Rooted General Maps on All Surfaces

Wenzhong Liu !
Department of Mathematics, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, P. R.China
E-mail: wzhliu7502@gmail.com
Yanpei Liu
Department of Mathematics, Beijing Jiaotong University, Beijing 100044, P. R. China
E-mail: ypliu@bjtu.edu.cn

Abstract In this paper, we concentratc on rooted general maps on all sur-
faces(orientable and nonorientable) without regard to genus and present the enumer-
ating equation with respect to vertices and edges, which is a Riccati’s equation. To
solve it, a new solution in continued fraction form is given. As two especial cases, the
corresponding results of rooted general maps and rooted monopole maps on all surfaces
with respect to edges regardless of genus are obtained.
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1. Introduction

Starting with Tutte’s seminal works [12-15) on the number of rooted
planar maps , the enumeration of rooted maps has been studied inten-
sively. Then, Brown (3] first counted non-planar maps in 1966. Walsh and
Lehman [16-18] had laid a groundwork in the 1970s in the field. Later,
some scholars, such as Arqués [1-2], Bender et al. [4], Gao [5], Liu [7-9],
Ren [10-11]and so on, further extended it and did some important works.
On the object, the three main approaches are often used as follows: the bi-
Jective, algebraic and topological approaches. Arqués [2] first employed the
continued fraction to give the expression of counting rooted general maps
on the orientable surfaces without regard to genus. In the paper, we re-
search rooted general maps on all surfaces regardless of genus and present
the enumerating equation with respect to vertices and edges, which is a
Riccati’s equation. For the different equation, a new solution in continued
fraction form is given because the analytic solution cannot nearly be gotten
for some Riccati’s equation. As two especial cases, the corresponding re-
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sults of rooted general maps and rooted monopole maps on all surfaces with
respect to edges regardless of genus are derived. Furthermore, the coun-
terparts of rooted general maps on the nonorientable surfaces can easily be
derived. An equation of continued fraction is additionally obtained.

The article begins with some definitions. Terminologies without de-
scription can be seen in [7-9].

A map is a connected topological graph cellularly embedded on a sur-
face. A map is rooted if a vertex and an edge with a direction along one
side of it are distinguished. In this paper, maps are always rooted. For a
map M, the root, the root-vertex, the root-edge and the root-face of it are
denoted by (M) , v.(M) , e.(M) and f.(M), respectively.

A surface here is a compact close 2- manifolds. An orientable (nonori-
entable) surface of genus g is homeomorphic to a sphere with g handles (
crosscaps ) (i.e. g=1- %x or § = 2—x, where x is Euler characteristic).

An edge is called double if it belongs to only one face in a map, or is
called single.

Let M be the set of all general maps on all surfaces without regard
to genus and its enumerating function f(z,y) with respect to vertices and
edges is defined as follows:

flzy) = 3 am(t0yn0
Mem
where m(M) and n(M) are the numbers of vertices and edges of M, re-
spectively.
Let F(y) = f(1,y), i.e. the enumerating function of M with respect to
edges:

Fly)= ) y"™
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Let T be the set of all monopole maps(i.e. maps with only one vertex)
on all surfaces regardless of genus and its enumerating function T'(y) with
respect to edges is described as:

T =y v

MeT
where n(M) is the number of edges of M.

2. Enumerating Equations

Let M be the set of all general maps on all surfaces without regard to
genus and M is partitioned to three parts :

M =My + Mz + Ms (2.1)
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where M is consisted of only one vertex-map(i.e. a map without edges)

and
Mo ={M| M e M, e.(M) is a cut-edge } ;

Mz ={M| M e M, e.(M) is not a cut —edge }.

According to the definition of M, the contribution f(z,y) of M to
f(z,y) is:

filz,y)=x'y’ =z (2.2)

Lemma 1 Let Mcos = {M —e.(M)] M € Mz}. Then Mios =
M x M.

Proof For M € My, according to the definition of M3, the root-edge
e-(M) of M is a cut-edge and its deletion disconnects M, into two maps
in M. Thus M — e, (M) e M x M.

conversely, for any (M, M) € M x M ,the map M can be constructed
by adding a new edge as the root-edge e,(M) of M from the root—vertex
of M, to that of M>, and choosing the root-vertex of M; as the new root-
vertex of M. Then M € M and M — e, (M) = (M, Mz). So (M}, Ms) €
Mcas.

From Lemma 1, the contribution fa(z,y) of My to f(z,y) is as follows:

Fa(z,9) = yf(z,y) (2.3)

Lemma 2 Let Mc35 = {M—e,.(M)| M € Ms}. Then M 35 = M.

Proof For any M € M3, M — e.(M) is also a map in M from the
definition M3.

On the other hand, for any map M € M, one can construct the map
M € M from M by adding a trivial edge or twisted edge as the new
root-edge e, (M) such that M’ € M3 described as follows. The new edge
may be added from the root-vertex of M to each of vertices on all face
boundaries of M. Further, considering that each double edge on the same
boundary results two cases on its two different sides, and two loops accident

to the root-vertex of M occur, there are 2(2n(M )+ 1) places where the
other end of the new root-edge e.(M’) can be attached altogether.

From Lemma 2, the contribution f3(z,y) of M3 to f(z,y) can be de-
rived:
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fala,g) =y Y 2(2n(M) + 1)z My = 2y f(z,y) + 4y

2 af(l‘, y)
MeM Oy

(2.4)
Theorem 1 The enumerating function f(z,y) of M with respect to
vertices and edges satisfies the following equation:

(2.5)

fla,y) = z +yf(,y) + 2f(z,9) + 4° —wgf s

Proof From (2.1), (2.2), (2.3) and (2.4), (2.5) can be deduced.

Corollary 1  The enumerating function F(y) of M with respect to
edges satisfies the following equation:

F(y) =1+ yF) + P + 4 5 (26)

Proof Let x =1 in (2.5), then (2.6) can be gotten.

Corollary 2  The enumerating function T(y) of T with respect to
edges satisfies the following equation:

ﬂw—1+%nm+@2ﬂ” (2.7)

Proof Considering the enumerating function T'(y) is the coefficient of
zlin f(z,y), T(y) = [L::y_)] . and (2.7) is obtained from (2.5).
Ir=

3. Solutions of Enumerating Equations

3.1 Solutions in continued fractions
In the subsection, we give new form solutions of (2.5), (2.6)and (2.7),
which are continued fractions.

Theorem 2 The enumerating function f(z,y) of M with respect to
vertices and edges can be expressed in continued fraction form:
z
(z+2)y
(z+4)y
(z+6)y
1—---

flz,y) = (3.1)

1-—
1-—-
1-—-
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Proof First, we defined a function sequence (fk(fb',y)) e>1

(1) fi(z,y) = f(z,y), i.e. the enumerating function of M;
(2) For any positive integer k, we construct so recurrence relation be-
tween fir(z,y) and fit41(z,y):
z+2(k-1)
fe(z,y) = T= v/t (@) (ak)
Claim: For every positive integer k, fi(z,y) is a solution of the fol-
lowing equation:

fule9) =2+ 20k = 1)+ ufEle0) + 2hule) + 4P 22D oy

which can be proved by an induce means as follows:

(i) For k = 1, this is (2.5);

(ii) Let k£ be a positive integer and suppose that fi(z,y) is a solution
of (bx), i.e.

fe(z,y) = = +2(k — 1) + yfi(z,y) + 2yfi(z,y) + 4y2—afkg’ >

For k 4 1, one can substitute fi(z,y) by its expression with respect to
fk'l'l (x1 y) from (ak)a then

z+2k-1) _ T+2k—1) 12 z+2(k—1)
1—yfiri(zy) =+ 2k 1)+y[1—yfk+1(fc,y)] T fn ()

Oy L1 -~ yfrya(z,y)

0 )
Thus, fi+1(2,y) =z + 2k + yf2, (2, y) + 2y fitr (2, 9) + 4y2_&.é_;;(g_y_)

This concludes the proof of the claim.
Now, (3.1) can be deduced by an iterating process as follows:

z x
flzy) = fl(m’y)=1-yf2(:z:,y)=1_ @+2y
l_fS(xvy)
= 1 (z +2)y
1 (z+4)y
1_(a:+6)y

1—---
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Corollary 3 The enumerating function F(y) of M with respect to
edges can be ezpressed in continued fraction form:

1
P(y) = 5 (32)
R T
-
1—--.

Proof Let z =1 in (3.1), then (3.2) can be obtained.

Corollary 4 The enumerating function T(y) of T with respect to
edges can be ezpressed in continued fraction form:

1

T(y) = = (33)
1- ) Iy
- - %
1—-.-.
Proof Since T'(y) = [&zﬂ] _ (3.3) is easily derived from (3.1).

3.2 Explicit enumeration formula
In the subsection, we obtain an explicit enumeration formula for Equa-
tion (2.7).

Theorem 8 The enumerating function T(y) of T with respect to edges
has the ezxplicit formula as follows:

— (2n)!
T(y)=) {2n) n!) y". (3.4)
n=0
Proof According to the definition of T'(y), let
T =To+Twy+Toy? + - +Tay" +--- (¥

where T;(i > 0) is an integer.
Taking (*) into Equation (2.7), one can deduce the following recursive

relation:
To=1 (i);
Ty =214 (ii);

Tp=(dn—-Ta_y (n>1) (iii).

Then we have

Tn=1"[(4i—2)=-2-§%":—_-1-;!)—! (n>1).

i=1
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Together with (), we can obtain
T@y) =

According to Theorem 3 and Corollary 4, we additionally obtain an
equation of continued fraction as follows:

1 2n)!
T(y) = = &,
1—1—T n=0
_I_Ty_
1—-..

Remark : For three numbers of rooted general maps on all surfaces,
the orientable surfaces and the nonorientable surfaces, the third one is
clear as long as any two of three numbers are known. From Theorem 2 and
[2, Theorem 3], the corresponding results of rooted general maps on the
nonorientable surfaces can easily be deduced.

4. Number Tables

In the section, we give two number tables. In the first one, it is computed
that the first terms of f(z,y) with respect to vertices and edges according
to (3.1). In the second one, we calculate the first terms of F(y) and T'(y)
with respect to edges from (3.2) and (3.3)(or (3.4)), respectively.
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y/x 1 2 3 4 5
0 1 - * * *
1 2 1 * * *
2 12 10 2 * *
3 120 128 44 5 *
4 1680 2080 936 186 14
5 3024 41424 22000 5800 772
6 665280 981408 584000 183600 32712
7 17297280 27022848 17487232 6210176 1328880
8 518918400 848070080 586447104 227960960 55418144
9 17643225600 30001455360 21841559040 9109883776 2435456448
10 670442572800 1178093836800 896081597952 395684768000 113945118592
Table 1: The number of general maps regardless of genus, with respect to vertices(x) and
edges(y)



y T(y) F(y)

0 1 1

1 2 3

2 12 24

3 120 297

4 1680 4896

5 30240 100278

6 665280 2450304

7 17297280 6953397

8 518918400 2247492096
9 17643225600 81528066378
10 670442572800 3280382613504

Table 2: The numbers of monopole maps and general maps regardless of genus, with respect

to edges(y)
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