On the generalized competition index of a regular or almost regular tournament

MIN SOO SIM *
School of Integrated Technology,
Yonsei University,
Incheon 406-840, Korea.

HWA KYUNG KIM †
Department of Mathematics Education,
Sangmyung University,
Seoul 110-743, Korea.

Abstract

For a primitive digraph D of order n and a positive integer m such that $1 \leq m \leq n$, we define the m-competition index of D, denoted by $k_m(D)$, as the smallest positive integer k such that distinct vertices v_1, v_2, \dots, v_m exist for each pair of vertices x and y and that $x \stackrel{k}{\to} v_i$ and $y \stackrel{k}{\to} v_i$ for $1 \leq i \leq m$ in D. In this paper, we study the m-competition index of a regular or almost regular tournament.

AMS classification: 05C50; 15A48; 05C20 Keywords: competition index, m-competition index, generalized competition index, scrambling index, tournament.

^{*}E-mail address: digivice123@naver.com

[†]corresponding author. This author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2012R1A1A2001154). *E-mail address:* indices@smu.ac.kr

1 Preliminaries and notations

In this paper, we follow the terminology and notation used in [1, 3, 4, 7]. Let D = (V, E) denote a digraph (directed graph) with vertex set V = V(D), arc set E = E(D), and order n. Loops are permitted but multiple arcs are not. A walk from x to y in D is a sequence of vertices $x, v_1, \dots, v_t, y \in V(D)$ and a sequence of arcs $(x, v_1), (v_1, v_2), \dots, (v_t, y) \in E(D)$, where the vertices and arcs are not necessarily distinct. A closed walk is a walk from x to y where x = y. A cycle is a closed walk from x to y with distinct vertices except for x = y. The length of a walk W is determined as the number of arcs in W. The notation $x \xrightarrow{k} y$ is used to indicate that there exists a walk from x to y of length k. The notation $x \to y$ represents arc (x, y).

A digraph D is said to be strongly connected if for each pair of vertices x and y in V(D), there exists a walk from x to y. For a strongly connected digraph D, the index of imprimitivity of D, denoted by l(D), is the greatest common divisor of the lengths of the cycles in D. If D is a strongly connected digraph of order 1, then D has a loop and l(D) = 1. For a strongly connected digraph D, D is primitive if l(D) = 1.

If D is a primitive digraph of order n, there exists some positive integer k such that a walk exactly of length k exists from each vertex x to each vertex y. The smallest value of k is termed the *exponent* of D and is denoted by $\exp(D)$. For a positive integer m where $1 \leq m \leq n$, we define the m-competition index of a primitive digraph D, denoted by $k_m(D)$, as the smallest positive integer k such that distinct vertices v_1, v_2, \cdots, v_m exist for each pair of vertices x and y and that $x \xrightarrow{k} v_i$ and $y \xrightarrow{k} v_i$ for $1 \leq i \leq m$ in D.

Kim [7] introduced the m-competition index as a generalization of the competition index presented in [6]. Akelbek and Kirkland [1, 2] introduced the scrambling index of a primitive digraph D, denoted by k(D). In the case of primitive digraphs, the definitions of the scrambling index and competition index are identical. Furthermore, we have $k(D) = k_1(D)$. Recently, Huang and Liu [5] introduced

the generalized scrambling index of a primitive digraph D, denoted by $k(D, \lambda, \mu)$. In the case of primitive digraphs, we have $k_m(D) = k(D, 2, m)$.

For a positive integer k and a primitive digraph D, we define the k-step outneighborhood of a vertex x as

$$N^+(D^k:x) = \left\{ v \in V(D) | x \xrightarrow{k} v \right\}.$$

We define the k-step outneighborhood of a vertex set X as $N^+(D^k:X) = \bigcup_{x \in X} N^+(D^k:x)$. Further, we define the k-step common outneighborhood of vertices x and y as $N^+(D^k:x,y) = N^+(D^k:x) \cap N^+(D^k:y)$.

Next, we define the local m-competition index of vertices x and y as $k_m(D:x,y)=\min\{k:M(D^t:x,y)\geq m \text{ where } t\geq k\}$ and the local m-competition index of x as $k_m(D:x)=\max_{y\in V(D)}\{k_m(D:x,y)\}$. Hence, we have

$$k_m(D) = \max_{x \in V(D)} k_m(D:x) = \max_{x,y \in V(D)} k_m(D:x,y).$$

From the definitions of $k_m(D)$, $k_m(D:x)$, and $k_m(D:x,y)$, we have $k_m(D:x,y) \leq k_m(D:x) \leq k_m(D)$. On the basis of the definitions of the *m*-competition index and the exponent of D of order n, we can write $k_m(D) \leq \exp(D)$, where m is a positive integer such that $1 \leq m \leq n$. Furthermore, we have $k_n(D) = \exp(D)$ and

$$k(D) = k_1(D) \le k_2(D) \le \dots \le k_n(D) = \exp(D). \tag{1}$$

This is a generalization of the scrambling index and exponent.

An n-tournament T_n is a digraph with n vertices in which every pair of vertices is joined by exactly one arc. Assigning an orientation to each edge of a complete graph results in a tournament.

Proposition 1. (Moon and Pullman [9]) An n-tournament T_n is primitive if and only if T_n is irreducible (strongly connected) and n > 3.

For an *n*-tournament T_n , we define the *score* of vertex x as $s^+(x) = |N^+(T_n : x)|$ and denote $s^-(x) = |\{v|v \to x\}|$. Thus, we have $s^+(x) + s^-(x) = n-1$. If n is odd and $s^+(x) = \frac{n-1}{2}$ for each vertex x, then T_n is said to be *regular*. If n is even and $s^+(x) = \frac{n}{2}$ or $s^+(x) = \frac{n-2}{2}$ for each vertex x, then T_n is said to be *almost regular*. If $T_n(n > 3)$ is a regular or almost regular tournament, then T_n is termed primitive. In a tournament T_n , we define a *king* as a vertex x such that

$$V(T_n) \setminus \{x\} = N^+(T_n : x) \cup N^+(T_n^2 : x).$$

Proposition 2. (Landau [8]) Let T_n be a tournament. Every vertex in the maximum score in T_n is a king.

Definition 3. Suppose $A, B \subset V(D)$ and $x \in V(D)$. We define the following notations:

 $A \Rightarrow B : a \rightarrow b$ for any $a \in A$ and for any $b \in B$.

 $x \Rightarrow B : x \rightarrow b \text{ for any } b \in B.$

 $A \Rightarrow x : a \rightarrow x \text{ for any } a \in A.$

Lemma 4. (Sim and Kim [10]) Let T_n be a primitive n-tournament and A be a nonempty subset of $V(T_n)$. Then, $|N^+(T_n:A)| \ge |A|$ and $|N^+(T_n:A) \cap A| \ge |A| - 1$.

Proof. If $A = V(T_n)$, then $N^+(T_n : A) = V(T_n)$. We have the result. Suppose $A \neq V(T_n)$. Since T_n is strongly connected, we have $|N^+(T_n : A) \setminus A| \geq 1$ and $|A \setminus N^+(T_n : A)| \leq 1$. Therefore, $|N^+(T_n : A)| \geq |A|$ and $|N^+(T_n : A) \cap A| \geq |A| - 1$. This establishes the result.

Proposition 5. (Sim and Kim [10]) Let T_n be a primitive n-tourname where $n \geq 5$. For a positive integer m such that $1 \leq m \leq n$, we have

$$k_m(T_n) \leq m+2,$$

and the bound is sharp for all $n \geq 5$.

In this paper, we study $k_m(T_n)$, where T_n is regular or almost regular.

2 Main results

Proposition 6. (Tan et al. [11]) Let T_n be a regular or almost regular tournament of order $n \geq 7$, then $\exp(T_n) = 3$.

Example 7. Let T_8 be an almost regular 8-tournament whose adjacency matrix is given as

$$\begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

The adjacency matrix of T_8^3 is thus given as

Therefore, we have $\exp(T_8) = 4$.

Example 7 demonstrates that the result of Proposition 6 is not true for n = 8. If $n \neq 8$, then we have Theorem 8.

Theorem 8. Let T_n be a regular or almost regular tournament of order $n \geq 7$ and $n \neq 8$, then $\exp(T_n) = 3$.

Proof. Since $x \not\to x$ for each vertex x, we have $\exp(T_n) \ge 3$. Suppose that there exists a primitive tournament T_n such that $\exp(T_n) \ne 3$. Then, there exist a pair of vertices u and v such that $u \not\to v$. The

subsets are denoted as

$$A = \{x|u \to x \text{ and } v \to x\},$$

$$B = \{x|u \to x \text{ and } x \to v\},$$

$$C = \{x|x \to u \text{ and } x \to v\}.$$

Hence, we have $A \cup B = N^+(T_n : u) \setminus \{v\}$ and $B \cup C = \{x | x \to v\} \setminus \{u\}$. If $|B| \geq 2$, there exist two vertices p and q in B such that $u \to p \to q \to v$. In other words, $u \xrightarrow{3} v$. Therefore, $|B| \leq 1$. We have

$$|A| \ge s^+(u) - |B \cup \{v\}| \ge \left| \frac{n-1}{2} \right| - 2 \ge 1$$
 (2)

$$|C| \ge s^-(v) - |B \cup \{u\}| \ge \left| \frac{n-1}{2} \right| - 2 \ge 1.$$
 (3)

Therefore, we have $A \neq \phi$ and $C \neq \phi$.

If there exist a vertex a in A and a vertex x in $B \cup C$ such that $a \to x$, then we have $u \to a \to x \to v$. That is, $u \stackrel{3}{\to} v$. Therefore, $B \cup C \Rightarrow A$. If there exist a vertex c in C and a vertex y in B such that $y \to c$, then we have $u \to y \to c \to v$. That is, $u \stackrel{3}{\to} v$. Therefore, we have

$$\begin{array}{ccc} B & \Rightarrow & A, \\ C & \Rightarrow & A, \\ C & \Rightarrow & B. \end{array}$$

Case 1. n = 7.

 T_7 is regular and $s^+(x) = s^-(x) = 3$ for each vertex x. Since $|B \cup C| \ge s^-(v) - 1 = 2$, we have $s^-(a) \ge |\{u, v\} \cup B \cup C| \ge 4$ for $a \in A$. Since this is a contradiction, we have $\exp(T_7) = 3$.

Case 2. $n \geq 9$.

We have $|A| \ge s^+(u) - |B \cup \{v\}| \ge 2$ and $|C| \ge s^-(v) - |B \cup \{u\}| \ge 2$ by (2) and (3). Thus, there exist two vertices c_1 and c_2 in C such that $c_1 \to c_2$. Further, we have $s^+(c_1) \ge |\{u, v, c_2\} \cup A \cup B| = |A \cup B| + 3$ and $|A \cup B| \ge s^+(u) - 1 \ge \frac{n}{2} - 2$. Therefore, $s^+(c_1) \ge \frac{n}{2} + 1$. Since this is a contradiction, we have $\exp(T_n) = 3$.

This establishes the result.

Lemma 9. If T_n is a regular or almost regular tournament where $n \geq 7$ and $n \neq 8$, then we have $k_{n-1}(T_n) = 3$.

Proof. According to Theorem 8, $k_{n-1}(T_n) \leq k_n(T_n) = 3$ For each pair of vertices u and v, we have $u \not \to u$ and $v \not \to v$. Further, we have $N^+(T_n^2:u,v) \subset V \setminus \{u,v\}$. Therefore, $|N^+(T_n^2:u,v)| \leq n-2$, which implies that $k_{n-1}(T_n) \geq 3$. This establishes the result.

Lemma 10. Let T_n be a regular or almost regular tournament where $n \geq 7$. For a positive integer m such that $m \geq \lceil \frac{n-2}{4} \rceil$, we have

$$k_m(T_n) \geq 2.$$

Proof. Suppose there exists an *n*-tournament T_n such that $k_m(T_n) = 1$ for a positive integer $m (\geq \lceil \frac{n-2}{4} \rceil)$. Consider the set

$$\Theta = \{(u, v, w) | u \to w \text{ and } v \to w \text{ for } u \neq v\}.$$

Since $k_m(T_n) = 1$, we have

$$|\Theta| \ge 2 \binom{n}{2} \cdot m. \tag{4}$$

Case 1. n is odd.

Let n = 2n' + 1. Since $s^{-}(w) = n'$, we have

$$|\Theta| = \binom{n}{1} \cdot 2 \binom{n'}{2}.$$

By (4), we have

$$\binom{n}{1} \cdot 2 \binom{n'}{2} = \binom{2n'+1}{1} \cdot 2 \binom{n'}{2} = |\Theta| \ge 2 \binom{2n'+1}{2} \cdot m.$$

Therefore,

$$m \leq \frac{n'-1}{2} = \frac{n-3}{4}.$$

Case 2. n is even.

Let n = 2n'. Since $s^-(w) = n'$ or n' - 1, we have

$$|\Theta| = \binom{n'}{1} \cdot 2 \binom{n'}{2} + \binom{n'}{1} \cdot 2 \binom{n'-1}{2}.$$

By (4), we have

$$\binom{n'}{1} \cdot 2 \binom{n'}{2} + \binom{n'}{1} \cdot 2 \binom{n'-1}{2} = |\Theta| \ge 2 \binom{2n'}{2} \cdot m.$$

Therefore,

$$m \le \frac{(n'-1)^2}{2n'-1} = \frac{(n-2)^2}{4(n-1)} < \frac{n-2}{4}.$$

Since $m \ge \left\lceil \frac{n-2}{4} \right\rceil$, a contradiction is observed in all the cases. This establishes the result.

Lemma 11. Let T_n be a regular tournament where $n \geq 7$. For a positive integer m such that $m \leq n-4$, we have

$$k_m(T_n) \leq 2.$$

Proof. Every vertex in T_n has the same score. By Proposition 2, every vertex is a king. Let $n' = \frac{n-1}{2}$ and v be a vertex in T_n . Since $|N^+(T_n:v)| = n'$ and $v \notin N^+(T_n^2:v)$, we have $|N^+(T_n^2:v) \setminus N^+(T_n:v)| = n'$. By Lemma 4,

$$|N^{+}(T_{n}^{2}:v)|$$

$$= |T^{+}(T_{n}^{2}:v)\backslash N^{+}(T_{n}:v)| + |T^{+}(T_{n}^{2}:v)\cap N^{+}(T_{n}:v)|$$

$$\geq n' + (n'-1) = n-2.$$

For each pair of vertices x and y,

$$|N^{+}(T_{n}^{2}:x,y)|$$

$$= |N^{+}(T_{n}^{2}:x)| + |N^{+}(T_{n}^{2}:y)| - |N^{+}(T_{n}^{2}:x) \cup N^{+}(T_{n}^{2}:y)|$$

$$\geq (n-2) + (n-2) - n$$

$$= n-4$$

$$> m.$$

This establishes the result.

Lemma 12. Let T_n be an almost regular tournament, where $n \geq 8$. For a positive integer m such that $m \leq n - 6$, we have

$$k_m(T_n) \leq 2.$$

Proof. Let $n' = \frac{n}{2}$ and v be a vertex in T_n .

Case 1. $s^+(v) = n'$.

Since v is a king, we have

$$|N^+(T_n^2:v)\backslash N^+(T_n:v)| = n'-1.$$

Case 2. $s^+(v) = n' - 1$.

The subsets are denoted as $A = N^+(T_n : v)$, $B = N^+(T_n^2 : v)$ and $C = V(T_n) \setminus A \setminus B \setminus \{v\}$. Note $|A| = s^+(v) = n' - 1$. If there exist two vertices c_1 and c_2 in C, then $c_1 \Rightarrow A \cup \{v\}$ and $c_2 \Rightarrow A \cup \{v\}$. Without loss of generality, we may assume that $c_1 \to c_2$. Hence, we have $s^+(c_1) > n'$. This is a contradiction. In addition, we have $|C| \leq 1$. Then

$$|N^+(T_n^2:v)\backslash N^+(T_n:v)| \ge n'-1.$$

In all cases, by Lemma 4, we have

$$|N^{+}(T_{n}^{2}:v)|$$

$$= |T^{+}(T_{n}^{2}:v)\backslash N^{+}(T_{n}:v)| + |T^{+}(T_{n}^{2}:v)\cap N^{+}(T_{n}:v)|$$

$$\geq (n'-1) + (n'-2) = n-3.$$

For each pair of vertices x and y,

$$|N^{+}(T_{n}^{2}:x,y)|$$

$$= |N^{+}(T_{n}^{2}:x)| + |N^{+}(T_{n}^{2}:y)| - |N^{+}(T_{n}^{2}:x) \cup N^{+}(T_{n}^{2}:y)|$$

$$\geq (n-3) + (n-3) - n$$

$$= n-6$$

$$\geq m.$$

 \Box

This establishes the result.

Let Z_n be a cyclic group of order n and A be a subset of Z_n . The Caley digraph is the digraph $Cay(Z_n, A) = (V, E)$, where $V = Z_n$ and $E = \{(x, y)|y - x \in A\}$.

Example 13. Let F_1 and F_2 be regular (2n+1)-tournaments, where $n \geq 3$. These tournaments are defined as follows.

$$F_1 = \operatorname{Cay}(Z_{2n+1}, \{1, 2, \cdots, n\}),$$

$$F_2 = \operatorname{Cay}(Z_{2n+1}, \{2, 4, \cdots, 2n-2\} \cup \{1\}).$$

For $0 \le x \le 2n$, we have

$$N^{+}(F_{1}^{2}:x) = V(F_{1}) \setminus \{x, x+1\},$$

$$N^{+}(F_{2}:x) \supset \{x-3, x+1, x+2, x+4\},$$

$$N^{+}(F_{2}:x+1) \cup N^{+}(F_{2}:x+2) = V(F_{2}) \setminus \{x, x+1\},$$

and $x \to (x-3) \to (x+1)$. In addition, for $0 \le x < y \le 2n$, we have

$$\begin{array}{lcl} N^+(F_1^2:0,2) & = & V(F_1) \backslash \{0,1,2,3\}, \\ N^+(F_2^2:x) & \supset & N^+(F_2:x+1) \cup N^+(F_2:x+2) \cup \{(x+1)\} \\ & = & V(F_2) \backslash \{x\}, \\ N^+(F_2^2:x,y) & = & V(F_2) \backslash \{x,y\}. \end{array}$$

By (1) and Theorem 8, we have

$$3 \le k_{2n-2}(F_1) \le k_{2n-1}(F_1) \le \exp(F_1) = 3.$$

And by (1) and Lemma 10, we have

$$2 \le k_{2n-2}(F_2) \le k_{2n-1}(F_2) = 2.$$

Example 14. Let F_3 be an almost regular (2n)-tournament, where $n \geq 5$. This tournament is defined as follows.

$$V(F_3) = Z_{2n},$$

$$E(F_3)$$

$$= E(\operatorname{Cay}(Z_{2n}, \{1, 2, \dots, n-1\}))$$

$$\cup \{(0, n), (2, n+2), \dots, (2\left\lfloor \frac{n-1}{2} \right\rfloor, n+2\left\lfloor \frac{n-1}{2} \right\rfloor)\}$$

$$\cup \{(n+1, 1), (n+3, 3), \dots, (n+2\left\lceil \frac{n-1}{2} \right\rceil - 1, 2\left\lceil \frac{n-1}{2} \right\rceil - 1)\}$$

We have

$$N^+(F_3^2:1) = V(F_3)\setminus\{0,1,2\},$$

 $N^+(F_3^2:5) = V(F_3)\setminus\{4,5,6\}.$

Therefore,

$$N^+(F_3^2:1,5) = V(F_3)\setminus\{0,1,2,4,5,6\}.$$

By (1) and Theorem 8, we have

$$3 \le k_{2n-5}(F_3) \le k_{2n-4}(F_3) \le k_{2n-3}(F_3) \le k_{2n-2}(F_3) \le \exp(F_3) = 3.$$

Example 15. Let D_4 be a (2n-1)-tournament, where $n \geq 5$. This tournament is defined as follows.

$$V(D_4) = Z_{2n-1},$$

$$E(D_4) = E(\operatorname{Cay}(Z_{2n-1}, \{2, 4, \cdots, 2n-4\} \cup \{1\})) \cup \{(0, 2n-2), (4, 0)\} \setminus \{(2n-2, 0), (0, 4)\}.$$

Further, let F_4 be an almost regular (2n)-tournament, where $n \geq 5$. This tournament is defined as follows.

$$V(F_4) = V(D_4) \cup \{a\},$$

$$E(F_4) = E(D_4)$$

$$\cup \{(a,0), (a,2), \cdots, (a,2n-4)\}$$

$$\cup \{(3,a), (5,a), \cdots, (2n-3,a)\}$$

$$\cup \{(a,1), (2n-2,a)\}.$$

In the tournament D_4 , for $0 \le x \le 2n - 3$, we have

$$N^+(D_4:x) \supset \{x+1,x+2\},$$

 $N^+(D_4:2n-2) \supset \{1,3,\cdots,2n-5\},$

and for $0 \le x \le 2n - 4$, we have

$$N^+(D_4:0) \cup N^+(D_4:1) \supset V(D_4) \setminus \{0,4\},$$

 $N^+(D_4:x+1) \cup N^+(D_4:x+2) \supset V(D_4) \setminus \{x,x+1\},$
 $N^+(D_4:2n-2) \cup N^+(D_4:0) \supset V(D_4) \setminus \{0,4,2n-3\}.$

Further, for $1 \le x \le 2n - 2$, we have

$$N^+(D_4:x)\supset \{x-3,x+4\},$$

and for $1 \le x \le 3$ and $4 \le y \le 2n - 2$, we have

$$x \rightarrow (x+4) \rightarrow (x+1),$$

 $y \rightarrow (y-3) \rightarrow (y+1).$

Also we have $0 \to (2n-2) \to 1$ in D_4 . Therefore, for $0 \le x \le 2n-4$, we have

$$N^+(D_4^2:x) \supset V(D_4)\backslash\{x\},$$

 $N^+(D_4^2:2n-3) \supset V(D_4)\backslash\{0,4,2n-3\},$
 $N^+(D_4^2:2n-2) \supset V(D_4)\backslash\{1,2n-2\}.$

Since D_4 is an induced subdigraph of F_4 , for $0 \le x \le 2n-4$, we have

$$N^+(F_4^2:x) \supset V(F_4) \setminus \{x,a\},$$

 $N^+(F_4^2:2n-3) \supset V(F_4) \setminus \{0,4,2n-3,a\},$
 $N^+(F_4^2:2n-2) \supset V(F_4) \setminus \{1,2n-2,a\}.$

In tournament F_4 , for x = (2n - 3) or (2n - 2), we have $x \to a \Rightarrow \{0, 1, 2, 4\}$, and for $x \in \{0, 2, 4, \dots, 2n - 4\} \cup \{2n - 3\}$ and $y \in \{1, 3, 5, \dots, 2n - 5\}$, we have

$$x \to (2n-2) \to a,$$

 $y \to (2n-3) \to a,$
 $(2n-2) \to 3 \to a.$

Since $N^+(F_4:a)\supset\{0,1,2,4\}$, we have $N^+(F_4^2:a)\supset V(F_4)\setminus\{a\}$. For each vertex x in $V(F_4)$, we have

$$N^+(F_4^2:x) = V(F_4) \setminus \{x\}.$$

Therefore, we have $k_{2n-2}(F_4) = 2$. By (1) and Lemma 10, we also have

$$2 \le k_{2n-5}(F_4) \le k_{2n-4}(F_4) \le k_{2n-3}(F_4) \le k_{2n-2}(F_4) = 2.$$

Theorem 16. Let $n \geq 7$ and $n \neq 8$.

- (i) If T_n is regular and
 - (a) $m \leq \frac{n-3}{4}$, then $k_m(T_n) \leq 2$.
 - (b) $\frac{n-1}{4} \le m \le n-4$, then $k_m(T_n) = 2$.
 - (c) $n-3 \le m \le n-2$, then $k_m(T_n) = 2$ or 3.
 - (d) $n-1 \le m \le n$, then $k_m(T_n) = 3$.
- (ii) If T_n is almost regular and
 - (a) $m \leq \frac{n-4}{4}$, then $k_m(T_n) \leq 2$.
 - (b) $\frac{n-2}{4} \le m \le n-6$, then $k_m(T_n) = 2$.
 - (c) $n-5 \le m \le n-2$, then $k_m(T_n) = 2$ or 3.
 - (d) $n-1 \le m \le n$, then $k_m(T_n) = 3$.

Proof. By Theorem 8, Lemma 9, Lemma 10, Lemma 11, and Lemma 12, we have the bound. By Example 13, Example 14, and Example 15, we have the following.

- (i) if $n-3 \le m \le n-2$, $k_m(F_1) = 3$ and $k_m(F_2) = 2$.
- (ii) if $n-5 \le m \le n-2$, $k_m(F_3) = 3$ and $k_m(F_4) = 2$.

This establishes the result.

3 Closing remark

Akelbek and Kirkland [1] provided the concept of the scrambling index of a primitive digraph. Kim [7] introduced a generalized competition index $k_m(D)$ as another generalization of the exponent $\exp(D)$ and scrambling index k(D) for a primitive digraph D. Sim and Kim [10] studied $k_m(T_n)$ as an extension of the results presented in [6, 9]. In this paper, we study $k_m(T_n)$ where T_n is a regular or almost regular tournament.

Acknowledgements

The authors would like to thank an anonymous referee for his or her outstanding job of suggesting changes.

References

- [1] M. AKELBEK, S. KIRKLAND, Coefficients of ergodicity and the scrambling index, *Linear Algebra Appl.* 430 (2009) 1111–1130.
- [2] M. AKELBEK, S. KIRKLAND, Primitive digraphs with the largest scrambling index, *Linear Algebra Appl.* 430 (2009) 1099– 1110.
- [3] R.A. BRUALDI, H.J. RYSER, Combinatorial Matrix Theory, Cambridge University Press, 1991.
- [4] J.A. BONDY, U.S.R. MURTY, Graph Theory with Applications, North-Holland, New York, 1976.
- [5] Y. Huang, B. Liu, Generalized scrambling indices of a primitive digraph, *Linear Algebra Appl.* 433 (2010) 1798–1808.
- [6] H.K. Kim, Competition indices of tournaments, Bull. Korean Math. Soc. 45 (2008) 385-396.
- [7] H.K. KIM, Generalized competition index of a primitive digraph, *Linear Algebra Appl.* 433 (2010) 72-79.
- [8] H.G. LANDAU, On dominance relations and the structure of animal societies, III: The condition for score structure, Bull. Math. Biophys. 15 (1953) 143-148.
- [9] J.W. Moon, N.J. Pullman, On the power of tournament matrices, J. Combinatorial Theory 3 (1967) 1-9.
- [10] M.S. Sim, H.K. Kim, On generalized competition index of a primitive tournament, *Discrete Math.* submitted.
- [11] S. TAN, B. LIU, Z. DELONG, Extreme tournaments with given primitive exponents, *Australasian J. Combinatorics* 28 (2003) 81-91.