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Abstract

The tensor product of two graphs G, and G2, denoted by G; x G2,
is defined to be the graph with vertex set {(z,y) : z € V(G1),y €
V(G2)} and edge set {(z1,41)(z2, ¥2) : z122 € E(G1), n1y2 € E(G2)}.
Very recently, Zhang, Zheng and Mamut showed that if §(G,) > 2
and G2 does not belong to a well-characterized class G of graphs,
then G, x G2 admits a nowhere-zero 3-flow. However, it is unclear
whether G1 x G2 admits a nowhere-zero 3-flow if §(G;) > 2 and G,
does belong to G, especially for the simplest case that G2 = K. The
main objective in this paper is to show that for any graph G with
2 £ 6(G) £ A(G) £ 3, G x K, admits a nowhere-zero 3-flow if and
only if either every cycle in G contains an even number of vertices
of degree 2 or every cycle in G contains an even number of vertices
of degree 3. We also extend the sufficiency of the above result to a
result for graphs G x K3, where all odd vertices in G are of degree 3.
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1 Introduction

Let k be any positive integer and G a (simple) graph with vertex set V(G)
and edge set E(G). We say that G admits a nowhere-zero k-flow if there
exists an orientation D of G and a function f : A(D) — {&i : i =
1,2,---,k — 1} such that for every z € V(G),

Yo fl@= ) fla), (1)

acAt(z) a€EA~(x)

where A(D) is the arc set of D and A*(zx) (resp. A™(z)) is the set of arcs
in D going out from z (resp. coming into x).

This paper focuses on the study of existence of nowhere-zero 3-flows of
tensor products of graphs. For any two graphs G and H, the tensor product
of G and H, denoted by G x H, is defined to be the graph with vertex set
{(z,y) : = € V(G),y € V(H)} and edge set {(z1,1)(z2,32) : z122 €
E(G),n1y2 € E(H)}. Let G be the family of graphs defined as follows:

(i) K2 €G;

(ii) for any two graphs G1, G2 € G, the graph obtained by adding an edge
joining a vertex in G; and a vertex in G is also in G.

Very recently, Zhang, Zheng and Mamut (4] showed that if G and H are
two connected graphs such that §(G) > 2 and H ¢ G, then G x H admits
a nowhere-zero 3-flow, where §(G) is the minimum degree of G. They left
behind the following problem.

Problem Characterize G with §(G) > 2 and H € G such that G x H
admits nowhere-zero 3-flows.

In this paper, we study the above problem for the case that H = K, and
A(G) = 3, where A(G) is the maximum degree of G. While this case
looks simple apparently, it actually turns out to be non-trivial. We will
characterize all connected graphs G with 2 < §(G) < A(G) £ 3 such
that G x K5 admits a nowhere-zero 3-flow. For any integer i > 0, let
Vi(G) = {z € V(G) : d(z) = i}, where d(z) is the degree of z. The
following is our main result.

Theorem 1 Let G be any connected graph with 2 < §(G) < A(G) < 3.
Then G x K, admits a nowhere-zero 3-flow if and only if either [Va(G) N
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V(C)| is even for every cycle C in G or |Vo(G) N V(C)| is even for every
cycle C in G.

The proof of Theorem 1 will be given in Sections 2 and 3, and a general-
ization of the sufficiency of this result will be presented in Section 4.

2 Sufficiency of Theorem 1

Let G be a simple graph and u,v any two vertices in G. An u — v walk in
G of length k is a sequence of vertices ug, u3,ug, -+, ux in G, where ug = u
and u; = v, such that w;u;y; is an edge in G for all ¢ = 0,1,---,k — 1.
We denote this walk by uoujus - - - ux. Note that an edge or a vertex may
appear in a walk more than once. The walk ugujus - - - ux is called a path
ifu; #£u;forall 0 <i<j<k;a closed walk if ug = ux; and a cycle if it is
closed and u; # uj forall 0 <i<j<k-1.

Let z,y denote the vertices in K3. Note that a walk between vertices
(u0,z) and (ux,z) in G X Ky is of the form (ug, z)(u1,y)(uz,z) - - - (u, ),
and a walk between vertices (ug,z) and (u,y) in G x K> is of the form
(uo, z)(u1,¥)(u2, ) - - - (uk,y), where uouy - - -uy is a walk in G.

A walk is said to be even if its length is even, and odd otherwise. Let W(G)
be the set of all walks in G and W, (G) the set of walks uou; -+-ux in G
such that u; # u; whenever j — i is even for any 4,7 with0 < j —i < k.

Lemma 1  Let G be any graph and ugu, - - - ug be any walk in G. Letz,y
denote the vertices in Kp. Then (ug, x)(u1,y)(ug,z) - (uk, x) is a cycle in
G x K, if and only if k > 4 is even and ugu ug - - - ug is a closed walk in
Wi (G).

Proof. (=) Assume that (ug, z)(u1, y)(¢2, ) - - - (ug, ) is a cycle in Gx K.
It is clear that k is even, k > 4 and woujug - - - ug is a closed walk.

Suppose on the contrary that ugu, - - - ux € Wi(G). Then u; = u; for some
i,j with j — i even and 0 < j — 4 < k. This implies that (u;, z) and (u;, z)
are the same vertex, and (u;,y) and (u;,y) are the same vertex in G x K>,
contradicting the given condition that (ug,z)(u1,y)(uz,z) - - (uk,z) is a
cycle.

(<) Assume that ugu; - - - ux is a closed walk contained in W;(G), where k
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(> 4) is even. Then the following is a closed walk in G x Kj:

(uo,x)(ul,y)(ug,.’r)(u;;,y)“-(uk,x). (2)
If it is not a cycle, then there exist ¢ and j with 0 < 7 — ¢ < k such that
either (u;, z) and (u;, z) are the same vertex in G x K3 or (u;, y) and (u;,y)
are the same vertex in G x K3. Both cases imply that 7 — ¢ is even and
u; = uj, contradicting the assumption that uou; - - - ur € Wi(G). O

For any walk W : ugu, - - - ux in G, let
) _ |{0§]$k—1u,€V,(G)}|, if ug = ug;
(W, G) = { {0 <7 < k:uj € Vi(G)}, otherwise. (3)

That is, n;(W, G) is the number of times that the vertices of V;(G) appear
in W. If W is a path or a cycle, then n;(W, G) = |V;(G)NV (W); otherwise,
this equality may not be true as some vertices of V;(G) may appear in W
more than once.

Lemma 2 Let G be any graph and z,y the two vertices in Ko. Let
W : woujug---ux be a walk in G and W’ denote the following walk in
G x K2.'

{ (uo, z)(u1, ¥)(u2, ) - - - (uk, T), if k is even;
(UO, .’B)(Ul, y) ('U.2, 12) T (uka y)) otherwise.

Then

(i) ni(W,G) =ni(W',G x K3) for anyi 2 1;
(ii} if k > 4, k is even and W is a closed walk contained in W, then
n; (W, G) = |Vi(G x K2) N V(W')].
Proof. (i) The result follows from the fact that dg(v) = doxk,((u,z)) =
dex k,((u,y)) holds for all w € V(G).

(ii) If k > 4, k is even and W is a closed walk contained in W;, then W’ isa
cycle by Lemma 1, implying that n;(W’, G x K3) = |Vi(G x K2) N V(W')].
The result now follows from (i). o

We will apply the following result due to Tutte [2] to obtain a necessary
and sufficient condition for G x K3 to admit a nowhere-zero 3-flow.

Theorem 2 ([2]) A cubic graph admits nowhere-zero 3-flows if and only
if it is bipartite.
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Notice that Theorem 2 also holds if G contains multiedges. Thus Theorem 2
can be extended to graphs G with A(G) < 3 which admit nowhere-zero 3-
flows.

Corollary 1 Let G be any graph with 2 < §(G) < A(G) < 3. Then G
admits a nowhere-zero 3-flow if and only if n3(C, G) is even for every cycle
CinG. (m]

By applying Corollary 1, we can now provide a necessary and sufficient
condition for G x K5 to admit a nowhere-zero 3-flow.

Theorem 3  Let G be any connected graph with 2 < §(G) < A(G) < 3.
Then G x K3 admits a nowhere-zero 3-flow if and only if ny(W, G) is even
for every even closed walk W € W;(G) of length at least 4.

Proof. By Lemma 1, every cycle C in G x K corresponds to an even closed
walk W of length at least 4 contained in W1 (G). As 2 < §(G) < A(G) < 3,
we have

V(C)| = |V(C)NVa(G x K2)| +|V(C)NV3(CG x K3))
= no(W,G) +n3(C, G x Kj),

where the second equality follows from Lemma 2. Since C is an even cycle,
n2(W, G) is even if and only if n3(C, G x K3) is even. Thus ng(W, G) is even
for every even closed walk W belonged to W, (G) if and only if n3(C, G x K3)
is even for every cycle C in G x K,. Hence the result holds by Corollary 1.
a

Let W5(G) be the family of closed walks upujuz -+ - ux in G, where k > 3
and ug = uk, such that u; # u;yg for i =0,1,2,.--  k — 2 and ux_; # u,.
In other words, a closed walk W belongs to W(G) if and only if for every
u; € V(W), its two neighbours along W are distinct. Thus every even
closed walk in W, (G) belongs to Wi (G).

Lemma 3 Let G be a connected graph. Assume that ny(C,G) is even
for every cycle C in G. Then ny(W,G) is even for every closed walk W ¢
Wu(G).

Proof. Let W € W,(G). 1t is clear that na(W, G) is even if W is of length
3.
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Assume that na(W,G) is even if W is of length less than k, where k > 4.
Now let W be of length k.

We need only consider the case that W is not a cycle by the given condition.
Write W as uguyus - - - ug, where k& > 4 and up = ux. For convenience, we
assume that vy = usp if "k <t < —-landy, =u— ifk+1 <t < 25,

As W is not a cycle, there exist %, j with 0 < i < j < k such that u; = u;
and u;,Ui41,- -, uj—1 are distinct. Thus wjui4;---u; is a cycle and we
denote it by C. By the definition of W,(G), j > i+ 3.

Let s > 0 be the largest integer such that u;_, = uj;, forall0 <r <s. As
W € W(G), we have u;_y # i1 and uj—1 # u;41. Thus, if s > 1, then
ujy1 & {ui—1,uj-1} and so d(u;) = 3.

Now notice that k > j — i+ 2s. As W is not a cycle, we have k > j — 1. If
k=3—1i+2s then s > 0 and u;_s4; and u;—,—1 are the same vertex in
G, implying that W ¢ W,(G), a contradiction. Hence k > j —i + 2s. It
further implies that d(u;_s) = 3.

Partition W into two closed walks W, and Ws, where

Wi wiosUimsi1 - Ujigss
Wo i sUjpsi1Ujpst2 * * Yies+hk—1Uims+k-

Uj—s—1
Ui—g
Ujts

Ujts+1

Figure 1

Since ui—g—1 # Ujrs+1 and W € Wio(G), W € Wy(G). By induction,
na(Wa, G) is even. As d(u;_;s) = d(u;) =3 when s > 1,

no(W1,G) = 2|{r : dg(u,) = 2,i—s+1 < r < i—1}|4+n2(C, G) = O(mod 2).
Hence na(W, G) = ny(Wh, G) + ng(Wa, G) = 0(mod 2). m]
Corollary 2  Let G be a connected graph. Assume that na(C, G) is even

for every cycle C in G. Then nao(W,G) is even for every even closed walk
W e Wi (G). m]
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To prove the sufficiency of Theorem 1, we shall also apply the following
result due to Zhang, Zheng and Mamut [4].

Theorem 4 ([4]) If a graph G admits a nowhere-zero k-flow, then Gx H
also admits a nowhere-zero k-flow for any graph H. O

Proof of the sufficiency of Theorem 1: If |V(C) N V2(G)| is even for ev-
ery cycle C in G, then, by Corollary 2, na(W,G) is even for every even
closed walk W € W) (G) and thus G x K> admits a nowhere-zero 3-flow by
Theorem 3.

If [V(C) N V3(G)| is even for every cycle C in G, then, by Corollary 1, G
admits a nowhere-zero 3-flow, and so G x K5 admits a nowhere-zero 3-flow
by Theorem 4. |

3 Necessity of Theorem 1

For any graph G = (V, E), two subgraphs of G are said to be edge-disjoint
if they do not have any edge in common. A cycle-partition of G is a family
of pairwise edge-disjoint cycles C,,Cs,---,C\ in G such that

k
|JE@C) =E. (4)

i=1

A graph is called an even graph if every vertex of this graph is of even
degree. The following is a well-known characterization for even graphs
(see, for example, [1]).

Lemma 4 A greph G = (V, E) possesses a cycle-partition if and only if
G is an even graph. m]

We will strengthen Lemma 4 to the result that every even graph G has a
cycle-partition {C; : 1 < i < k} such that |V(C;) N V(C;)| < 2 for every
pair 4,7 : 1 £i < j < k. Let us first prove the following result.

Lemma 5 IfG = (V,E) is an even graph and |{z € V : d(z) > 4}| > 3,
then there exist three pairwise edge-disjoint cycles in G.
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Proof. By Lemma 4, G has a cycle-partition. Since |[{z € V : d(z) > 4}| >
3, G contains at least two edge-disjoint cycles, say C; and Cj.

If [V(C1) NV(Cy)| < 2, then E(C1) UE(C2) # E(G), as [{x € V : d(z) 2
4}| > 3. It follows that G contains at least one more cycle, and the result
holds.

Now assume that |V (C;) NV (C2)| = 3. Let u,v be two vertices in V(C1)N
V(C2) such that one u—v path P on C; satisfies that V(P)NV(Cy) = {u,v}.
Let Q; and Q3 be the two u — v paths on Cj. Since |V(Cy)NV(C3)| 2 3,
there exists w € (V(Cy) NV (C2)) \ {u,v}. Let w € V(Q2) and C the cycle
formed by P and ¢.

Let H = G — E(C). Since w ¢ V(C), du(w) = dg(w) > 4. As every
vertex of H is of even degree, H contains two edge-disjoint cycles. Hence
G contains at least three pairwise edge-disjoint cycles. ]

Lemma 6 Let G = (V,E) be an even graph. If {C; : 1 < i<k} isa
cycle-partition of G with mazimum value of k, then |V(C;) NV (C;)| < 2
for every pairi,j with1<i<j<k.

Proof. Suppose that |V (Cy) N V(C2)| = 3, without loss of generality. Let
H be the subgraph of G induced by E(C;) U E(C3). Then H is an even
graph and H has at least 3 vertices of degree at least 4. By Lemma 5,
H contains (at least) three pairwise edge-disjoint cycles. Thus G has a
cycle-partition with more than k cycles, a contradiction. ]

We now apply Lemma 6 to get a result which will be used in proving the

necessity of Theorem 1.

Lemma 7 Let G = (V,E) be any graph and U C Vo(G). Assume that
[V(C)NU| =0(mod 2) for every even cycle C in G. If there exist two odd
cycles C and Cs in G such that

[V(C)NU|+ |V(C2) nU| = 1{mod 2), (5)
then there must ezist odd cycles C| and Cj in G such that
[V(C)NV(CY)| <1 and |V(C)NU|+|V(Cy)NU| = 1(mod 2). (6)
Proof. Let ® be the family of {C},C2}, where Cy and C; are odd cycles
in G such that
[V(C)NU|+|V(C2) nTU| = 1(mod 2). (7)
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Assume that & # @ and let
= i |4 .
r= mn_ V)N V(o) ®
Choose {C1,C>} € ® such that |[V(C1) NV (Cy)| = 7.

Let H be the subgraph of G induced by (E(C;)UE(C»))\ (E(C1)NE(Cy)).
Notice that H is an even graph as every vertex in H is of degree 2 or 4,
and by Lemma 6, H has a cycle-partition {C! : 1 < i < k} such that
[V(C)) NV(C))| < 2 for every pair4,j: 1 <i<j<k. As

k
Y _IE(Ch| = |E(Cy)| +|E(Cy)| = 0(mod 2), (9)

i=1
the number of odd cycles in {C]: 1 < i < k} is even. Observe that

[V(C) NU| + |[V(C2) N U|
= |(V(CH\V(C))NnU|+ [(V(C)\V(C))NU|
+2|V(C1) NV(C2) NU|

k
= > V(CHNU|+2[V(C)NV(C2) nU|.

t=1

Thus

k
S IV(CHNU = |V(C)NU|+|V(C) NU| = 1(mod 2).  (10)

i=1

Since |V(C)NU| = 0(mod 2) for every even cycle C of G, by (9) and (10),
there must exist 4,j with 1 < i < j < k such that {C],C}} € &. This
implies that 7 < 2.

If 7 =2 and E(C,)NE(C,) # 0, then H itself is an even cycle, and by (10),
|V(H)NU| is odd, contradicting the condition that |V (C)NU| = 0(mod 2)
for every even cycle C in G.

If = 2 and E(Cy) N E(C2) = 0, then H actually consists of four paths
between the two vertices contained in V(C;) N V(C;). Since both C; and
C: are odd cycles, two of these four paths are of even length and the other
two are of odd length. Thus H has a cycle-partition of two even cycles, say
Dj and Dj. Notice that

V(D) NU|+ |V(D3)nU| = |V(C1)NU| +|V(Ce) NU| = 1(mod 2), (11)
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contradicting the condition that |V (C)NU| = 0(mod 2) for every even cycle
Cof G.

Therefore 7 < 1 and the result holds. m]

By letting U = V,(G), we obtain the following result by Lemma 7.

Corollary 3 Let G = (V,E) be any graph. Assume that ny(C,G) =
0(mod 2) for every even cycle C in G. If there exist two odd cycles Cy and
Cy in G such that

no(Cy, G) + n2(Cy, G)= 1(mod 2), (12)
then there must ezist odd cycles C| and C; in G such that
V(CHNV(Cy)I <1 and no(CY,G) +n2(C3,G) = 1(mod 2).  (13)

Now we are ready to prove the necessity of Theorem 1.

Proof of Necessity of Theorem 1: Assume that G is a connected graph with
2 < 6(G) < A(G) < 3 and that G x K, admits a nowhere-zero 3-flow.

Claim 1: For every even cycle C, n2(C,G) = 0( mod 2).

Suppose that C is an even cycle in G such that ny(C, G) is odd. Then C is
an even closed walk contained in Wi(G) of length at least 4. As ny(C,G)
is odd, by Theorem 3, G x K5 does not admit a nowhere-zero 3-flow, a
contradiction.

Claim 2: For every two odd cycles C; and Cs, no(Cy,G) + n2(Co,G) =
0( mod 2).

Suppose that G contains two odd cycles C; and C; such that no(Cy,G) +
n2(C2, G) is odd. By Corollary 3, we can assume that C; and C; have at
most one vertex in common. Write C) as 2122 - - - 2z, Where s = |V(C})|,
and C; as y1y2 - - - Yey1, Where t = [V(Cy)|.

Case 1: |V(C))NV(Cy)| =1

Assume that z; = y;. Let W be the closed walk: z1Zs-  ZsZ1y2 - YTy
As s and t are odd, W € W;(G). The length of W is |V(Cy)| + |[V(C2)/,
which is even. Since ne(W,G) = n2(C1, G) + n2(C2, G) is odd, by Theo-
rem 3, G x K, does not admit a nowhere-zero 3-flow, a contradiction.

Case 2: |V(C1) N V(Cy)| = 0.
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Let P be a shortest path among all paths between a vertex on C; and a
vertex in Cy. Without loss of generality, assume that P is between x; and
y1. Thusd(z;) = d(y;) > 2. Write P as zyu; - - - ugy;, where k = |E(P)]-1.
Let W denote the following closed walk in G formed by C,, C; and P (edges
in P are repeated):

T1T2 - TsT1Uy - UkYLY2 *  Yel1 Uk - - - UL T

Note that W is a closed walk of length s + 2k + ¢. As s and ¢ are odd,
W € Wi(G) and W is an even closed walk. Since d(z;) = d(1;) > 2, we
have

m(W,G) = ng(C1,G) +n2(C2, G) + 2|{u; : 1 < i < k,d(w) = 2}
= 1( mod 2).

By Theorem 3, G x K5 does not admit a nowhere-zero 3-flow, a contradic-
tion. Hence Claim 2 holds.

By Claims 1 and 2, the necessity of Theorem 1 holds. ]

4 Further result

Let G3. be the family of connected graphs G such that V;(G) = 9 for all
odd integer ¢ with ¢ # 3. It is clear that G € G3, if 2 < §(G) < A(G) < 3.

Foracycle Cin G, let n.(C,G)= Y ni(C,G). Let G}, be the family
i is even

of graphs G in Gs. such that n3(C,G) is even for every cycle C in G, and

G3. the family of graphs G in G, such that n.(C, G) is even for every cycle

CinG.

Clearly, for any graph G € g3, U G4, if A(G) < 3, then G x K, admits a
nowhere-zero 3-flow by Theorem 1. We shall prove that this result holds
without the condition “A(G) < 3".

Theorem 5  For any G € G3,UGY,, Gx K, admits nowhere-zero 3-flows.

Proof. For any graph G, let w(G) = > dg(z). We will prove
' zeV(G),d(z)>3
this result by induction on w(G).

Let G € G3, UG5,. If w(G) = 0, then A(G) < 3 and so the result holds for
G by Theorem 1.
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Now assume that w(G) > 0. Then there is a graph H € G3. with two
non-adjacent vertices u,v such that dgy(u) = 2, dy(v) is a positive even
number and H - uv = G, where H - uv denotes the graph obtained from H
by identifying u and v.

It is clear that if G € G}, (i.e., H - uv € G3,), then H € G3,.

Now assume that G € Gf, (i.e., H - uv € G3,). So n.(C, H - uv) is even for
every cycle C in H - uv. Let C’ be any cycle in H. If {u,v} € V(C"), then
ne(C', H) = V,(C, H - uwv) is even, where C is the cycle in H - uv formed by
the edge set E(C’). If {u,v} C V(C"), then the subgraph of H - uv induced
by edge set E(C) consists of two cycles, say C; and Caz, with one vertex in
common. Then n.(C’, H) = ne(Ci, H - wv) + n(Cs, H - uv) is also even.
Hence H € G3,.

As w(H) < w(G) — 2 < w(G), by induction, H x K2 admits nowhere-zero
3-flows. As H - uv x K, can be obtained from H x K» by identifying (u, z)
with (v,z) and identifying (u,y) with (v,y), (H - uv) x K3 (i.e., G x K3)
also admits nowhere-zero 3-flows. a

Remark: We do not know whether there exists a graph G € Gs.\(G3,UG5.)
such that G x K, admits nowhere-zero 3-flows.
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