, y)$, where $u_0 u_1 \cdots u_k$ is a walk in G.

A walk is said to be *even* if its length is even, and *odd* otherwise. Let W(G) be the set of all walks in G and $W_1(G)$ the set of walks $u_0u_1\cdots u_k$ in G such that $u_i \neq u_j$ whenever j-i is even for any i,j with 0 < j-i < k.

Lemma 1 Let G be any graph and $u_0u_1 \cdots u_k$ be any walk in G. Let x, y denote the vertices in K_2 . Then $(u_0, x)(u_1, y)(u_2, x) \cdots (u_k, x)$ is a cycle in $G \times K_2$ if and only if $k \geq 4$ is even and $u_0u_1u_2 \cdots u_k$ is a closed walk in $W_1(G)$.

Proof. (\Rightarrow) Assume that $(u_0, x)(u_1, y)(u_2, x) \cdots (u_k, x)$ is a cycle in $G \times K_2$. It is clear that k is even, $k \geq 4$ and $u_0 u_1 u_2 \cdots u_k$ is a closed walk.

Suppose on the contrary that $u_0u_1\cdots u_k\notin \mathcal{W}_1(G)$. Then $u_i=u_j$ for some i,j with j-i even and 0< j-i< k. This implies that (u_i,x) and (u_j,x) are the same vertex, and (u_i,y) and (u_j,y) are the same vertex in $G\times K_2$, contradicting the given condition that $(u_0,x)(u_1,y)(u_2,x)\cdots (u_k,x)$ is a cycle.

 (\Leftarrow) Assume that $u_0u_1\cdots u_k$ is a closed walk contained in $\mathcal{W}_1(G)$, where k

 (≥ 4) is even. Then the following is a closed walk in $G \times K_2$:

$$(u_0,x)(u_1,y)(u_2,x)(u_3,y)\cdots(u_k,x).$$
 (2)

If it is not a cycle, then there exist i and j with 0 < j - i < k such that either (u_i, x) and (u_j, x) are the same vertex in $G \times K_2$ or (u_i, y) and (u_j, y) are the same vertex in $G \times K_2$. Both cases imply that j - i is even and $u_i = u_j$, contradicting the assumption that $u_0 u_1 \cdots u_k \in \mathcal{W}_1(G)$.

For any walk $W: u_0u_1\cdots u_k$ in G, let

$$n_i(W,G) = \begin{cases} |\{0 \le j \le k-1 : u_j \in V_i(G)\}|, & \text{if } u_0 = u_k; \\ |\{0 \le j \le k : u_j \in V_i(G)\}|, & \text{otherwise.} \end{cases}$$
 (3)

That is, $n_i(W, G)$ is the number of times that the vertices of $V_i(G)$ appear in W. If W is a path or a cycle, then $n_i(W, G) = |V_i(G) \cap V(W)|$; otherwise, this equality may not be true as some vertices of $V_i(G)$ may appear in W more than once.

Lemma 2 Let G be any graph and x, y the two vertices in K_2 . Let $W : u_0u_1u_2\cdots u_k$ be a walk in G and W' denote the following walk in $G \times K_2$:

$$\begin{cases} (u_0, x)(u_1, y)(u_2, x) \cdots (u_k, x), & \text{if } k \text{ is even;} \\ (u_0, x)(u_1, y)(u_2, x) \cdots (u_k, y), & \text{otherwise.} \end{cases}$$

Then

- (i) $n_i(W,G) = n_i(W',G \times K_2)$ for any $i \geq 1$;
- (ii) if $k \geq 4$, k is even and W is a closed walk contained in W_1 , then $n_i(W,G) = |V_i(G \times K_2) \cap V(W')|$.

Proof. (i) The result follows from the fact that $d_G(u) = d_{G \times K_2}((u, x)) = d_{G \times K_2}((u, y))$ holds for all $u \in V(G)$.

(ii) If $k \geq 4$, k is even and W is a closed walk contained in W_1 , then W' is a cycle by Lemma 1, implying that $n_i(W', G \times K_2) = |V_i(G \times K_2) \cap V(W')|$. The result now follows from (i).

We will apply the following result due to Tutte [2] to obtain a necessary and sufficient condition for $G \times K_2$ to admit a nowhere-zero 3-flow.

Theorem 2 ([2]) A cubic graph admits nowhere-zero 3-flows if and only if it is bipartite.

Notice that Theorem 2 also holds if G contains multiedges. Thus Theorem 2 can be extended to graphs G with $\Delta(G) \leq 3$ which admit nowhere-zero 3-flows.

Corollary 1 Let G be any graph with $2 \le \delta(G) \le \Delta(G) \le 3$. Then G admits a nowhere-zero 3-flow if and only if $n_3(C,G)$ is even for every cycle C in G.

By applying Corollary 1, we can now provide a necessary and sufficient condition for $G \times K_2$ to admit a nowhere-zero 3-flow.

Theorem 3 Let G be any connected graph with $2 \le \delta(G) \le \Delta(G) \le 3$. Then $G \times K_2$ admits a nowhere-zero 3-flow if and only if $n_2(W, G)$ is even for every even closed walk $W \in W_1(G)$ of length at least 4.

Proof. By Lemma 1, every cycle C in $G \times K_2$ corresponds to an even closed walk W of length at least 4 contained in $W_1(G)$. As $2 \le \delta(G) \le \Delta(G) \le 3$, we have

$$|V(C)| = |V(C) \cap V_2(G \times K_2)| + |V(C) \cap V_3(G \times K_2)|$$

= $n_2(W, G) + n_3(C, G \times K_2),$

where the second equality follows from Lemma 2. Since C is an even cycle, $n_2(W,G)$ is even if and only if $n_3(C,G\times K_2)$ is even. Thus $n_2(W,G)$ is even for every even closed walk W belonged to $\mathcal{W}_1(G)$ if and only if $n_3(C,G\times K_2)$ is even for every cycle C in $G\times K_2$. Hence the result holds by Corollary 1. \square

Let $W_2(G)$ be the family of closed walks $u_0u_1u_2\cdots u_k$ in G, where $k\geq 3$ and $u_0=u_k$, such that $u_i\neq u_{i+2}$ for $i=0,1,2,\cdots,k-2$ and $u_{k-1}\neq u_1$. In other words, a closed walk W belongs to $W_2(G)$ if and only if for every $u_i\in V(W)$, its two neighbours along W are distinct. Thus every even closed walk in $W_1(G)$ belongs to $W_2(G)$.

Lemma 3 Let G be a connected graph. Assume that $n_2(C, G)$ is even for every cycle C in G. Then $n_2(W, G)$ is even for every closed walk $W \in \mathcal{W}_2(G)$.

Proof. Let $W \in \mathcal{W}_2(G)$. It is clear that $n_2(W,G)$ is even if W is of length 3.

Assume that $n_2(W,G)$ is even if W is of length less than k, where $k \geq 4$. Now let W be of length k.

We need only consider the case that W is not a cycle by the given condition. Write W as $u_0u_1u_2\cdots u_k$, where $k\geq 4$ and $u_0=u_k$. For convenience, we assume that $u_t=u_{t+k}$ if $-k\leq t\leq -1$ and $u_t=u_{t-k}$ if $k+1\leq t\leq 2k$.

As W is not a cycle, there exist i, j with $0 \le i < j < k$ such that $u_i = u_j$ and $u_i, u_{i+1}, \dots, u_{j-1}$ are distinct. Thus $u_i u_{i+1} \dots u_j$ is a cycle and we denote it by C. By the definition of $\mathcal{W}_2(G)$, $j \ge i+3$.

Let $s \geq 0$ be the largest integer such that $u_{i-r} = u_{j+r}$ for all $0 \leq r \leq s$. As $W \in \mathcal{W}_2(G)$, we have $u_{i-1} \neq u_{i+1}$ and $u_{j-1} \neq u_{j+1}$. Thus, if $s \geq 1$, then $u_{j+1} \notin \{u_{i-1}, u_{j-1}\}$ and so $d(u_i) = 3$.

Now notice that $k \geq j-i+2s$. As W is not a cycle, we have k > j-i. If k = j-i+2s, then s > 0 and u_{i-s+1} and u_{i-s-1} are the same vertex in G, implying that $W \notin \mathcal{W}_2(G)$, a contradiction. Hence k > j-i+2s. It further implies that $d(u_{i-s}) = 3$.

Partition W into two closed walks W_1 and W_2 , where

 $W_1: u_{i-s}u_{i-s+1}\cdots u_{j+s};$ $W_2: u_{i-s}u_{j+s+1}u_{j+s+2}\cdots u_{i-s+k-1}u_{i-s+k}.$

Figure 1

Since $u_{i-s-1} \neq u_{j+s+1}$ and $W \in \mathcal{W}_2(G)$, $W_2 \in \mathcal{W}_2(G)$. By induction, $n_2(W_2, G)$ is even. As $d(u_{i-s}) = d(u_i) = 3$ when $s \geq 1$,

$$n_2(W_1, G) = 2|\{r : d_G(u_r) = 2, i-s+1 \le r \le i-1\}| + n_2(C, G) \equiv 0 \pmod{2}.$$

Hence $n_2(W, G) = n_2(W_1, G) + n_2(W_2, G) \equiv 0 \pmod{2}.$

Corollary 2 Let G be a connected graph. Assume that $n_2(C, G)$ is even for every cycle C in G. Then $n_2(W, G)$ is even for every even closed walk $W \in \mathcal{W}_1(G)$.

To prove the sufficiency of Theorem 1, we shall also apply the following result due to Zhang, Zheng and Mamut [4].

Theorem 4 ([4]) If a graph G admits a nowhere-zero k-flow, then $G \times H$ also admits a nowhere-zero k-flow for any graph H.

Proof of the sufficiency of Theorem 1: If $|V(C) \cap V_2(G)|$ is even for every cycle C in G, then, by Corollary 2, $n_2(W, G)$ is even for every even closed walk $W \in \mathcal{W}_1(G)$ and thus $G \times K_2$ admits a nowhere-zero 3-flow by Theorem 3.

If $|V(C) \cap V_3(G)|$ is even for every cycle C in G, then, by Corollary 1, G admits a nowhere-zero 3-flow, and so $G \times K_2$ admits a nowhere-zero 3-flow by Theorem 4.

3 Necessity of Theorem 1

For any graph G = (V, E), two subgraphs of G are said to be *edge-disjoint* if they do not have any edge in common. A *cycle-partition* of G is a family of pairwise edge-disjoint cycles C_1, C_2, \dots, C_k in G such that

$$\bigcup_{i=1}^{k} E(C_i) = E. \tag{4}$$

A graph is called an even graph if every vertex of this graph is of even degree. The following is a well-known characterization for even graphs (see, for example, [1]).

Lemma 4 A graph G = (V, E) possesses a cycle-partition if and only if G is an even graph.

We will strengthen Lemma 4 to the result that every even graph G has a cycle-partition $\{C_i: 1 \leq i \leq k\}$ such that $|V(C_i) \cap V(C_j)| \leq 2$ for every pair $i,j: 1 \leq i < j \leq k$. Let us first prove the following result.

Lemma 5 If G = (V, E) is an even graph and $|\{x \in V : d(x) \ge 4\}| \ge 3$, then there exist three pairwise edge-disjoint cycles in G.

Proof. By Lemma 4, G has a cycle-partition. Since $|\{x \in V : d(x) \geq 4\}| \geq 3$, G contains at least two edge-disjoint cycles, say C_1 and C_2 .

If $|V(C_1) \cap V(C_2)| \leq 2$, then $E(C_1) \cup E(C_2) \neq E(G)$, as $|\{x \in V : d(x) \geq 4\}| \geq 3$. It follows that G contains at least one more cycle, and the result holds.

Now assume that $|V(C_1) \cap V(C_2)| \geq 3$. Let u, v be two vertices in $V(C_1) \cap V(C_2)$ such that one u-v path P on C_2 satisfies that $V(P) \cap V(C_1) = \{u, v\}$. Let Q_1 and Q_2 be the two u-v paths on C_1 . Since $|V(C_1) \cap V(C_2)| \geq 3$, there exists $w \in (V(C_1) \cap V(C_2)) \setminus \{u, v\}$. Let $w \in V(Q_2)$ and C the cycle formed by P and Q_1 .

Let H = G - E(C). Since $w \notin V(C)$, $d_H(w) = d_G(w) \ge 4$. As every vertex of H is of even degree, H contains two edge-disjoint cycles. Hence G contains at least three pairwise edge-disjoint cycles.

Lemma 6 Let G = (V, E) be an even graph. If $\{C_i : 1 \le i \le k\}$ is a cycle-partition of G with maximum value of k, then $|V(C_i) \cap V(C_j)| \le 2$ for every pair i, j with $1 \le i < j \le k$.

Proof. Suppose that $|V(C_1) \cap V(C_2)| \geq 3$, without loss of generality. Let H be the subgraph of G induced by $E(C_1) \cup E(C_2)$. Then H is an even graph and H has at least 3 vertices of degree at least 4. By Lemma 5, H contains (at least) three pairwise edge-disjoint cycles. Thus G has a cycle-partition with more than k cycles, a contradiction.

We now apply Lemma 6 to get a result which will be used in proving the necessity of Theorem 1.

Lemma 7 Let G = (V, E) be any graph and $U \subseteq V_2(G)$. Assume that $|V(C) \cap U| \equiv 0 \pmod{2}$ for every even cycle C in G. If there exist two odd cycles C_1 and C_2 in G such that

$$|V(C_1) \cap U| + |V(C_2) \cap U| \equiv 1 \pmod{2}, \tag{5}$$

then there must exist odd cycles C_1^\prime and C_2^\prime in G such that

$$|V(C_1') \cap V(C_2')| \le 1$$
 and $|V(C_1') \cap U| + |V(C_2') \cap U| \equiv 1 \pmod{2}$. (6)

Proof. Let Φ be the family of $\{C_1, C_2\}$, where C_1 and C_2 are odd cycles in G such that

$$|V(C_1) \cap U| + |V(C_2) \cap U| \equiv 1 \pmod{2}.$$
 (7)

Assume that $\Phi \neq \emptyset$ and let

$$\tau = \min_{\{C_1, C_2\} \in \Phi} |V(C_1) \cap V(C_2)|. \tag{8}$$

Choose $\{C_1, C_2\} \in \Phi$ such that $|V(C_1) \cap V(C_2)| = \tau$.

Let H be the subgraph of G induced by $(E(C_1) \cup E(C_2)) \setminus (E(C_1) \cap E(C_2))$. Notice that H is an even graph as every vertex in H is of degree 2 or 4, and by Lemma 6, H has a cycle-partition $\{C_i': 1 \leq i \leq k\}$ such that $|V(C_i') \cap V(C_j')| \leq 2$ for every pair $i,j: 1 \leq i < j \leq k$. As

$$\sum_{i=1}^{k} |E(C_i')| \equiv |E(C_1)| + |E(C_2)| \equiv 0 \pmod{2},\tag{9}$$

the number of odd cycles in $\{C'_i: 1 \leq i \leq k\}$ is even. Observe that

$$|V(C_1) \cap U| + |V(C_2) \cap U|$$
= $|(V(C_1) \setminus V(C_2)) \cap U| + |(V(C_2) \setminus V(C_1)) \cap U|$
+2 $|V(C_1) \cap V(C_2) \cap U|$

$$= \sum_{i=1}^{k} |V(C_i') \cap U| + 2|V(C_1) \cap V(C_2) \cap U|.$$

Thus

$$\sum_{i=1}^{k} |V(C_i') \cap U| \equiv |V(C_1) \cap U| + |V(C_2) \cap U| \equiv 1 \pmod{2}.$$
 (10)

Since $|V(C) \cap U| \equiv 0 \pmod{2}$ for every even cycle C of G, by (9) and (10), there must exist i, j with $1 \leq i < j \leq k$ such that $\{C'_i, C'_j\} \in \Phi$. This implies that $\tau \leq 2$.

If $\tau = 2$ and $E(C_1) \cap E(C_2) \neq \emptyset$, then H itself is an even cycle, and by (10), $|V(H) \cap U|$ is odd, contradicting the condition that $|V(C) \cap U| \equiv 0 \pmod{2}$ for every even cycle C in G.

If $\tau=2$ and $E(C_1)\cap E(C_2)=\emptyset$, then H actually consists of four paths between the two vertices contained in $V(C_1)\cap V(C_2)$. Since both C_1 and C_2 are odd cycles, two of these four paths are of even length and the other two are of odd length. Thus H has a cycle-partition of two even cycles, say D_1' and D_2' . Notice that

$$|V(D_1') \cap U| + |V(D_2') \cap U| = |V(C_1) \cap U| + |V(C_2) \cap U| \equiv 1 \pmod{2}, (11)$$

contradicting the condition that $|V(C) \cap U| \equiv 0 \pmod{2}$ for every even cycle C of G.

Therefore $\tau \leq 1$ and the result holds.

By letting $U = V_2(G)$, we obtain the following result by Lemma 7.

Corollary 3 Let G = (V, E) be any graph. Assume that $n_2(C, G) \equiv 0 \pmod{2}$ for every even cycle C in G. If there exist two odd cycles C_1 and C_2 in G such that

$$n_2(C_1, G) + n_2(C_2, G) \equiv 1 \pmod{2},$$
 (12)

then there must exist odd cycles C_1' and C_2' in G such that

$$|V(C_1') \cap V(C_2')| \le 1$$
 and $n_2(C_1', G) + n_2(C_2', G) \equiv 1 \pmod{2}$. (13)

Now we are ready to prove the necessity of Theorem 1.

Proof of Necessity of Theorem 1: Assume that G is a connected graph with $2 \le \delta(G) \le \Delta(G) \le 3$ and that $G \times K_2$ admits a nowhere-zero 3-flow.

Claim 1: For every even cycle C, $n_2(C,G) \equiv 0 \pmod{2}$.

Suppose that C is an even cycle in G such that $n_2(C,G)$ is odd. Then C is an even closed walk contained in $\mathcal{W}_1(G)$ of length at least 4. As $n_2(C,G)$ is odd, by Theorem 3, $G \times K_2$ does not admit a nowhere-zero 3-flow, a contradiction.

Claim 2: For every two odd cycles C_1 and C_2 , $n_2(C_1,G) + n_2(C_2,G) \equiv 0 \pmod{2}$.

Suppose that G contains two odd cycles C_1 and C_2 such that $n_2(C_1, G) + n_2(C_2, G)$ is odd. By Corollary 3, we can assume that C_1 and C_2 have at most one vertex in common. Write C_1 as $x_1x_2 \cdots x_sx_1$, where $s = |V(C_1)|$, and C_2 as $y_1y_2 \cdots y_ty_1$, where $t = |V(C_2)|$.

Case 1: $|V(C_1) \cap V(C_2)| = 1$.

Assume that $x_1 = y_1$. Let W be the closed walk: $x_1x_2 \cdots x_sx_1y_2 \cdots y_tx_1$. As s and t are odd, $W \in \mathcal{W}_1(G)$. The length of W is $|V(C_1)| + |V(C_2)|$, which is even. Since $n_2(W,G) = n_2(C_1,G) + n_2(C_2,G)$ is odd, by Theorem 3, $G \times K_2$ does not admit a nowhere-zero 3-flow, a contradiction.

Case 2: $|V(C_1) \cap V(C_2)| = 0$.

Let P be a shortest path among all paths between a vertex on C_1 and a vertex in C_2 . Without loss of generality, assume that P is between x_1 and y_1 . Thus $d(x_1) = d(y_1) > 2$. Write P as $x_1u_1 \cdots u_ky_1$, where k = |E(P)|-1. Let W denote the following closed walk in G formed by C_1 , C_2 and P (edges in P are repeated):

$$x_1x_2\cdots x_sx_1u_1\cdots u_ky_1y_2\cdots y_ty_1u_k\cdots u_1x_1$$
.

Note that W is a closed walk of length s+2k+t. As s and t are odd, $W \in \mathcal{W}_1(G)$ and W is an even closed walk. Since $d(x_1) = d(y_1) > 2$, we have

$$n_2(W,G) = n_2(C_1,G) + n_2(C_2,G) + 2|\{u_i : 1 \le i \le k, d(u_i) = 2\}|$$

$$\equiv 1 \pmod{2}.$$

By Theorem 3, $G \times K_2$ does not admit a nowhere-zero 3-flow, a contradiction. Hence Claim 2 holds.

By Claims 1 and 2, the necessity of Theorem 1 holds.

4 Further result

Let \mathcal{G}_{3e} be the family of connected graphs G such that $V_i(G) = \emptyset$ for all odd integer i with $i \neq 3$. It is clear that $G \in \mathcal{G}_{3e}$ if $2 \leq \delta(G) \leq \Delta(G) \leq 3$.

For a cycle C in G, let $n_e(C,G) = \sum_i n_i(C,G)$. Let \mathcal{G}'_{3e} be the family of graphs G in \mathcal{G}_{3e} such that $n_3(C,G)$ is even for every cycle C in G, and \mathcal{G}''_{3e} the family of graphs G in \mathcal{G}_{3e} such that $n_e(C,G)$ is even for every cycle C in G.

Clearly, for any graph $G \in \mathcal{G}'_{3e} \cup \mathcal{G}''_{3e}$, if $\Delta(G) \leq 3$, then $G \times K_2$ admits a nowhere-zero 3-flow by Theorem 1. We shall prove that this result holds without the condition " $\Delta(G) \leq 3$ ".

Theorem 5 For any $G \in \mathcal{G}'_{3e} \cup \mathcal{G}''_{3e}$, $G \times K_2$ admits nowhere-zero 3-flows.

Proof. For any graph G, let $w(G) = \sum_{x \in V(G), d(x) > 3} d_G(x)$. We will prove this result by induction on w(G).

Let $G \in \mathcal{G}'_{3e} \cup \mathcal{G}''_{3e}$. If w(G) = 0, then $\Delta(G) \leq 3$ and so the result holds for G by Theorem 1.

Now assume that w(G) > 0. Then there is a graph $H \in \mathcal{G}_{3e}$ with two non-adjacent vertices u, v such that $d_H(u) = 2$, $d_H(v)$ is a positive even number and $H \cdot uv \cong G$, where $H \cdot uv$ denotes the graph obtained from H by identifying u and v.

It is clear that if $G \in \mathcal{G}_{3e}'$ (i.e., $H \cdot uv \in \mathcal{G}_{3e}'$), then $H \in \mathcal{G}_{3e}'$.

Now assume that $G \in \mathcal{G}_{3e}''$ (i.e., $H \cdot uv \in \mathcal{G}_{3e}''$). So $n_e(C, H \cdot uv)$ is even for every cycle C in $H \cdot uv$. Let C' be any cycle in H. If $\{u, v\} \not\subseteq V(C')$, then $n_e(C', H) = V_e(C, H \cdot uv)$ is even, where C is the cycle in $H \cdot uv$ formed by the edge set E(C'). If $\{u, v\} \subseteq V(C')$, then the subgraph of $H \cdot uv$ induced by edge set E(C) consists of two cycles, say C_1 and C_2 , with one vertex in common. Then $n_e(C', H) = n_e(C_1, H \cdot uv) + n_e(C_2, H \cdot uv)$ is also even. Hence $H \in \mathcal{G}_{3e}''$.

As $w(H) \leq w(G) - 2 < w(G)$, by induction, $H \times K_2$ admits nowhere-zero 3-flows. As $H \cdot uv \times K_2$ can be obtained from $H \times K_2$ by identifying (u, x) with (v, x) and identifying (u, y) with (v, y), $(H \cdot uv) \times K_2$ (i.e., $G \times K_2$) also admits nowhere-zero 3-flows.

Remark: We do not know whether there exists a graph $G \in \mathcal{G}_{3e} \setminus (\mathcal{G}'_{3e} \cup \mathcal{G}''_{3e})$ such that $G \times K_2$ admits nowhere-zero 3-flows.

Acknowledgement. The authors wish to thank the referees for their suggestions.

References

- [1] J. L. Gross and J. Yellen, Graph theory and its applications. Second edition. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2006.
- [2] W.T. Tutte, On the imbedding of linear graphs in surfaces, Proc Lond Math Soc Ser 2, 51 (1949), 474-483.
- [3] C. Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, New York, 1997.
- [4] Zhao Zhang, Yirong Zheng, Aygul Mamut, Nowhere-zero flows in tensor product of graphs, *Journal of Graph Theory* 54, 284 292 (2006).