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Abstract

A graph X is said to be End-completely-regular (End-inverse) if its
endomorphism monoid End(X) is completely regular (inverse). In this
paper, we will show that if X +Y is End-completely-regular, then both
X and Y are End-completely-regular. We give several approaches to
construct new End-completely-regular graphs by means of the join of
two graphs with certain conditions. In particular, determine the End-
completely-regular joins of bipartite graphs. We also prove that X +Y
is End-inverse if and only if X +Y is End-regular and both X and Y
are End-inverse. We also determine the End-inverse joins of bipartite
graphs.
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1 Introduction and preliminaries

Endomorphism monoids of graphs are generalizations of automorphism
groups of graphs. In recent years much attention has been paid to en-
domorphism monoids of graphs and many interesting results concerning
graphs and their endomorphism monoids have been obtained. The aim of
this research is to develop further relationship between graph theory and
algebraic theory of semigroups and to apply the theory of semigroups to
graph theory. The bipartite graphs are a class of famous graphs. Its endo-
morphism monoids are studied by several authors. In [15], the connected
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bipartite graphs whose endomorphism monoids are regular were explicitly
found. In (3], Fan gave a characterization of connected bipartite graphs
with an orthodox monoid. The bipartite graphs with completely regular
endomorphism monoids were characterized in [2]. The joins of bipartite
graphs with regular endomorphism monoids were characterized in (8]. The
endomorphism monoids and endomorphism-regularity of graphs were con-
sidered by several authors (see [6],[7], (10] and [14]). In this paper, we
will show that if X 4+ Y is End-completely-regular, then both X and Y
are End-completely-regular. We give several approaches to construct new
End-completely-regular graphs by means of the join of two graphs with
certain conditions. In particular, determine the End-completely-regular
joins of bipartite graphs. We also prove that X +Y is End-inverse if and
only if X +Y is End-regular and both X and Y are End-inverse. We also
determine the End-inverse bipartite graphs and the End-inverse joins of
bipartite graphs.

The graphs considered in this paper are finite undirected graphs without
loops and multiple edges. Let X be a graph. The vertex set of X is denoted
by V(X) and the edge set of X is denoted by E(X). If two vertices z; and
Ty are adjacent in the graph X, the edge connecting z; and z, is denoted
by {z1,z2} and we write {z,,22} € E(X). For a vertex v of X, denote by
Nx (v) (or briefly by N(v)) the set {z € V(X)|{z,v} € E(X)} and call it
the neighborhood of v in X. A subgraph H is called an induced subgraph of
X if for any a,b € H, {a,b} € H if and only if {a,b} € V(X). A graph X
is called bipartite if X has no odd cycle. It is known that, if a graph X is
a bipartite graph, then its vertex set can be partitioned into two disjoint
non-empty subsets, such that no edge joins two vertices in the same set.
A graph X is called complete if for any a,b € V(X), {a,b} € E(X). We
denote by K, a complete graph with n vertices. A cligue of a graph X
is a maximal complete subgraph of X. A subset K C V(X) is said to be
complete if {a, b} € E(X) for any two verticesa,b € K. A subset S C V(X)
is said to be independent if {a,b} ¢ E(X) for any two vertices a,b € S. A
graph X is called a split graph if its vertex set V(X) can be partitioned
into disjoint (non-empty) sets K and S such that K is a complete set and
S is an independent set. In this paper, we always assume that a split
graph X has a fixed partition V(X) = KU S, where K = {z,,---,z,} is a
maximum complete set and S = {y1,--+,¥m} is an independent set. Since
K is a maximum complete set of X, it is easy to see that for any y € S,
0<dx(y) £n-—1 Let X and Y be two graphs. The join of X and Y,
denoted by X + Y, is a graph such that V(X +Y) = V(X)U V(Y) and
E(X +Y) = E(X) U B(Y) U {{z1,22}|z1 € V(X), 22 € V(Y)}.

Let X and Y be graphs. A mapping f from V(X) to V(Y) is called a
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homomorphism if {x,,z2} € E(X) implies that {f(z1), f(z2)} € E(Y). A
homomorphism f is said to be a half-strong homomorphism if { f(a), f(b)} €
E(Y) implies that there exist z1,z2 € V(X) with f(z;) = f(a) and f(z3) =
f(b) such that {z;,z,} € E(X). A homomorphism f from X to itself is
called an endomorphism of X. The sets of all endomorphisms, half-strong
endomorphisms of X are denoted by End(X) and hEnd(X) respectively.

A proper coloring of a graph X is a map from V(X) into some finite set
of colors such that no two adjacent vertices are assigned the same colors.
If X can be properly colored with a set of k colors, then we say that X can
be properly k-colored. The least value of k for which X can be properly
k-colored is the chromatic number of X, and is denoted by x(X). We know
that if there is a homomorphism from X to Y, then x(X) < x(Y). A
retraction of a graph X is a homomorphism f from X to a subgraph Y of
X such that the restriction f|y of f to V(Y) is the identity mapping on
V(Y). It is known that the idempotents of End(X) are retractions of X.
Denote by Idpt(X) the set of all idempotents of End(X). A graph X is
unretractive, if End(X) = Aut(X). A subgraph Y of X is a coreof X if Y’
is unretractive and there is a homomorphism from X toY. Let X and Y
be two graphs. We say X and Y are homomorphically equivalent if there is
a homomorphism from X to Y, and there is a homomorphism from Y to
X. It is known that two graphs X and Y are homomorphically equivalent
if and only if their cores are isomorphic.

Let f be an endomorphism of a graph X. A subgraph of X is called
the endomorphic image of X under f, denoted by Iy, if V(If) = f(V(X))
and {f(a), f(b)} € E(Iy) if and only if there exist ¢ € f~(f(a)) and
d € f~1(f(b)) such that {c,d} € E(X). By p; we denote the equivalence
relation on V(X) induced by f, i.e., for a,b € V(X), (a,b) € py if and only
if f(a) = f(b). Denote by [a],, the equivalence class containing a € V(X)
with respect to py.

An element a of a semigroup S is called regular if there exists z € S such
that aze = a. An element a of a semigroup S is called completely regular
if a = aza and za = azx for some z € S. A semigroup S is called regular
(completely regular) if all its elements are regular (completely regular).
An inverse semigroup is a regular semigroup in which the idempotents
commute. A graph X is said to be End-regular (resp., End-completely-
regular, End-inverse) if its endomorphism monoid End(X) is regular (resp.,
completely regular, inverse). Clearly, End-completely-regular and End-
inverse graphs are End-regular.

For undefined notations and terminology in this paper the reader is
referred to [1,4,5,9]. We list some known results which will be used in the

sequel.
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Lemma 1.1 ([13]) Let G be a graph and let f € End(G). Then f is
completely regular if and only if f|;, € Aut(Iy).

Lemma 1.2 ([2]) Let X be a bipartite graph. Then X is End-
completely-regular if and only if X is one of K, K2, P, 2K, 2K> and
K,\UK,.

Lemma 1.3 ([11]) Let X and Y be two graphs. If X +Y is End-
regular, then hoth X and Y are End-regular.

Lemma 1.4 ([8]) Let X and Y be two End-regular graphs. If for any
feEnd(X+Y), f(X)C X and f(Y) CY, then X +Y is End-regular.

Lemma 1.5 ({12]) Let X be a split graph with V/(X) = K'|JS. Then
End(X) is completely regular if and only if || = 1.

Lemma 1.6 ([8]) Let X and Y be two Kj-free graphs. If both of
them are non-bipartite, then for any endomorphism f of X + Y, either
f(X) C X and £(Y) C Y, or f(X) CY and f(¥) C X.

2 Main results

Recall that End-regular bipartite graphs are characterized in [15] and End-
regular joins of bipartite graphs are determined in [8]. In this section,
we shall characterize the End-completely-regular and End-inverse joins of
bipartite graphs.

Theorem 2.1 Let X and Y be two graphs. If X +Y is End-completely-
regular, then both X and Y are End-completely-regular.

Proof Since X+Y is End-completely-regular, X +Y is End-regular. By
Lemma 1.3, both X and Y are End-regular. To show X is End-completely-
regular, let f € End(X). By Lemma 1.1, we only need to prove that f|;,
is an automorphism of Iy.

Now we define a mapping F from X + Y to itself by

f(z), if zeV(X),
F(“)={x,z :fzeva’).

Then it is easy to check that F € End(X +Y). Since X + Y is End-
completely-regular, by Lemma 1.1, F|;, € Aut(Ir). Note that F(z) =
f(z) € V(X) for any z € V(z). Then F|;, € Aut(ly). It follows from
Fl;, = fl1, that f|;, € Aut(l;). By Lemma 1.1, f is completely regular.
Hence X is End-completely-regular. A similar argument will show that Y’
is End-completely-regular.
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The following example shows that X and Y being End-completely-
regular may not yield that X + Y is End-completely-regular.

Example 2.2 Let X and Y be two graphs with V(X) = {z, 2.},
V(Y) = {y1,42} and E(X) = E(Y) = ¢. By Lemma 1.2, X and Y are
End-completely-regular. It is easy to see that X + Y = C,;. By Lemma
1.2, it is not End-completely-regular.

In the following, we give some sufficient conditions for X + Y to be
End-completely-regular.

Lemma 2.3 Let X and Y be two End-completely-regular graphs. If
for any f € End(X +Y), f(X) C X and f(Y) C VY, then X +Y is
End-completely-regular.

Proof Since X and Y are End-completely-regular, X and Y are End-
regular. By Lemma 1.4, X +Y is End-regular.

Let f € End(X +Y). Denote fi; = f|x and f2 = f|y. Since f(X)C X
and f(Y) C Y, fi € End(X) and fo € End(Y). Note that X and Y
are End-completely-regular. Then fir, is an automorphism of Iy, and
f2|1,, is an automorphism of Iy,. Now I; = Iy, + Iy,. Hence f|;, is an
automorphism of Ir. Consequently, X + Y is End-completely-regular.

Theorem 2.4 Let X and Y be two End-completely-regular graphs.
Then

(1) If X and Y are two Kj-free non-bipartite graphs and the cores of
X and Y are not isomorphic, then X + Y is End-completely-regular.

(2) If X is a bipartite graph and Y is a K3-free non-bipartite graph,
then X +Y is End-completely-regular.

(3) If X is a K3-free non-bipartite graph and Y has at least one triangle
with x(Y) < x(X) + 1, then X +Y is End-completely-regular.

Proof (1) Let f € End(X +7Y). By Lemma 1.6, either f(X) C X
and f(Y) CY,or f(Y) € X and f(X) C Y. In the second case, f|x
is a homomorphism from X to Y and f|y is a homomorphism from Y to
X. Thus X and Y are homomorphically equivalent and so the cores of
X and Y are isomorphic. This is a contradiction. Hence f(X) € X and
f(Y)CY. By Lemma 2.3, X +Y is End-completely-regular.

(2) Let f € End(X +Y). We will prove that f(X) C X and f(Y)CY.
There are two cases.

Case 1. Assume that E(X) = ¢. First we show that f(X) C X.
Otherwise, there exists a vertex z; € V(X) such that f(z,) € Y. Since
Y is non-bipartite, Y contains an odd cycle. Thus f(Y) also has an odd
cycle. As E(X) = ¢, then f(Y) hasan edge in Y, say {f(v1), f(y2)}. Then
f(v1), f(y2), f(z) form a triangle in Y. This is a contradiction.
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Next we prove f(Y) C Y. Otherwise, there exists y; € V(X) such that
f(y1) € X. Since {y1,z} € E(X +Y) for any z € V(X), {f(v1), f(z)} €
E(X 4+Y). Note that f(y1), f(z) € V(X). Then {f(y1), f(z)} € E(X).
This is a contradiction.

Case 2. Assume that E(X) # ¢. First we show that f(X) C X. As-
sume that f(X) € X. Then either f(X) C Y, or there exist two vertices
z; and x5 in V(X) such that f(z,) € X and f(z2) € Y. In the first case,
since X contains at least one edge, f(X) contains at least one edge, say
{a,b}. Now we have that f(Y) C X. Otherwise, there exists yo € V(Y)
such that f(yo) € V(Y), then a,b, f(yo) form a triangle. This is a con-
tradiction. Hence f|y is a homomorphism from Y to X, and we have
x(Y) € x(X). Note that x(X) =2 and x(Y') > 3. This is a contradiction.
In the second case, since Y contains an odd cycle, f(Y) also contains an
odd cycle. Thus f(Y') either has an edge in X or has an edge in Y. With-
out loss of generality, suppose {f(v1), f(y2)} € E(Y) for some y;,y2 €
V(Y). Note that {f(v1), f(z2)} € E(Y) and {f(y2), f(z2)} € E(Y). Then
f(z2), f(y1), f(y2) form a triangle in Y. This is a contradiction. Hence
f(X)c X.

Next we prove that f(Y) C Y. Otherwise, there exists y; € V(Y)
such that f(y;) € V(X) and f(y:) is adjacent to every vertex of f(X).
Since f(X) contains at least one edge, X contains a triangle. This is a
contradiction. Now the assertion follows from Lemma 2.3.

(3) We show that f(Y) € X. Otherwise, f|y is a homomorphism from
Y to X. Note that any homomorphism f maps a triangle to a triangle
and Y has at least one triangle. Then X also has at least one triangle. A
contradiction. Hence either f(Y) C Y, or there exist two vertices y, and
y2 in Y such that f(y1) € Y and f(y2) € X.

In the second case, if f(X) C X, then f|x is a homomorphism from X
to itself, so x(X) = x(Iy,). Note that f(y2) is adjacent to every vertex of
I, then x(X) > x(Ix) + 1. A contradiction. If f(X) C Y, then f|x
is a homomorphism from X to Y and f(y;) is adjacent to every vertex of
Iy, thus x(Y) > x(I5,) +1 2 x(X) + 1. A contradiction. If there exist
z1,Z2 € V(X) such that f(z;) € X and f(z3) € Y, then both f(X) and
F(Y) have no edge in X, otherwise, there exists a triangle in X. This is
impossible, because X is Kj-free.

Now f(Y) C Y. If f(X) € X, then there exists x € V(X) such that
f(z) € Y and f(z) is adjacent to every vertex in V(I ). Thus we have
x(Y) < x(I),) +1 = x(Y) + 1. A contradiction. Hence f(X) C X. By
Lemma 2.3, X +Y is End-completely-regular.

The next theorem characterize the End-completely-regular joins of bi-
partite graphs.
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Theorem 2.5 Let X and Y be two bipartite graphs. Then X + Y is
End-completely-regular if and only if one of them is End-completely-regular
and the other is K or Kj.

Proof Sufficiency. It is easy to see that K + K;, K;+ K3 and Ko+ K,
are unretractive. Clearly, they are End-completely-regular. K; + P, K; +
2K,, Ky + (K3 UKg), Kz + P2, K2 + 2K, and K> + (K |J K2) are split
graphs. By Lemma 1.5, they are End-completely-regular. In the following,
we prove that K; 4+ 2K, and K> + 2K, are End-completely-regular.

1 1 2

2 3 4 6

5 3 4 5
Fig. 1: Graphs K + 2K and K, + 2K,

Let f € End(K, + 2K3). If Iy = Ky + 2K, then f € Aut(K; + 2K>3)
and so it is completely regular; If Iy # K, + 2K,, then f(2) = f(4) or
f(2) = f(5). Without loss of generality, we may suppose f(2) = f(4).
Then f(3) = f(5). Otherwise, we have [3],, = {3}. Let A = {1,4,5}.
Then the subgraph of K + 2K, induced by A is isomorphic to K3. Since
{13} € B, {£(1), /(3)} € E. Now {£(3), f(4)} = {£(3), /(2)} € E implies
that f(3) is adjacent to two vertices of f(A). Note that there is no vertex in
K1 +42K, adjacent to two vertices of a clique. This is a contradiction. Hence
in this case Iy = K3. Since K3 is unretractive, f(Iy) = Iy, by Lemma 1.1,
f is completely regular. Hence K; + 2K is End-completely-regular.

Let f € End(Ky + 2K,). If Iy = Ky + 2K, then it is completely
regular; If Iy # Ko + 2K3, then f(3) = f(8) or f(3) = f(6). Without loss
of generality, we may suppose f(3) = f(5). Then f(4) = f(6). Otherwise,
we have [4],, = {4}. Let B = {1,2,5,6}. Then the subgraph of K; + 2K,
induced by B is isomorphic to K4. Since {1,4} € F and {2,4} € E,
{f(1), f(4)} € E and {£(2), f(4)} € E. Now {£(4), (5)} = {£(4), (3)} €
E implies that f(4) is adjacent to three vertices of f(A). Note that there is
no vertex in K3+ 2K, adjacent to three vertices of a clique of order 4. This
is a contradiction. Hence in this case Iy & K. Since K, is unretractive,
f(Iy) = Iy, by Lemma 1.1, f is completely regular. Hence K, + 2K, is
End-completely-regular.

Necessity. We only need to show that X + Y is not End-completely-
regular for the following 10 cases. The main idea of the proof is that, for
each cases, we will find an endomorphism f € End(X + Y) which is not
completely regular.
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4 5 6 4 5 4 5 6
Fig. 2: Graphs P> + Ps, Py +2K; and P, + (K1 UKQ)

§ 2 3 1 2 f 2
4 5 6 7 3 4 3 4 5

Fig. 3: Graphs P, + 2K>, 2K, + 2K, and 2K, + (K, | K?)

1 2 1 2 3 4
3 4 5 6 5 6 7
Fig. 4: Graphs 2K, + 2K, and 2K, + (K; | K3)
1 2 3
N/ \ 7/
N
AN
5 6 7 8 4 5 6

Fig. 5: Graphs 2K, + 2K, and (K; U K2) + (K1 U K>)
Case (1) P, + P>
6
3

1 2 3 4 5
f—(2 4 2 1 3)
Case (3) P, + (K1 U K2)
(1234556
- 6 5 6 1 2 3

Case (4) Py + 2K

(12345
“l4a 5 41 2

Case (2) P, + 2K,
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f=(1 234567
“\45 41 2 2 3
Case (5) 2K1 + 2K,
1 2 3 4
f=<3 31 2)
case (6) 2K; + (K, |J K2)
(12345
“13 314 2
Case (7) 2K, + 2K>)
=12 5 6\
16 6 515 2

Case (8) 2K, + 2K,

w
'

(123456738
“\s56 561234
Case (9) 2Kz + (K, U K>)
(1234567
“\6 767134

Case (10) (K; U K2) + (K1 U K2)
fe 1 2 3 456
T\5 561 2 3
The proof is completed.

Next we seek the conditions for a join of bipartite graphs X +Y under
which X + Y is End-inverse.

Lemma 2.6 Let X and Y be two graphs. If X + Y is End-inverse,
then both X and Y are End-inverse.
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Proof Since X +Y is End-inverse, X + Y is End-regular. By Lemma
1.3, both X and Y are End-regular. To show X is End-inverse, we only
need to prove that the idempotents of End(X) commute.

Let f; and f; be two idempotents in End(X). Define two mappings gi
and go from V(X +Y) to itself by

fi(z), ze€V(X), _ | fa(z), zeV(X),
g1(x) = { :x:t( T € V(Y)), and  g2(z) = { a:z, ’ ie V(Y).

Then ¢, and gp are two idempotents of End(X + Y) and so g192 = g2
since X +Y is End-inverse. For any z € V(X), we have

fifo(z) = fi(f2(2)) = fi(g2(z)) = g1(g2(2)) = 9192(z) = g261(z)

= g2(91(x)) = g2(f1(2)) = fa(f1(z)) = faf1(2).

Clearly, f1f2 = faf1. Hence the idempotents of End(X) commute and so
X is End-inverse. A similar argument will show that Y is End-inverse.

Theorem 2.7 Let X and Y be two graphs. Then X +Y is End-inverse
if and only if

(1) X +Y is End-regular, and

(2) Both X and Y are End-inverse.

Proof Necessity. This follows immediately from Lemma 2.6.

Sufficiency. Since X +Y is End-regular, to show X + Y is End-inverse,
we only need to prove that the idempotents of End(X + Y) commute.

Let f be an idempotent of End(X +Y). Then f(X) C X. Otherwise,
there exists a vertex z € V(X) such that f(X) C V(Y). Since f? = f,
then f(f(z)) = f%(z) = f(z). Note that {z, f(z)} € E(X +Y), then
{f(z), f(z)} is a loop of X + Y. A contradiction. A similar argument will
show that f(Y) C V(Y).

If fi and f> are two idempotents of End(X +Y), let g1 = filx, g2
fily, ki = falx and hy = foly. Then g1,h; € Idpt(X) and g3, hs
Idpt(Y). Since both of X and Y are End-inverse, g1h1 = h1g1 and gohs
haga. Now f1folx = g1y, fafilx = h1g1, fifely = gohe and fofily
hago imply that fyfo = fof;. Consequently, X +Y is End-inverse.

1 m

In the following, we start to characterize the End-inverse joins of bipar-
tite graphs.

Lemma 2.8 Let X be a bipartite graph. Then X is End-inverse if and
only if X = K, or X = K».

Proof Sufficiency. If X = K; or X = Kj, then X is unretractive and
so End(X) is a group. Clearly, X is End-inverse.
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Necessity. Let X be a bipartite graph. Then its vertex set can he
partitioned into two disjoint non-empty subsets A and B, such that no
edge joins two vertices in the same set. We only need to show that X +Y
is not End-inverse for the following 3 cases.

Case 1. Assume X has no edge. Then End(X) = T, the full transfor-
mation semigroup on set V(X). Hence X is not End-inverse.

Case 2. Assume X contains at least two edges. Then we may denote it
by e; = {x1,22} and ez = {y1,y2}. Since e; # ez, we can suppose z; # y;.
Without loss of generality, we suppose z;,y1 € A and z2,y2 € B. Define
two mappings f; and f> from V(X) to itself by

_ I, IL‘GA, _ Y, xEAi
fi(z) = { Ty, T € B, and  fa(e) = { y2, T € B.

Then f1, f2 € Idpt(X). But fifa(z1) = 21 # y1 = fafi(x1). Thus fif2 #
faf1. Hence X is not End-inverse.

Case 3. Assume X contains only one edge e = {z1, z3} and has at least
one isolated vertex zg. Define two mappings g; and go from V(X) to itself
by

_ 21, T =T, _ 22, T=2Z¢
gi(z) = { z, others, and  gy(z) = { z, others.

Then gy, 92 € Idpt(X). But g1g2(z0) = 22 # 21 = g291(z0). Thus g1g2 #
g2g1. Hence X is not End-inverse.

Theorem 2.9 Let X and Y be two bipartite graphs. Then X +Y
is End-inverse if and only if X + Y is one of the K; + K, K; + K3 and
Ko + K.

Proof This follows directly from Theorem 2.7 and Lemma 2.8.
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