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Abstract

For a primitive digraph D of order n and a positive integer
m such that 1 < m < n, we define the m-competition index
of D, denoted by k,,(D), as the smallest positive integer k
such that distinct vertices vy, vs,- - ,vm exist for each pair of
vertices z and y and that z % v; and y LA viforl1 <i<m
in D. In this paper, we study the m-competition index of a
regular or almost regular tournament.
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1 Preliminaries and notations

In this paper, we follow the terminology and notation used in [1,
3, 4, 7). Let D = (V,E) denote a digraph (directed graph) with
vertex set V = V(D), arc set E = E(D), and order n. Loops are
permitted but multiple arcs are not. A walk from x to y in D is a
sequence of vertices z,v;1, -+ ,v,y € V(D) and a sequence of arcs
(z,v1), (v1,v2), -+ , (vt,y) € E(D), where the vertices and arcs are
not necessarily distinct. A closed walk is a walk from z to y where
z =1y. A cycle is a closed walk from z to y with distinct vertices
except for £ = y. The length of a walk W is determined as the

. . k . T
number of arcs in W. The notation z — y is used to indicate that

there exists a walk from z to y of length k. The notation x 7&) y is
used to indicate that there is no walk from z to y of length k. The
notation z — y represents arc (z,y).

A digraph D is said to be strongly connected if for each pair of
vertices  and y in V(D), there exists a walk from z to y. For
a strongly connected digraph D, the indez of imprimitivity of D,
denoted by I(D), is the greatest common divisor of the lengths of the
cycles in D. If D is a strongly connected digraph of order 1, then D
has a loop and {(D) = 1. For a strongly connected digraph D, D is
primitive if [(D) = 1.

If D is a primitive digraph of order n, there exists some positive
integer k such that a walk exactly of length & exists from each vertex
z to each vertex y. The smallest value of k is termed the ezponent
of D and is denoted by exp(D). For a positive integer m where
1 < m < n, we define the m-competition indez of a primitive digraph
D, denoted by k,,(D), as the smallest positive integer k such that
distinct vertices vy, v, - - ,Un exist for each pair of vertices x and y
andthata:—@)vi andyi)v,- for1<i<min D.

Kim [7] introduced the m-competition index as a generalization
of the competition index presented in [6]. Akelbek and Kirkland {1, 2]
introduced the scrambling index of a primitive digraph D, denoted
by k(D). In the case of primitive digraphs, the definitions of the
scrambling index and competition index are identical. Furthermore,
we have k(D) = ki(D). Recently, Huang and Liu [5] introduced
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the generalized scrambling index of a primitive digraph D, denoted
by k(D, A, p). In the case of primitive digraphs, we have k(D) =
k(D,2,m).

For a positive integer k& and a primitive digraph D, we define the
k-step outneighborhood of a vertex r as

N*(D*:z) = {v € V(D)|z s v} .

We define the k-step outneighborhood of a vertex set X as N+t(D* :
X) = UgexN*(D* : z). Further, we define the k-step common
outneighborhood of vertices z and y as N*(D* : z,y) = N*(DF :
) N N+(D* : y).

Next, we define the local m-competition indez of vertices z and y
as km(D : z,y) = min{k : M(D!: z,y) > m where t > k} and the
local m-competition indez of z as k(D : x) = maxycy(p){km(D :
z,y)}. Hence, we have

k = m(D 1 x) = k 1z, Y).
m(D) = max km(D : z) s hax  km(D : 2,y)
From the definitions of k., (D), km(D : z), and kn(D : z,y), we have
km(D : z,y) < km(D : z) < kn(D). On the basis of the definitions
of the m-competition index and the exponent of D of order n, we

can write k(D) < exp(D), where m is a positive integer such that
1 < m < n. Furthermore, we have k(D) = exp(D) and

k(D) = k1(D) < k2(D) < -+ < kn(D) = exp(D). (1)
This is a generalization of the scrambling index and exponent.

An n-tournament T, is a digraph with n vertices in which every
pair of vertices is joined by exactly one arc. Assigning an orientation
to each edge of a complete graph results in a tournament.

Proposition 1. (Moon and Pullman [9]) An n-tournament T,, is
primitive if and only if T,, is irreducible (strongly connected) and
n>3.
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For an n-tournament T, we define the score of vertex z as
st(z) = |N*(T, : )| and denote s~(z) = |{vlv = z}|. Thus,
we have s*(z) + s~ (z) = n—1. If n is odd and s*(z) = 25! for each
vertex x, then T}, is said to be regular. If n is even and s*(z) = § or
s*(z) = 252 for each vertex z, then T, is said to be almost regular.
If T,(n > 3) is a regular or almost regular tournament, then T, is
termed primitive. In a tournament T, we define a king as a vertex
z such that

V(T)\{z} = NY(T, : z) UNH(T2 : 2).

Proposition 2. (Landau [8]) Let T, be a tournament. Every vertex
in the mazimum score in T, is a king.

Definition 3. Suppose A, B C V(D) and z € V(D). We define the
following notations:
A= B :a—bforanya€ A and for any b € B.
z=>B:z—bforanybe B.
A=z :a—z foranya€ A

Lemma 4. (Sim and Kim [10]) Let T, be a primitive n-tournament
and A be a nonempty subset of V(T,). Then, [INY(T, : A)| > |4]
and [IN*(T, : A)N A| 2| A| - 1.

Proof. It A = V(T,,), then N+(Ty, : A) = V(T,). We have the
result. Suppose A # V(7). Since T, is strongly connected, we
have [INt(T, : A)\A| > 1 and |[A\N1(T,, : A)| < 1. Therefore,
IN*(T,, : A)| >| A| and |[N* (T, : A) N A| > |A| — 1. This establishes
the result. a

Proposition 5. (Sim and Kim [10]) Let T, be a primitive n-tourname
where n > 5. For a positive integer m such that 1 < m < n, we have

kn(Th) £m+2,

and the bound is sharp for alln > 5.

In this paper, we study km(7), where T), is regular or almost
regular.
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2 Main results

Proposition 6. (Tan et al. [11]) Let T, be a regular or almost
regular tournament of order n > 7, then exp(T,) = 3.

Example 7. Let T3 be an almost regular 8-tournament whose adja-
cency matrix is given as

[0 1 1 1 0 0 0 07
00111000
00011110
00001110
10000111
11000011
11000001
11110000

The adjacency matrix of 7§ is thus given as

1 1 01 11 1 17
11111111
11111111
11111011
11111111
11111111
11111111
11111111

Therefore, we have exp(T3) = 4.

Example 7 demonstrates that the result of Proposition 6 is not
true for n = 8. If n # 8, then we have Theorem 8.

Theorem 8. Let T, be a regular or almost regular tournament of
order n > 7 and n # 8, then exp(T,) = 3.

2
Proof. Since x # z for each vertex z, we have exp(T},) > 3. Suppose
that there exists a primitive tournament T}, such that exp(7;) # 3.

3
Then, there exist a pair of vertices u and v such that u 4 v. The
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subsets are denoted as

A = {zlu—>zandv— 2z},
B = {z|u—> z and z — v},
C = {z|r - uand z— v}

Hence, we have AUB = N*(T, : u)\{v} and BUC = {z|z —
vH\{u}. If |B| > 2, there exist two vertices p and q in B such that
u — p = ¢ — v. In other words, u 3. Therefore, |B| < 1. We
have

Al > st - |BU{} 2 [”—;lj —2>1 (@)

n-—1

|C| S_(’U) - IBU {u}| Z \\T} -2 Z 1. (3)

v

Therefore, we have A # ¢ and C # ¢.

If there exist a vertex a in A and a vertex z in B U C such that
a — x, then we have u - a —» = — v. That is, u 3. Therefore,
BuUC = A. If there exist a vertex ¢ in C and a vertex y in B
such that y — ¢, then we have v = y = ¢ = v. That is, u 3 0.
Therefore, we have

-

QoW
4 44
SIS

Case l. n=7.

Ty is regular and s (z) = s~ (z) = 3 for each vertex z. Since |BUC| >
s~ (v)—1=2, we have s™(a) > |{u,v}UBUC| > 4 for a € A. Since
this is a contradiction, we have exp(T7) = 3.

Case 2. n > 9.

We have |A| > s*(u)—|BU{v}| > 2and |C| > s~ (v) —|BU{u}| > 2
by (2) and (3). Thus, there exist two vertices c1 and c; in C such that
¢1 — c3. Further, we have s*(c;) > |{u,v,ca}UAUB| =|AUB|+3
and |JAU B| > st(u) — 1 > 3 — 2. Therefore, s*(c;) > § + 1. Since
this is a contradiction, we have exp(T5) = 3.

This establishes the result. O
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Lemma 9. If T,, is a regular or almost regular tournament where
n 2> T and n # 8, then we have kn—1(Ty) = 3.

Proof. According to Theorem 8, kn-1(T7) < kn(Tn) = 3 For each

pair of vertices u and v, we have u A v and v 12-) v. Further, we have
NH(T? : u,v) € V\{u,v}. Therefore, [IN*(T2 : u,v)| < n — 2, which
implies that k,_1(7},) > 3. This establishes the result. O

Lemma 10. Let T, be a regular or almost reqular tournament where
n > 7. For a positive integer m such that m > | "7“2], we have

km(Tn) > 2.

Proof. Suppose there exists an n-tournament T}, such that kn,(T,) =
1 for a positive integer m (> [232]). Consider the set

© = {(u,v,w)|u & w and v = w for u # v}.

Since k., (T,) = 1, we have
ol22(3) -m. (4)

Case 1. n is odd.
Let n = 2n’ 4 1. Since s~(w) = n/, we have

o ) ()
By (4), we have

(1) 2() = ("7) 2(2) -z ) o

Therefore,

Case 2. n is even.
Let n = 2n’. Since s~ (w) = n' or n’ — 1, we have

1= ()45 ()43
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By (4), we have

n' n' n' n —1 2n’
(1) 2()+(3) 2("5 ) =rer=2(%) =
Therefore,
(n'=1)2  (n—2)° < n—2
2n' —1 ~ 4(n—1) 4
Since m > ["T‘TI, a contradiction is observed in all the cases. This
establishes the result. O

m <

Lemma 11. Let T,, be a regular tournament where n > 7. For a
positive integer m such that m < n — 4, we have

km(Tn) £ 2.

Proof. Every vertex in T, has the same score. By Proposition 2,
every vertex is a king. Let n' = ﬁg-l and v be a vertex in T,. Since
IN*(T, : v)| = 7’ and v g N*(T2 : v), we have [N+ (T2 : v)\NH(T;, :
v)] = n’. By Lemma 4,

IN*(T2 - v)]
ITH(T2 : v)\NH (T : 0)| + |THTE : v) A NT(Ty 2 v)|
> 4+ -1)=n-2.

For each pair of vertices z and y,

IN*(T3 : z,)|
INH(T2: )| + IN*(T7 )| =| N*(TZ : 2) UNH (T 2 )

> n-2)+(n-2)—-n
= n—4
> m.
This establishes the result. ad

Lemma 12. Let T, be an almost reqular tournament, where n > 8.
For a positive integer m such that m < n — 6, we have
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Proof. Let n’ = % and v be a vertex in T,.

Case 1. st(v)=n'.
Since v is a king, we have

INF(T2 : v)\N* (T, : v)| =n' — 1.

Case 2. s*(v) =n'—1.

The subsets are denoted as A = N*(T,, : v), B = N*(T2 : v) and
C = V(T.)\A\B\{v}. Note |A| = s*(v) = n' — 1. If there exist
two vertices ¢; and ¢z in C, then ¢; = AU {v} and ¢ = AU {v}.
Without loss of generality, we may assume that ¢; — ¢;. Hence,
we have s*(c;) > n’. This is a contradiction. In addition, we have
|C] < 1. Then

INH(T2 : v)\N* (T}, : v)| > n' — 1.

In all cases, by Lemma 4, we have
IN*(T3 : )|
= [THTZ : v)\NH (T : v)| + [TH(T2 : v) N NH(T, : )|
> P-4+ -2)=n-3.

For each pair of vertices z and y,

IN*(T2 : z,y)|
INH(TZ - 2)| + INH(T3 : y)| = N*(TZ : 2) UNF(T2 2 )|

> (n=8)+(n-3)—n
= n—=6
> m.
This establishes the result. O

Let Z, be a cyclic group of order n and A be a subset of Z,,. The
Caley digraph is the digraph Cay(Z,,A) = (V,E), where V = Z,
and E = {(z,9)ly — z € A}.
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Example 13. Let F; and F» be regular (2n+ 1)-tournaments, where
n > 3. These tournaments are defined as follows.

R = CaY(Z2n+1’{1127"’7n})’
Fy = Cay(Zon+1,{2,4, -+ ,2n -2} U {1}).

For 0 < z < 2n, we have

Nt (FE:z) = V(F)\{z,z+1},
Nt (Fy:z) D {z-3,z+1,z+2,z+4},
Nt (F:z+1)UNT(Fy:z2+2) = V(E)\{z,z+1},

and £ — (z—3) — (z+1). In addition, for 0 < z < y < 2n, we have

N*(Ff:0,2) = V(F)\{0,1,2,3},
NYH(F}:z) D Nt (R :z+1)UNT(F:z+2)u{(z+1)}

= V(F)\{z},
N¥(F}:z,y) = V(FR)\{z,v}

By (1) and Theorem 8, we have
3 < kgn—2(F1) < kon-1(F1) < exp(F;) = 3.
And by (1) and Lemma 10, we have
2 < kon—2(F2) < kon-1(F2) = 2.

Example 14. Let F3 be an almost regular (2n)-tournament, where
n > 5. This tournament is defined as follows.

V(F3) = Zan,
E(F3)
= E(Cay(Zon,{1,2, - ,n—1}))

U{0,n), (2m +2), -+ , (2 {”glJ 2 [”;1J)}

U{(n+1,1),(n+3,3), - ,(n+2 [”_;-1] -1,2 [”;11 ~ 1)}
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We have
N*(F§:1) = V(Fs)\{0,1,2},
NtY(F2:5) = V(F3)\{4,5,6}.
Therefore,
N*(F}:1,5) = V(F3)\{0,1,2,4,5,6}.
By (1) and Theorem 8, we have
3 < kan—5(F3) < kan-a(F3) < kon—3(F3) < kon—2(F3) < exp(F3) = 3.

Example 15. Let D4 be a (2n — 1)-tournament, where n > 5. This
tournament is defined as follows.

V(D4) = Zon-1,
E(Ds) = E(Cay(Zan-1,{2,4,---,2n -4} U{1}))
U{(O’ 2n — 2)7 (4a 0)}\{(2n -2, 0)7 (07 4)}

Further, let F4 be an almost regular (2n)-tournament, where n > 5.
This tournament is defined as follows.

V(F) = V(Dg)U{a},

E(Fy) = E(Dy)
U{(a,0),(a,2), -+ ,(a,2n — 4)}
U{(3,a),(5,a), -+ ,(2n — 3,a)}
U{(a, 1), (2n ~ 2, a)}.

In the tournament Dy, for 0 < z < 2n — 3, we have

Nt(Dy:z) D {z+1,z+2},
Nt(Dy:2n-2) > {1,3,--.,2n -5},
and for 0 < z < 2n — 4, we have
Nt(Dg:0)UN*t(Dyg:1) D V(D4)\{0,4},
Nt(Ds:z2+1)UNT(Dg:z+2) D V(Dy\{z,z+1},
N*(Dg:2n—2)UN*(Dg:0) D V(Dy)\{0,4,2n — 3}.
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Further, for 1 < z < 2n — 2, we have
Nt (Dy:z) D {z-3,z+4},
and for 1 <z <3 and 4 <y < 2n — 2, we have
z-(z+4) = (z+1),
y—=(y-3) > @y+1).

Also we have 0 — (2n—2) — 1 in Dy4. Therefore, for 0 < z < 2n—4,
we have

N*Y(D2:z) > V(Di)\{z},
NH(D2:2n-3) > V(D)\{0,4,2n— 3},
N¥(D?:2n-2) D V(Dy\{1,2n-2}.
Since Dy is an induced subdigraph of Fy, for 0 < z < 2n—4, we have
N¥(F}:z) > V(F)\{z,a},
N*Y(F}:2n-3) D> V(Fy)\{0,4,2n - 3,a},
NY(F2:2n-2) D V(F\{1,2n-2,a}.
In tournament Fj, for z = (2n — 3) or (2n — 2), we have z — a =
{0,1,2,4}, and for z € {0,2,4,---,2n —4} U {2n — 3} and y €
{1,3,5,--- ,2n — 5}, we have
z—> (2n-2)—a,
y—=(2n-3) = q,
(2n-2) =3 > a.

Since N*(Fy : a) D {0,1,2,4}, we have N*(FZ : a) D V(Fy)\{a}.
For each vertex z in V(Fy), we have

N*(F¢ : z) = V(Fa)\{z}.

Therefore, we have ko,—2(F3) = 2. By (1) and Lemma 10, we also
have

2 < kon_5(F3) < kon—a(Fy) < kon—3(F4) < kon—2(Fy) = 2.



Theorem 16. Letn > 7 and n # 8.
(i) If T,, is regular and
(a) m< "—4‘§, then kn,(T) < 2.
(b) iz—l- <m < n—4, then kn(T,) = 2.
(c) n-3<m<n—-2, then kn(T,) =2 or 3.
(d) n—1<m < n, then kn,(T) = 3.
(ii) If T, is almost regular and
(a) m < 274, then km(Ty) < 2.
(b) 1‘—4_—2 <m < n—6, then kn(T5) = 2.
(c) n—5<m<n—2 then kn(T,) =2 or 3.
(d) n—1<m < n, then kn(Ty) = 3.
Proof. By Theorem 8, Lemma 9, Lemma 10, Lemma. 11, and Lemma

12, we have the bound. By Example 13, Example 14, and Example
15, we have the following.

(i) fn—=3<m<n—2 kn(F1)=3and kn,(F) = 2.
(ii) ifn—5<m <n—2 kn(F3) =3 and k,(Fy) = 2.
This establishes the result. a

3 Closing remark

Akelbek and Kirkland [1] provided the concept of the scrambling in-
dex of a primitive digraph. Kim [7] introduced a generalized compe-
tition index k(D) as another generalization of the exponent exp(D)
and scrambling index k(D) for a primitive digraph D. Sim and Kim
(10] studied k,(T>,) as an extension of the results presented in [6, 9].
In this paper, we study km(T,,) where T}, is a regular or almost reg-
ular tournament.
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