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Abstract

For a tree T, the set of leaves of T is denoted by Leaf(T), and
the subtree T — Leaf(T) is called the stem of T. We prove that if
a connected graph G either satisfies 0x41(G) > |G| — k — 1 or has
no vertex set of size k + 1 such that the distance between any two
their vertices is at least 4, then G has a spanning tree whose stem
has at most k leaves, where or+1(G) denotes the minimum degree
sum of k + 1 independent vertices of G. Moreover, we show that the
condition on ox41(G) is sharp. Also we give another similar sufficient
degree condition for a claw-free graph to have such a spanning tree.

1 Introduction

We consider simple graphs, which have neither loops nor multiple edges.
For a graph G, let V(G) and E(G) denote the set of vertices and the set of
edges of G, respectively. We write |G| for the order of G (i.e., |G| = |V(G)|).
For a vertex v of G, we denote by degg(v) the degree of v in G. Let Ng(v)
denote the neighborhood of v in G. Thus degg;(v) = |Ng(v)|. A graph
G is said to be claw-free if G has no induced subgraph isomorphic to the
complete bipartite graph K| 3.

Let T be a tree. A vertex of T with degree one is often called a leaf, and
the set of leaves of T is denoted by Leaf(T). The subtree T — Leaf(T) of
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T is called the stem of T and denoted by Stem(T). A spanning tree with
specified stem was first considered in [4].

Let k > 2 be an integer. A tree whose maximum degree at most k is
called a k-tree. Similarly, a stem whose maximum degree at most k is called
a k-stem, and a tree whose stem is a k-tree is called a tree with k-stem (see
Figure 1).

For two vertices z and y of a graph G, the distance between z and y in
G, which is the length of a shortest path connecting z and y in G, is denoted
by dg(z,y). For an integer k > 2, 0x(G) denotes the minimum degree sum
of k independent vertices of G. Furthermore for an integer s > 2, let 3(G)
denote the minimum degree sum of k vertices v;,vs,. .., of G such that
da(vi,vj) > s for any two distinct vertices v; and v;. Then

0x(G) = 03(G) and o (G) > of(G) for every integers 2 < € < m. (1)

The following theorem gives a sufficient condition using o4 (G) for a graph
G to have a spanning tree with k-stem.

Figure 1: A tree with 3-stem, which is also a tree with 6-ended stem, where
the bold lines form the stem.

Theorem 1 (Kano, Tsugaki and Yan [4]) Let k > 2 be an integer,
and let G be a connected graph. If 61+1(G) 2 |G| — k — 1, then G has
a spanning tree with k-stem.

A tree having at most k leaves is called a k-ended tree, and a stem
having at most k leaves is called a k-ended stem. A tree whose stem has
at most k leaves is called a tree with k-ended stem (see Figure 1). In [5],
Tsugaki and Zhang gave a sufficient condition using o3(G) for a graph to
have a spanning tree with k-ended stem as follows.

Theorem 2 (Tsugaki and Zhang [5]) Let G be a connected graph and
k > 2 be an integer. If 03(G) > |G| — 2k + 1, then G has a spanning tree
with k-ended stem.
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For an integer s > 2, we call a vertex set X of G an s-stable set if the
distance between each pair of distinct vertices of S is at least s. Note that
if G has no s-stable of size k, then we define 6§ (G) = oo. In this paper, we
prove the following two theorems.

Theorem 3 Let G be a connected graph and k > 2 be an integer. If G
has no 4-stable set of order k+ 1, then G has a spanning tree with k-ended
stem.

Theorem 4 Let G be a connected graph and k > 2 be an integer. If
ox+1(G) 2 |G| -k -1, (2)
then G has a spanning tree with k-ended stem.
For a claw-free graph, we obtain the following theorem.

Theorem 5 Let G be a connected claw-free graph and k > 2 be an integer.
If

i41(G) 2 |G| - 2k - 1, (3)
then G has a spanning tree with k-ended stem.

It is clear that our Theorem 4 implies Theorem 1 since a k-ended stem
is a k-stem. Notice that the condition of Theorem 1 is also best possible.
Moreover, Theorem 4 implies Theorem 2. Namely, if & = 2, then (2)
is equivalent to the condition of Theorem 2. Assume that & > 3 and
03(G) > |G| — 2k + 1. Let {v1,v2,--- ,Vk+1} be an independent set of size
k + 1 such that o441(G) = Y.5¥! degg(v;). Then

i=1
k+1 k+1
ok+1(G) = ) degg(vs) > 03(G) + ) degg(v:)

i=1 i=4

>|Gl-2%+1+k—-2=|G|—k-1.

Hence the condition of Theorem 2 implies (2).
Sufficient conditions for a graph to have a spanning k-ended tree were
obtained as follows.

Theorem 6 (Broersma and Tuinstra [2]) Let k > 2 be an integer and
G be a connected greph. If 02(G) > |G| — k + 1, then G has a spanning
k-ended tree.

Theorem 7 (Kano, Kyaw, Matsuda, Ozeki, Saito and Yamashita [3])
Let G be a connected claw-free graph and k > 2 be an integer. If o1 (G) >
|G| — k, then G has a spanning k-ended tree.
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Some other results on spanning trees can be found in a survey paper [6]
and Chapter 8 of book [1]. We conclude this section by showing that the
two conditions in Theorems 4 and 5 are sharp.

Let kK > 2 and m > 1 be integers, and let Dy, Ds,...,Dry1 be k+1
disjoint copies of the complete graph K, of order m. Let w,v1,..., V41
be k + 2 vertices not contained in Dy U Dy U --- U D;4;. Join w to all the
vertices of D; U Dy U---U D4 by edges, and join v; to all the vertices of
D; by edges for every 1 < i < k+ 1. Let G; denote the resulting graph
(see Figure 2). Then |G1] = (kK +1)m + k + 2 and

k+1
ok+1(G1) = Y degg, (vi) = (k+)m = |G1| - k = 2,
i=1
but G; has no spanning tree with k-ended stem. Hence the condition on
0k+1(G) in Theorem 4 is sharp.

Figure 2: (7 is a graph that has no spanning tree with k-ended stem and
satisfies o4+1(G1) = |G1| — k - 2,

Let £ > 2and m > 1 be integers. Let H be a copy of the complete graph
K41 with vertex set V(H) = {u1,u2,...,ur+1}, and let Dy, Da, ..., Dryy
be k + 1 disjoint copies of the complete graph K,,. We construct a graph
G, as follows: V(Gg) = V(H) uv(Dy)u---u V(Dk.H) U {’Ul, e ,vk.H}
(disjoint union). For every 1 <1 < k + 1, join u; and v; to all the vertices
of D;. Denote the resulting graph by G2 (see Figure 3). It is immediate
that |G2| = k+ 1+ (k + 1)(m + 1) and G is claw-free. Moreover,

k+1
0t41(G2) =Y _ degg, (vi) = (k+ )m = |G2| — 2k - 2.

i=1
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On the other hand, it is easy to see that G, has no spanning tree with
k-ended stem. Therefore the condition on of,, (G) in Theorem 5 is sharp.

Figure 3: G is a claw-free graph that has no spanning tree with k-ended
stem and satisfies o, (G2) = |G2| — 2k — 2.

2 Proofs of Theorems 3, 4 and 5

In order to prove Theorems 4 and 5, we needs the following proposition.

Proposition 8 Let G be a connected graph and k > 2 be an integer. As-
sume that for every spanning tree T of G such that |Leaf(Stem(T))| is
minimum, it follows that either Leaf(T) has no 4-stable set of G with size
k+1ory, gdegg(z) > |Leaf(T)|+1 for every 4-stable set S C Leaf(T)
of G with size k + 1. Then G has a spanning tree whose stem has at most
k leaves.

Proof. For convenience, we often write Stem(T') for V(Stem(T)) when no
confusion arises. Suppose that G satisfies the assumption of Proposition 8.
Choose a spanning tree T of G so that

(T1) |Leaf(Stem(T))| is minimum,
(T2) |Stem(T)| is as small as possible subject to (T1),

We may assume that |Leaf(Stem(T))| > k + 1 since otherwise T is the
desired spanning tree of G. Let z3,Z2,- - ,Zx41 be k + 1 distinct leaves of
Stem(T'). We begin with the following claim.
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Claim 1. For every z;, 1 <i < k + 1, there exists a leaf y; of T such that
v; is adjacent to z; in T and satisfies Ng(y;) C Leaf(T) U {z;}.

Let z, be a leaf of Stem(T), where 1 < a < k + 1. It is obvious that
there exists a leaf of T which is adjacent to =, in 7. Assume that every
leaf y of T adjacent to z, in T satisfies Ng(y) N (Stem(T) — {z.}) # 0.
Then for every leaf y of T adjacent to z, in T, remove the edge yz, from
T and add an edge yz of G, where z is a vertex of Ng(y) N (Stem(T) —
{z.}). Denote the resulting tree of G by T;. Then T} is a spanning tree
of G, |Leaf(Stem(T1))| < |Leaf(Stem(T))| and Stem(T,) = Stem(T) —
{za}, which contradicts the condition (T2). Therefore there exists a leaf
Yo adjacent to z, in T such that Ng(ys) N (Stem(T) — {z,}) = 0. Since
V(G) = Stem(T) U Leaf(T), the claim holds.

Claim 2. dg(y;,y;) > 4 for every 1 <4,5 < k+1 with i # j.

Let P(ya,ys) be a shortest path connecting y, and y in G, where
1< a,b<k+1anda#b Assume first that all the vertices of P(yq,ys)
are contained in Leaf(T). Then add P(y,,ys) to T and remove the edges of
T joining P(ya,ys) to Stem(T) except the edges y,z, and ypzs. Then the
resulting subgraph of G includes a unique cycle, which contains an edge e;
of Stem(T) incident with a vertex of degree at least three in Stem(T'). By
removing the edge e;, we obtain a spanning tree whose stem has a smaller
number of leaves than |Lea f(Stem(T))|. This contradicts the choice (T1).
Hence P(ya,ys) passes through a vertex s of Stem(T).

If s ¢ Stem(T) — {zq, 2}, then dg(ya,s) = 2 and dg(s,ys) > 2 by
Claim 1, and thus dg(ya, ¥s) = dc(¥a, 8)+dc (s, ys) > 4. So we may assume
that s = z, by symmetry. Namely, P(ya,¥s) = YaTa + P(Za,ys), where
P(z,,ys) is the subpath of P(y,,ys) connecting z, and y». If P(za,ys)
passes through a vertex, say t, of Stem(T) — {zs}, then dg(ya,ys) =
dG(Ya, Ta) + dg(Za,t) + dg(t,ys) > 4 by Claim 1. Thus P(za,ys) does
not pass through Stem(T) — {zs}.

Add P(z,,ys) to T and remove the edges of T joining P(xz,,ys) N
Leaf(T) to Stem(T) except ypzp. Then the resulting subgraph of G in-
cludes a unique cycle, which contains an edge e; of Stem(T) incident with
a vertex degree at least three in Stem(T). By removing the edge e;, we
obtain a spanning tree whose stem has a smaller number of leaves than
|Leaf(Stem(T))|. This contradicts the choice (T1). Hence, Claim 2 holds.

By Claim 2, we may assume that Leaf(T) satisfies the latter condition
on Leaf(T) in Proposition 8. By Claims 1 and 2, it follows that Ng(y:) N
Ng(y;) =0 for every 1 < 4,5 < k+ 1 with ¢ # j and

U Ne(y:) € (Leaf(T) = {y1, - »yk1 D) U {z1, -+ , Tkt }-
1<i<k+1
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Hence,
> degg(yi) < |Leaf(T)|.
1<i<k+1
This contradicts the latter condition on Leaf(T) in Proposition 8. Conse-
quently, the proposition is proved. O

Proof of Theorem 8. Theorem 3 follows immediately from Proposition 8.
(]

Proof of Theorem 4. By Theorem 3, we may assume that G has a 4-stable
set with size k + 1. Let S be a 4-stable set of G with size k + 1 such
that o}, ,(G) = 3. csdegg(x). Then for any two distinct vertices z and
y of S, it follows that (Ng(z) U {z}) N (Ng(y) U {y}) = 0, and by the
existence of S, there exists at least one vertex in G that is not contained
in U,es(Ne(z) U {z}). Hence

1G] > ) " INa(z) U{z} +1=0},,(G) +k+1+1.
TES

Thus by (1),
0141(G) < 0841(G) < 1G] - k- 2.

This contradicts the assumption of the theorem. Therefore Theorem 4
holds. O

Lemma 9 Let G be a connected claw-free graph, and let T be a spanning
tree of G such that |Leaf(Stem(T))| is minimum. If |Stem(T)| > 4, then
|Stem(T')| > 2|Leaf(Stem(T))|.

Proof. Assume that two vertices z; and z; of Lea f(Stem(T)) are adjacent
to a vertex z; of Stem(Stem(T)) in T. By the condition |Stem(T)| > 4,
there exists a vertex 22 of Stem(T') that is adjacent to z; in T and differ-
ent from z;, z2 and 2;. If z; and 2, are adjacent in G, then T — z;2, +
Z)22 is a spanning tree whose stem has a smaller number of leaves than
|Leaf(Stem(T))|, which is a contradiction. Hence, by symmetry, neither
Ty nor zp are adjacent to z; in G. Since G is claw-free, z; and z, are
adjacent in G. Then T — z,2; + 71z, is a spanning tree whose stem has
a smaller number of leaves than |Leaf(Stem(T))|. This is a contradic-
tion. Therefore no two vertices of Leaf(Stem(T)) are adjacent to the
same vertex of Stem(Stem(T)) in T. This implies that |Stem(Stem(T)) >
|Leaf(Stem(T))|. Consequently, we have |Stem(T)| > 2|Leaf(Stem(T))|.
(]

Proof of Theorem 5. Assume that G has no spanning tree with k-ended
stem. Let T be a spanning tree of G such that |Leaf(Stem(T))| is mini-
mum. Then |Leaf(Stem(T))| > k+1 > 3, and so |Stem(T)| > 2(k+1) by
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Lemma 9. It follows that |Leaf(T)| = |T|-|Stem(T)| = |G| —|Stem(T)| <
|G| ~ 2k — 2. Therefore, by the condition of Theorem 5 and the above in-
equality, we have 0§, (G) > |G|—-2k—1 > |Leaf(T)|+1. By Proposition 8,
G has a spanning tree with k-ended stem, a contradiction. Consequently
Theorem 5 is proved. 0O
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