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Abstract

A 2-semiarc is a pointset Sz with the property that the number of
tangent lines to Sz at each of its points is two. Using some theoretical
results and computer aided search, the complete classification of 2-
semiarcs in PG(2, q) is given for g < 7, the spectrum of their sizes is
determined for g < 9, and some results about the existence are proven
for ¢ = 11 and ¢ = 13. For several sizes of 2-semiarcs in PG(2,q),
¢ < 7, classification results have been obtained by theoretical proofs.

1 Introduction

Ovals, k-arcs, and semiovals of finite projective planes are not only
interesting geometric structures, but they have important applications to
coding theory and cryptography, as well. For details about these objects
we refer the reader to (11, 28,29, 31].

Semiarcs are a natural generalization of arcs. Let II; be a projective
plane of order ¢q. A non-empty pointset S, C II, is called a t-semiarc if
for every point P € &, there exist exactly t lines £;,£s,...£4, such that
S¢Né; = {P} for i =1,2,...,t. These lines are called the tangents to S,
at P. If a line £ meets S; in 2,3 or k points (where k > 3), then ¢ is called
a bisecant, trisecant or k-secant of Sy, respectively. The classical examples
of semiarcs are the semiovals (t = 1) and the subplanes (t = g — m, where
m is the order of the subplane).

Semiarcs are closely connected to other combinatorial structures, too.
Without the pursuit of wholeness we mention (r, 1)-designs and configura-
tions.
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Definition 1.1. A finite point-line incidence structure is called linear space
if each line contains at least two points and any two distinct points are on
exactly one line. If there are ezactly v lines through each point, then the
linear space is called (r,1)-design.

A (vy,bi)-configuration is a finite point-line incidence structure with
the following properties:

e There are v points and b lines.

o There are r lines through each point and there are k points on each
line.

e Two distinct lines intersect each other at most once and two distinct
points are connected by at most one line.

Ifv =b and r = k, then the configuration is called symmetric (vx)-con-
figuration.

The following proposition gives a natural correspondence between emn-
beddable (r,1)-designs and semiarcs in finite planes. Its proof is straight-
forward.

Proposition 1.2. IfS; is a t-semiarc in Iy, then the points of S; and the
secants of S; form a (g +1 —t,1)-design. If an (r,1)-design is embeddable
into I, then its points form a (¢ + 1 — r)-semiarc.

Gropp investigated (r,1)-designs with small r [26,27]. He constructed
all (7, 1)-designs with at most 12 points, his list contains 974 eletnents, most
of them are configurations. His proof is computer assisted and he has not
considered the embeddability of these designs.

In the last years the interest and research on the fundamental problein
of determining the spectrum of the values for which there exists a given
subconfiguration of points in PG{n, q) have increased considerably (see for
example (2,4-10,18-20,22,23,28,30,39,40,45]). In particular semiovals were
investigated by several authors. Among others Lisonek [34] determined the
spectrum of sizes of semiovals by exhaustive computer search for ¢ < 9, ¢
odd, Bartoli [3], Ranson and Dover (21,41], Kiss, Marcugini and Pambianco
[32,33], and Nakagawa and Suetake [38,44] gave characterization theoremns
for semiovals in planes of small order.

Because of the huge diversity of semiarcs, their complete classification
seems out of reach. The aim of this paper is to investigate and characterize
2-semiarcs in projective planes of order ¢ < 13. Throughout the paper II,
denotes an arbitrary projective plane of order ¢, while PG(2,q) denotes
the desarguesian projective plane over the field of g elements. It is well-
known, that if ¢ = 2, 3,4,5,7 or 8, then each projective plane of order g is
isomorphic to PG(2, q).
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The paper is organized as follows. In Section 2 we give lower and
upper bounds and prove some number theoretical conditions on the sizes
of 2-semiarcs in II,. Using these propositions and the results of Gropp, in
Section 3 the complete characterization is provided for ¢ < 5. In Section 4
we consider 2-semiarcs in PG(2,7). A computer-free description is given
for semiarcs having sizes at most 12, and a computer-assisted proof shows
that there are no 2-semiarcs in the plane with |S;| > 13. In Section 5 the
description of the algorithm used to obtain the classification of 2-semiarcs
is given. Finally in Section 6 results about the existence of 2-semiarcs in
PG(2,q) for q € {8,9,11,13} are given. The computer search is supported
by the structural constraints proven in Section 2.

2 Some conditions on the sizes of 2-semiarcs

It follows from the definition that each t-semiarc in I1, satisfies ¢t < g+1.
If t is close to this upper bound, then we can easily classify the ¢-semiarcs.
The following proposition was proved by Csajbék and Kiss [17].

Proposition 2.1. Let S; be a t-semiarc in I1,. The following properties
hold:

o ift=q+1, then S; is a single point,

o ift =g, then S, is a subset of a line, and vice versa any subset of a
line containing at least two points is a q-semiarc,

o ift=q—1, then S, is a set of three non-collinear points.

O

A semiarc cannot contain large collinear subsets. If S, is a t-semiarc in
II;, S; is not contained in a line and it has a k-secant, then k < g+ 1 —¢
obviously holds. Semiarcs with long secants were investigated by Csajbék.
He proved the following results; see (15, Theorems 2.4 and 4.6].

Theorem 2.2. Let S; be a t-semiarc in PG(2,q). Then the following prop-
erties hold.

e Ift <(g—1)/2, then S; has no (g + 1 — t)-secants.

o If S, has two (q — t)-secants such that the common point of these
secants is not contained in S; and ged(q,t) = ged(qg — 1,t - 1) = 1,
then S, is the union of these two (q — t)-secants.
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Bounds on the sizes of t-semiarcs were also given by Csajbdék and Kiss
[17). In the case t = 2 their result is the following.

Theorem 2.3. Let Sz be a 2-semiarc in a projective plane of order g. Then

qs|82|51+[q—(li@J.

The simplest example of a 2-semiarc of size g is a g-arc, a set of ¢ points such
that no three of them are collinear. As the following proposition shows,
there are no more examples of 2-semiarc of size g.

Proposition 2.4. Let Sy be a 2-semiarc of size q in a projective plane of
order q. Then S is an arc.

Proof. We have to prove that no three points of Sz are collinear.
Suppose that the line ¢ is a trisecant of Sp. If P is a point in £N Sy, then
|S2| = g implies that there are at least (g + 1) — (g — 2) = 3 tangents to S;
at P, contradiction. o

Theorem 2.5. In PG(2,p"), p # 2, there exists, up to collineations, a
unique 2-semiarc Sy of size ¢ = p*. Iis stabilizer group has size hq(q — 1).

Proof. S, is an arc of size ¢ = p". It is known, that in PG(2, q) each g-arc is
contained in a (g + 1)-arc, and if ¢ is odd, then by the Theorem of Segre, it
is contained in an irreducible conic [43]. The stabilizer of a conic is transi-
tive on its points, hence all the g-point subsets of the conic are projectively
equivalent. Since the number of conics is ¢%(¢% +¢+1)(g— 1) and each has
q+1 subsets of size g, there exist exactly ¢%(¢®>+q+1)(g—1)(g+1) different

2-semiarcs of size q. Thus the stabilizer group has size & J:ﬂ‘)(&{)ll) @D =
hq(q —1). o

If T1, contains a 2-semiarc whose size is close to the lower bound g, then
the order of the plane must satisfy some number theoretical conditions.

Proposition 2.6. Let Sy be a 2-semiarc of size ¢+ 1 in a projective plane
of order q. Then g + 1 is divisible by 3.

Proof. Let P be any point of S3. The total number of lines through P is
g+ 1, and two of themn are tangents to S;. The remaining ¢ points of S
are distributed among the ¢ — 1 secants through P. Hence there are g — 2
bisecants and one trisecant through P. Thus each point of S lies on exactly
one trisecant, hence |Sz| is divisible by 3. o

Proposition 2.7. Let S; be a 2-semiarc of size g+ 2 in a projective plane
of order q. Then there exist integers 0 < a and 0 < B # 1 such that
g+2=4da+ 385
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Proof. Let P be any point of S;. The total number of lines through P is
g+ 1, two of them are tangents to Sp. The remaining ¢+ 1 points of S; are
distributed among the g — 1 secants through P. Hence there are either two
trisecants and g — 3 bisecants, or one 4-secant and q — 2 bisecants through
P. Thus each point lies on either two trisecants or one 4-secant. Let 73
be the set of points lying on two trisecants. Then it is a configuration
(v2,k3), where v = |T3| and, by (25, Theorem 3.1}, |T3| = 38, with 8 # 1.
Let 73 be the set of points lying on one 4-secant, then |73] = 4. Then
g+2=4a+ 38, witha,8>0and 8 #1. m]

3 2-semiarcs in small planes

The classification of 2-semiarcs in the cases ¢ = 2 and ¢ = 3 follows
from Proposition 2.1.

Theorem 3.1.
o InPG(2,2) each 2-semiarc S; consists of two or three collinear points.
e In PG(2,3) each 2-semiarc S, is a set of three non-collinear points.

If ¢ = 4, then 2-semiarcs correspond to (3, 1)-designs by Proposition
1.2. Gropp [26, Table 1] proved that there are three such designs, they
cousist of 4, 6 and 7 points, respectively. He also gave a detailed combi-
natorial description of these objets. We show that each of these designs is
embeddable into PG(2,4).

Theorem 3.2. In PG(2,4) there exist three projectively non-equivalent
2-semiarcs.

o |S3| = 4, four points in general position.
o |So| = 6, the vertices of a complete quadrilateral.
® |S2| =7, the points of a subplane of order 2.

Proof. It is easy to verify (without applying Gropp’s results), that
there are only three possible sizes of a 2-semiarc. Theoremn 2.3 gives

4< |8 LT,

From Proposition 2.6 we get {Sa| # 5, because ¢ + 1 = 5 is not divisible by
3. Hence |S;| € {4,6,7}.

The case |S3| = 4 follows from Proposition 2.4. The combinatorial
description of Gropp gives that if |S;| = 6, then there are two trisecants
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and one bisecant through each point, hence the design corresponds to the
six vertices of a complete quadrilateral and it is obviously embeddable into
PG(2,4).

If |Sa| = 7, then according to Gropp, the design is a (73)-configuration.
In other words this is the Fano plane PG(2,2), which is embeddable into
PG(2,4). O

Table 1: Description of the three 2-semiarcs in PG(2, 4)

I |S2| To | T1 l T2 | T3 G
4 7 8 6 0 Zg X S4
6 2112 3] 4 Zgy x Sy
7 10 ]14] 0 | 7 | PSL(3,2) x Z

Table 1 contains the non-equivalent 2-semiarcs in PG(2,4), the num-
ber of their i-secants, z;, and the description of the stabilizer groups in
PI'L(3,4).

If ¢ = 5, then 2-semiarcs correspond to (4, 1)-designs by Proposition
1.2. Gropp [26, Table 1] proved that there are eight such designs with at
most 12 points. We show that only three of them are embeddable into
PG(2,5).

Theorem 3.3. In PG(2,5) there exist three projectively non-equivalent
2-semiarcs.

e |Sz| = 5, five points of a conic.
¢ |Sy| = 6, the union of two trisecants.
o |S2| =9, the projective triangle.

Proof. It is easy to see that there are only four possible sizes of a
2-semiarc. Theorem 2.3 gives 5 < |S3] € 9. From Proposition 2.7 we get
|S2| # 7, because g + 2 = 7 cannot be written as 4« + 38 with 8 # 1.

First we prove that |S;| # 8. Suppose to the contrary that S is a 2-sem-
iarc with 8 points. Gropp proved that there is only one (4,1)-design with
eight points, the symmetric (83)-configuration (also called Mdhius-Kantor
configuration). But it was proven by Abdul-Elah, Al-Dhahir and Jung-
nickel [1] that this configuration cannot be embedded into PG(2, 5). Hence
|32| € {5,6,9}.

The case |S2| = 5 follows from Proposition 2.4.

In the case |Sz| = 6, if P € S; is a point, then there are 6 — 2 = 4
nou-tangents through P, hence S; has no 4-secants. Let a be the number



of trisecants, and b be the number of bisecants through P. Then we get
a+b=4and 2a+b=25, hencea =1 and b = 3. So S, is the union of two
trisecants, £; and 5. This is the second case of Theorem 2.2.

Finally consider the case |Sz| = 9. Gropp proved that there are two
(4,1)-designs with nine points. One of them is the affine plane of order
3. But AG(2,3) cannot be embedded into PG(2,q) if ¢ = 2 (mod 3) (see
e.g. [12]).

The points of the other (4,1)-design are of two types: (i) the vertices
of a triangle 7, (ii) the points on exactly one side of 7, two points on
each side. If a point is of type (i), then it is on two 4-secants and on two
bisecants; if a point is of type (ii), then it is on one 4-secant and hence on
two trisecants and on one bisecant. Hence S; has three 4-secants, 6-2/3 = 4
trisecants and (3-2+6-1)/2 = 6 bisecants. S; also has 9-2 = 18 tangents,
so S is a blocking set because 3 + 4 + 6 + 18 = 31 equals to the total
number of lines in PG(2,5). This blocking set has cardinality 3(g + 1)/2,
hence by a theorem of Lovész and Schrijver [35] it is a projective triangle.

A possible embedding into PG(2,5) is the following. The vertices of
7: {1:0:0),(00:1:0),(0:0: 1)}, the points on the sides of T
{(1:1:0),(4:1:0),(1:0:1),(4:0:1),(0:1:1),(0:4:1)}. o

Table 2: Description of the three 2-semiarcs in PG(2, 5)

|So] {Zo | 21 [ 22 | 23 | 74 G|
5 1110110 O | 0 | Zs xZy4
6 8121912 (|0 Dy
9 01186 | 4|3 Sy

Table 2 contains the non-equivalent 2-semiarcs in PG(2, 5), the num-
ber of their i-secants, x;, and the description of the stabilizer groups in
PGL(3,5).

4 2-semiarcs in PG(2,7)

The number of (6, 1)-designs with at most 12 points is 47.

Instead of considering the list of Gropp [26], we give a geometric char-
acterization of the embeddable designs and we prove that there exist 25
non-equivalent 2-semiarcs in PG(2,7). First consider the long secants of
the semiarcs. If ¢ = 7 and ¢t = 2, then Theorem 2.2 gives the following
corollary.



Corollary 4.1. Let S; be a 2-semiarc in PG(2,7). Then Sy has no 6-se-
cants. If Sy has two 5-secants such that the common point of these secants
is not contained in Sp, then Sy is the union of these two 5-secants.

If the common point of the long secants belongs to Sz, then the size of the
semiarc cannot be small.

Proposition 4.2. Let S; be a 2-semiarc in PG(2,7). If So has two 5-se-
cants such that the common point of these secants is contained in Sy, then
|82| > 12.

Proof. Let £; and ¢5 be the 5-secants and let P € £, N¢3. Then P € S,
implies that there are six secants of S, through P. Hence S; \ (¢; U42) must
contain at least four points. So |S;| > 9 + 4 = 13 holds. o

Theorem 4.3. In PG(2,7) there are nine combinatorially non-equivalent
2-semiarcs (there are projectively non-equivalent subclasses in some combi-
natorial classes).

o |So| = 7, seven points of a conic.
o |S2| =9, there are two types,

1. nine vertices of a 3 X 3 grid,

2. the siz vertices of two triangles Ty and Ta, and the three points
of intersections of the corresponding sides of Ty and Ts.

o |S2| = 10, there are two types,

1. the union of two 5-secants,

2. the points of a 103 configuration.
e |S;| = 11, then the semiarc has no 5-secant. There are two types,

1. four 4-secants and four trisecants,

2. one 4-secant and ten trisecants.

o |Sa| = 12, then it has three 4-secants and these lines form a triangle
T. There are two types,

1. two vertices of T belong to Sa,
2. three vertices of T belong to S,.
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Proof. Theorem 2.3 gives 7 < |S2| < 15. Let s be the number of
points of Sy, let £ = {¢1,8s,...,857} be the set of lines of PG(2,7) and
let ¢; = |S2 N¢;| for i = 1,2,...,57. If we count in two different ways the
number of incident point-line pairs (P, ¢;) where ¢; € £ and P € S;, and
the ordered triples (P, P,,£;) where £; € £ and the distinct points P; and
P, are in S, N ¢;, then we get

57 57
Zc,- =8s and Zci(ci -1)=s(s—-1).
i=1 i=1
Hence
57
Z c? =82+ 7s.
=1
We may assumne without loss of generality that the lines ¢sg_2s, £50_25, . . . ,

£57 are the tangents to S, for these lines ¢; = 1. If we subtract these values,
then we get

57—2s 57—2s
Z ¢; =6s and Z c,?=sz+5s. (1)
i=1 i=1

It follows from Corollary 4.1 that if k > 6, then S; has no k-secant. Let
z; be the number of i-secants of S for ¢ =0,1,...,5. Then

57—-2s
Z (ci - 2)(ci - 3) = 6zo + 224 + 6z5
i=1
and
57—2s
Z (c; — 3)(e;i — 4) = 12z + 2x5 + 215.
i=1

On the other hand, Equations (1) give

57-2s 57-2s
Y (ci—2)(ci—3) = Z(c-sc,+s
i=1

=35%+55—5.6s + 6(57 — 25) = 5% — 375 + 342

and
57—2s 57-2s

Z (ci —3)(c; —4) = Z‘ (¢ —7c; +12) =

=5%+55— 765+ 12(57 — 2s) = s® — 61s + 684.

443



Hence
620+274+6z5 = s2—37s+342 and 12xp+2z2+275 = s2—615+684. (2)
First we prove the non-existence parts of the theorem. From Proposition

2.6 we get |Sa| # 8, because ¢ + 1 = 8 is not divisible by 3.
Suppose, that s = 15. Then Equations (1) give

27 27
S ei=90 and )} =300.
i=1 i=1

Applying the inequality between the arithmetic and quadratic means we

get

90 Y [Zi¢_ [300_10

27 21 ~ 27 V21 3°
Thus equality holds, hence ¢; = c3 = ... = cg7. But 90/27 is not an integer,
contradiction.

Now suppose, that s = 14. Then Equations (2) give
3zp+x4+31z5 =10 and 6zx9 +x2 + x5 = 13.

Elementary counting shows that there are only nine possibilities for the

numnbers zg, 71, ..., Ts. These are the following.
zo [z1 [ zo |23 | 24 | T5 |
2 1281 11221410
1 (28] 7 (14710
0 (28[13]6 (10} O
2 12810 (251 1
1 |128(6 (17| 4] 1
02811219 (71
1 (28} 5120|112
028711 ]12] 4| 2
0 (2810115 1| 3

Now suppose, that s = 13. Then Equations (2) give
319+ 14+ 325 =15 and 6z + z2 + z5 = 30.

Elementary counting shows that there are only twelve possibilities for the
numbers g, Ty, ...,Zs. These are as follows.



BT
51261 0|26 0 0
4266|1830
312612101 6 0
2 |26 |18 2|90
4 265 |21[0] 1
326 (11]13[ 3| 1
2 |26 17| 5| 6 | 1
3 126]10(16] 0 2
2 {26 16| 8 3 2
1[26]22[0]6] 2
2 [26[15]11| 0| 3
1 [26[21| 3|33

In these cases an exhaustive computer search shows that there are no
2-semiarcs of sizes 14 and 13 in PG(2,7).

Now consider the existence parts. The case S| = 7 follows from Propo-
sition 2.4.

If |S3| = 9, then we can apply Proposition 2.7. As 9 = 4o + 33 implies
a =0 and B = 3, we get that there is no 4-secant of Sy and there are two
trisecants through each point of S,. Hence the total nuimnber of trisecants
is 9 x 2/3 = 6. There are two possibilities.

(i) There do not exist three trisecants such that they form a triangle
whose three vertices are in S;. Then the points of S, are the nine vertices
of a 3 x 3 grid, whose six lines are the trisecants of S;. An example for
this case is the following. The points of S; are the points of intersections
of three horizontal and three vertical lines. Their cartesian coordinates
are the following: (0,0), (1,0), (3,0), (0,1), (1,1), (3,1), (0,4), (1,4) and
(3,4).

The grid has two triples of lines. There are two possibilities in each
triples: the lines either form a triangle or they helong to a pencil. Hence
there are projectively non-isomorphic examples of this combinatorial type
(see Table 3).

(i) There exist three trisecants such that they form a triangle 7; whose
three vertices, say P;, P, and P; are in S;. In this case S; contains three
points, say Q1,Q2 and Qs from the sides of 7}, and three more points,
say R),R; and Rj3. Consider the three other trisecants of Sp. If QiQ;
were a trisecant, then it ought to contain exactly one point from the set
{R1, Rz, R3}, hence both of the remaining two trisecants would pass on
the other two R;, contradiction. So each of the remaining three trisecants
contains one point of the set {Q;,Q2,Q3}, hence two points from the set
{R1, Ry, R3}. So the points R), Ry and Rj3 form a triangle T2. An example
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for this case is the following. The homogeneous coordinates of the vertices
of Ty are (0:0:1), (0:1:0) and (1:0:0), the coordinates of the vertices
of T are (2:3:1), (3:4:1) and (5:5:1). The points of intersections of
the corresponding sides are (1:4:0), (0:1:1) and (1:0:1).

There are projectively non-isomorphic examples of this combinatorial
type, too (see Table 3).

If |S2| = 10, then first we consider the largest collinear subset of Ss.
Because of Theorem 2.2 its cardinality is at most ¢ —2 = 5. If S; has a
5-secant, then Csajbdk, Héger and Kiss (16, Proposition 2.3] proved that
S, is the union of two 5-secants.

If S, has no 5-secants, then the points of S; can be partitioned into two
subsets. Let A CS 5 be the set of points belonging to three trisecants of
Sy and let B C S3 be the set of points belonging to one trisecant and one
4-secant of Sy. If | A| = a and |B| = b, then the total number of trisecants
of Sy is (3a + b)/3, hence 3|b. Thus if b > 0, then b > 3, and no point of
S, lies on more than one 4-secant. Hence b > 0 implies |Sp| > 3 x 4 = 12,
contradiction. So S, has no 4-secant, hence it is a (103)-configuration. An
examnple for this case is the Desargues configuration.

It is known that there are ten projectively non-isomorphic (103)-config-
uration [25]. The embeddability of these configurations were investigated
by Glynn [24], who proved that one of them is not embeddable into any
pappian plane. It is also known, that the other nine can be embedded into
the classical euclidean plane [13]. Our exhaustive computer search shows
that these nine can also be embedded into PG(2, 7).

If |Sp| = 11, then it is a 2-semiarc with g + 4 points. For each point
P € S, there are ¢ — 1 secants through P, thus ¢ + 3 points of Sy are
distributed among the secants through P. It follows from Corollary 4.1
that Sy has no 6-secant. Thus the points of S; can be partitioned into four
subsets. Let A CS 5 be the set of points belonging to four trisecants of S5,
let B C S, be the set of points belonging to two trisecants and one 4-secant
of Sy, let C C S; be the set of points belonging to two 4-secants of Sz and
finally let D C S; be the set of points belonging to one trisecant and one
5-secant of Ss.

First we prove that D = §. Let |A| = a, |[B| = b, |C| = c and |D| = d.
Let s be the number of 5-secants. Then Corollary 4.1 and Proposition 4.2
imply that s < 1. Suppose that s = 1. Then we show that ¢ = 0 also holds.
The 4-secants cannot meet the 5-secant in a point of S; and the union of
two intersecting 4-secants contains 7 points, so if ¢ # 0, then Sz contains
at least 5 + 7 > 11 points, contradiction. So s = 1 implies a + b = 6.
The number of the 4-secants of S, is b/4, hence 4|b. There are only two
possibilities, either b = 0 or b = 4. In the first case a = 6, in the second
a = 2. The number of the trisecants of S; is (5 + 4a +2b)/3. If b = 0, then



this number is 5 + 4 -6 = 29 and it is not divisible by 3, contradiction.
If b = 4 then a = 2, and S, has one 5-secant, £5, one 4-secant, £, and
seven trisecants. Let S\ (€5 U¥€4) = { P, R}. Then there are four trisecants
through both P and R, hence the line PR is a trisecant. Each of the
other 2 x 3 = 6 trisecants through P or R must contain one point of Zs,
but there exists a unique trisecant at each point of ¢s. This contradiction
proves d = 0.

If d = 0, then a + b + ¢ = 11. The number of the trisecants of Ss is
(4a + 2b)/3, hence

b=a (mod3).

The numnber of the 4-secants of Sy is (b + 2¢)/4 = (22 — 2a — b) /4, hence
b=2a+2 (mod4).
Thus the Chinese Remainder Theorem gives
b=10a+6 (mod12).
We know that 0 < a,b < 11, hence if a is given, then this congruence

uniquely determines b, and also 0 < ¢ = 11 — a — b. We have the following
possibilities.

all 0|1 (23 ]4[5[6]7]|38 9 10 | 11

bif 6] 412]0]10]8([6[|4]4] 0] 10] 8
| cfs5|6[7[8[-1-{-10]-]2 - -
—Case A[ I A2 A3 A4 A5 As A7 Ag Ag AlO Au A12 J

An example for Case A; is the following. Let
C={(1:0:0),(0:1:0),(0:0:1),(1:1:0),(1:0:1)}.
The two 4—secants through (1 : 0 : 0) contain the points
(1:0:0),(0:1:0),(1:1:0),(1:5:0)

and
(1:0:0),(0:0:1),(1:0:1),(1:0:4),

respectively. The 4-secant through (0 : 0 : 1) and (0 : 1 : 0) contains the
points (0 : 1 :1),(0:1:5) € B. The 4-secant through (1 : 1 : 0) and
(1:0:1) contains the points (1:3:5),(1:2:6) € B.
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An example for Case Ag is the following. Let
(1:0:00e A and B={(0:1:0),(0:0:1),(0:1:1),(0:1:3)}.
The four 3—secants through (1 : 0: 0) contain the points
{(1:0:0),(0:1:0),(1:2:2)}, {(1:0:0),(0:1:1),(1:4:4)},

{(1:0:0),(1:1:5),(1:4:6)}, {(1:0:0),(1:6:1),(1:3:4)}.

We prove that the other cases do not appear. Cases As, Ag, A7, Ag,
Aq1, and A2 cannot appear, because they do not satisfy the condition
a + b+ ¢ = 11. The number of the 4-secants of Sz is f = (b + 2¢)/4. If
b=0and ¢c = 2, then f = 1, but then obviously no point which is on
two 4-secants exists. In the Cases Az, A3 and A4 we have f = 4. But four
lines have at most 6 points of intersections, hence ¢ = 7 and ¢ = 8 are
impossible. If ¢ = 6, then the four 4-secants form a complete quadrilateral,
the sides of it contain the four points of the set B, and A consists of a single
point, say P. Then each of the four trisecants through P must contain two
points from B. But then the pigeonhole principle implies that some of these
trisecants have more than one point in common. This contradiction proves
the nonexistence of this configuration.

If |Sz| = 12, then Equations (2) give

6xp + 224 + 625 =42 and 6zg + x2 + x5 = 48.

Proposition 4.2 gives that x5 < 1, hence elementary counting shows that
there are only five possibilities for the numbers zg,1,...,25. These are
the following.

[zo [ z1 [ z2 | 23 | x4 zs || Case |
7 124 6 20| O 0 B
6 |24 (12112 3 0 Bs
5 12418 4 6 0 Bs
6 |]24]11 )15 0 1 By
5 (24| 17| 7 3 1 Bs

We show that only Case B; appears. For each point P € S; there are
six secants through P. We have to distribute 11 points among the secants
through P. It follows from Corollary 4.1 that Sz has no 6-secant. Thus the
points of Sy can be partitioned into four subsets.

If S; has a 5-secant, £, then let R = Sp \ £ and let £\ S; = {P,Q, R}.

e Case B;. In this case Sz is a (12,3)-arc. In [14] the intersection
sizes with lines of all the regular complete (12, 3)-arcs in PG(2,7) are



presented and there exist no regular complete (12, 3)-arcs in PG(2, 7)
having 20 trisecants. An exhaustive computer search among incom-
plete (12, 3)-arcs in PG(2, 7) shows that all of them have less than 20
trisecants.

Case Bj3. First we prove that no three of the 4-secants have a point
in common. There are at most two 4-secants through any point of
Sa, and if three 4-secants would meet in a point outside Sz, then the
union of these lines would contain Ss, so any other line could contain
at most three points of Sy, but the total number of 4-secants is six.
Hence through each point of Sp there are exactly two 4-secants and
one trisecant of Ss.

The six 4-secants have 6 - 5/2 = 15 points of intersection. Three
of these points are not in S,, let X and Y be two of them and let
O and FE be two points of Sy such that OX, OY, EX and EY are
4-secants of S3. There is a projectivity mapping the points of the
projective frame to {X,Y, O, E}. After this projectivity the points of
&2 are in the affine plane. If we use cartesian coordinates, we get
O = (0,0), E = (1,1), and the points P = OX N EY = (1,0) and
R=0YNEX = (0,1) belong to Sy. Let the further points of OY NS,
and OX NSy be A = (0,a), B = (0,b), and C = (¢,0), D = (d,0),
respectively. Then {a,b,¢,d} N {0,1} = 0.

Without loss of generality we may assume that the lines AC and BD
are 4-secants; their equations are X/c+Y/a=1and X/d+Y/b=1,
respectively. Then the remaining points of S must be PY N AC =
K =(l,a—a/c), PYNBD =L = (1,b-b/d), RXNAC =M =
(¢ ~c/a,1) and RX N BD = N = (d — d/b,1). Hence the lines OF
and PR are bisecants. Consider the unique trisecant through O. It
must contain one point from the set {K,L} and one point from the
set {M,N}. But none of the lines KM and LN contains O, thus
without loss of generality we may assume, that the line KN is the
trisecant through O. Hence
a 1 alc—-1) b

a— — =

c"d-§ T T Tap-n ®)

In the same way we get that the unique trisecants through the points
P, R and E must be the lines M B, LC and DA, respectively. The
equation of the line joining the points (s,0) and (0,¢) is X/s+Y/t = 1,
thus from these collinearity conditions we get the following equations:

cla—1) b-1
a T b

(4)
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1 b Wd—1) c-1
-c'+b-—2—1 — d = - N (5)
1 1 a
2+5_1 <= d—a_l. (6)

From the last equation we get (d — 1)/d = 1/a, hence Equations (5)
and (3) give b = (2a — 1)/a and bc = 1. Finally from Equations (5)
and (4) we get ¢ = (a + 1)/a. Hence

2a—1 a+1 _
a a -

1, thus a’+a-1=0.

But this equation has no root in GF(7), so there is no semiarc of this
type in PG(2,7).

e Case B,. Each point of SoNZ is contained in two trisecants. Thus the
number of trisecants of S, through the points of SoN¢is 10. Let =5 and
z% be the number of bisecants and trisecants of R, respectively. Then
counting in two different ways the ordered triples (A, B, e) where both
A and B are points in R and e is a line incident with both of them, we
get 225 +6z5 = 42. On the other hand, each trisecant of Sz containing
a point of £ corresponds to a bisecant of R. Since the number of
trisecants of Sy is 15, the other 5 trisecants of S must be trisecants
also for R, thus =4 > 10 and z} = 5. Hence 42 = 2z% +6z§ > 20+ 30,
contradiction. So there is no semiarc of this type.

e Case Bs. There are no 4-secants through the points of £N S>. Hence
each of the three 4-secants meets R in four points. But the union of
the three 4-secants contains at least 4+ 3+ 2 = 9 distinct points and
R contains only seven points. So there is no semiarc of this type.

Thus only Case B, can appear. Now S has three 4-secants, say {1, ¢,
and ¢3. Let M be the set of points of intersections of the 4-secants. The
number of 4-secants through any point of Sz is at most two, hence there
are four possibilities.

1. IM|=1and MNS, =9,
2 M| =3and IMNS| =1,
3. IM| =3 and [MN S| =2,
4 [M]=3and [MNS| =3

An exhaustive computer search shows that there are no examples in
cases 1 and 2, and there are examples in cases 3 and 4. An example of the
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third case is the following. Let
S2Né ={(1:0:0),(1:0:4),(1:0:5),(1:0:6)},

SNl ={(1:0:0),(0:1:0),(1:5:0),(1:6:0)},
SaNéy3={(0:1:0),(0:1:2),(0:1:3),(0:1:5)},
Sz\(ferte3)={(111:1),(1:521)}.

An example of the fourth case is the following. Let

SeNéy ={(1:0:0),(0:0:1),(1:0:1),(1:0:5)},

SaNly={(1:0:0),(0:1:0),(1:2:0),(1:3:0)},
SaNé3={(0:0:1),(0:1:0),(0:1:4),(0:1:5)},
Se\ (61 UU83) ={(1:1:3),(1:1:6),(1:4:3)}.

0

Table 3 contains the projectively non-equivalent 2-semiarcs in PG(2, 7),
the number of their i-secants, z;, and the description of the stabilizer groups
in PGL(3,7). We denote the group (Z7 x Z3) x Z3 by Ga.

5 The algorithm

The algorithm used for the classification of 2-semiarcs in PG(2,q) is a
modification of the one presented in [3,37]. When possible, the search is
helped by the structural constraints proven in Section 2.

In this case the algorithm works on admissible sets, i.e. sets such that
each point lies on at least two tangent lines, instead of working on partial
solutions. In fact, the property of being a 2-semiarc is not a hereditary
feature, i.e. a feature conserved by all the subsets, so the weaker hereditary
feature of being an admissible set has been used. It is weaker in the sense
that it allows to prune very few branches of the search space with respect
to the cases when considering arcs and (k, 3)-arcs. This and the fact that
2-semiarcs are in general larger than arcs and (k, 3)-arcs make the problem
computationally harder than the ones faced in [36,37].

Note also that, in general, not all the admissible sets can be extended
to 2-semiarcs.

The exhaustive search has been feasible because projective properties
among admissible sets have been exploited to avoid obtaining too many
isomorphic copies of the same 2-semiarc and to avoid searching through
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parts of the search space isomorphic to previously searched ones.

The algorithm starts constructing a tree structure containing a repre-
sentative of each class of non-equivalent admissible sets of size less than or
equal to a fixed threshold . If the threshold ~ were equal to the actual size
of the putative 2-semiarcs, the algorithm would be orderly, that is capable
of constructing each goal configuration exactly once (42].

However, in the present case, the construction of the tree with the
threshold h equal to the size of the putative 2-semiarcs would have been
too space and time consuming. For this reason a hybrid approach has been
adopted. The obtained non-equivalent admissible sets of size A have been
extended using a backtracking algorithm trying to determine 2-semiarcs
of the desired size. In the backtracking phase, the information obtained
during the classification of the admissible sets has been further exploited
to prune the search tree. In fact the points that would have given admis-
sible sets equivalent to already obtained ones have been excluded from the
backtracking steps.

A simple parallelization technique, based on data distribution, has been
used to divide the load of the computation in a multiprocessor computer.
In our searches we used a 3.3 Ghz Intel Exacore with 16 Gb of memory.

6 Results for 8 < ¢ <13

In Table 4, the number of non-equivalent examples of 2-semiarcs in PG(2, g),
g <9, is given. The two examples of 2-semiarcs of size 8 in PG(2,8) are
obtained by deleting two points from the hyperoval (two points of the conic
or one point of the conic and the nucleus).

The following non-existence results are obvious corollaries of Proposi-
tions 2.6 and 2.7.

Corollary 6.1. In PG(2,9) there are no 2-semiarcs of size 10 or 11.

In Tables 5 and 6 the description of the stabilizer of the non-equivalent
examples of 2-semiarcs Sz in PG(2,8) and PG(2,9) is presented.

In Table 7 (resp. 8) the 2-semiarcs in PG(2,8) (resp. PG(2,9)) having
stabilizer of size larger than 16 are listed (z; indicates the number of i-
secants of S and w denotes an element satisfying the equation w3 +w?+1 =
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0 (resp. w? — 2w — 1 = 0)). We use the following notations:

Gs = Zg X Z4,
Glg =Dy x Zo,

G1s = S3 x Zs,
Gé,; = A4 X Zz,
G%4 = D4 X Zs,
G%,, = 83 X Z4,
Gag = Zg X Ss,

Gy = (Z-( ] Zs) x Zs,

Géﬁ = ((Z4 X Z4) A Z3) X Zg,
GSG = Dg X Sg,

G144 = ((Zg X Z3) X Zs) A Zg,
Gies = Z7 x (Z3 » Zg).

By our experimental results we are able to prove the following.
Theorem 6.2. In PG(2,11) there exist 2-semiarcs of size
k e {11,12,14 — 26}.
In PG(2,13) there exist 2-semiarcs of size k € {13,27 — 30}.

Note that there exists a unique 2-semiarc of size 11 (resp. 13) in
PG(2,11) (resp. PG(2,13)) and its stabilizer is (Z); x Zs) x Z2 (resp.
(Z13 x Z) x Z3), according to Theorem 2.5. We also proved by an ex-
haustive computer search that there exists a unique 2-semiarc of size 12 in
PG(2,11) and its stabilizer is Sq.
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Table 3: Classification of the 2-semiarcs in PG(2, 7)

0 Ylolaleoelejeloll |~ c|lalalalalo|ls]lslolsll]lclaolle]lole
OININ (NN INjw[NIN|ININ|ININ (N (NN |AQA[A|YWIN|IN]|N|NIN (N
0
Xy o (=2 K=l o o] o 1O o |o |O |0 |0 |Co o S |O N o |o o |o (o [« KR ]
<
| o o o |0 |o o o o O |O |0 |O | |o [= 2N R N [« Nl b — — ™M M | ™
4 O JO |Oo jOo | jo |o o O o |o [a)] [a)] (o] A | AN
Qi (||| Ol lajalala|almr|lm]la]lm P ]la]la]|T]lmlelle ]| |—=
N - [oe] o0 o0 > o] o0 o0 N 0 [Te) [ Tp] w 1o w) N Vo] 0N [To) 0 (=] [a7] o~ N (2] [N}
Sl = = = et = = |~ = = =t = |t = = [N [m ===~ [~ |~
~ | < 00 |o0 |oo jJoo |cO joo o 1 |10 |© 19 |9 |12 |© o [ Nen R Kool o N o < | oy
K — 1 — — —t - ~— N [ ] [~ (A ] [~} [AN] (2] o (4] [a] a (o] (o] N (o] o o [a\]
ol AN [To] [Te) D [Te) [Te] [Ty N N (] [~ ] [y ] (o] N (o] N o N o
|| N — [ = - = |- — et [t it [ = = e~ |~ == = |0 | O [ (0O |©
= N == C e O
vt ot W) ot ot e ) WD
OVt Mt OV N OV D= OV~ QWO M= NN~ NO|~N (O M| -
ekl R RO SRR ER -1 ERCRY Y ~ 0O~ O wn|l~on
QO Pl D M| D D] O D O D) e o~ ot vt ot fomt (D 4D |t ot
(OO W~ O |t VO~ O~ VC VOV~ OV~ VNBIC=V|~O ot O N ot o0 = O o~
=N~ PO~ OO~ O " = QO D= T N[O W
C D=V OIO =~ CO|~OM=NO|~ OO~ POt =t |t ) P D = D i |t D W)t
oo m|lronlmremlmon|~ermlmnaloo~ SRR ] PR | EPETA
o~ A QI NH IO TN OIN=C O OIN|=ITNCO =IO =M= O Q00 ~ taRkalal o R N=3 L R-N"]
S C=OlIICO~CO~OC~OC ~|OC ~|~mMmmN -~ QICO ~O O ~
(= C O M NN~ I N|=INO~OIO~O OO =l Nt 7 08
CO=IC ~OICOCmOlO~O|~aNIO~CIOO0~O=CICO~0OO0~O~C =~ MNICCmOC ~
~Malc~Clc~0iO~0OlO~0O|~CcO|~CC TN~ O OO~ O
O ~O|#C OO~ O~ 00|~ O0Q0|I0O~ 0O~ O0QI0O~OmO~C~00O~0O|~0 < QC =N
i~ i~ OO QOO O~ OO~ BIO ~w O~ OlIC ~ OO~
= OO~ IV~ OOHMMIV~t P OO~ OMN=OT|~CO|~OCC|~CO~0C =~ MO ~0OlO~C
o ~wulc~vlo~vlo=vlm e afvoen ~ocojl~co|l~co
ekl aalaT (IR LR ] =N R DRI (o ) R - N ) Cmel=Cce|=DC
OmwCmrwo~n
~Oo ol ~w|O~v
S olojlojlco|lojlec|lo|lo|lo|lolo|leollr|= |~ |[a |a |
1Y | It | ISR A IS A I A | = = /R [ (R I = [P [P [/ I e | i I v | pa R ()

458



Table 4: Number of classes of the 2-semiarcs in PG(2,9), ¢ < 9

IJ Size | # non-equivalent examples
4 1
4 6 1
7 1
5 1
5 6 1
9 1
7 1
9 6
"o 12
11 3
12 3
8 2
9 2
10 1
11 10
8| 12 26
13 31
14 29
15 11
16 2
9 1
12 30
13 59
14 360
15 925
9] 16 1149
17 655
18 162
19 19
20 3
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Table 5: Stabilizers of the 2-semiarcs in PG(2, 8)

Size"Z; Zy Z3|Z§|Zﬁ S3 Zg Z12]|Qs Gis S4|Gé4 G%4 G42|056|Gws|
8 1 1
9 1
10 1
11 ({541
12 ||8{9(1}1 11111 111] 2
13 ]|12214|5
14 (|14 8 6 1
15512 2|1
16 1 1

Table 6: Stabilizers of the 2-semiarcs in PG(2,9)

[Size]| Z, [Z2]Z3]Z4]Z3]Z6]S3]Gs]Da[Ds[Ds]|G1i6|Gi6|G18|Sa|G24[|G36|G56| Gra4]
9 1
12 9 |16(1 3142 2 111 1
13 || 42 11 4|2
14 || 308 (48 3 1
15 || 836 {74} 3 6|2]|2 1 1
16 )|1054|73 6|11 211 1 1
17 || 583 {59 10| 1 1 1
18 || 126 {22]| 3 3 4 1 1|1 1
19 [ 10 |5 2 2
20 2 1
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Table 7: List of the 2-semiarcs in PG(2, 8) with |G| > 16
{IS2] Sa AARAAAAKE
10011 111
8 0101 w w?w?wb 29(16/28/ 0(0]0]|0| G4z
0011w’ w wtw?
10011 11 1
8 0101 w w3 wdw 29(16{28/0 (0|0 |0|G1es
0011w’ w w4w
10010 1 1 11
9 01011 w w?w?wb 25(18(27|30|0(0|Gs
0011 ww®w!wdw?
100100 0 01111
12 010111 1 1 ww?uwdw’ 112436/ 0|0}0| 2| S,
0011 ww?w’wdww?uwduwd
10010011 1111
12 01011100 ww?wwb 13[24/30|0{60(0| G2,
0011 wuw® ww?wd w wdwb
1001001 11111
12 010111 0 ww?ww®uwb 14[24/24| 8 {3| 0|0 | GL,
00llwwSw?wbuw® 1 w Wb
100100 1 1 1111
12 010111 0 w w w?w®w® 14|24|24|8{3|0|0| G},
0011 wwd w?wtwdwdwdw?
1001000 0111111
14] 0101111 1 0 w?uw®uwdw’uw® [6](28[25/12(0|0(2|G%,
00111lww?wlw?2w? wwlws 0
100101 1111111111
16(01011 0 1 ww w w?w?wiw!wsws|5(32(0[32/4[0]0]GL,
0011 ww?w?01 w?w?wdw wdwwd
100101 1 111111111
16/01011 0 0 1 www?w?w®wdwdw|5(32(0(32/4{0]0|Ck
001 1lww?wSw? 01l w?w’ 1 wbwtwd
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Table 8: List of the 2-semiarcs in PG(2,9) with |G| > 16
[Sa] S, Loll11€21€3(24(25 G,
100111111
9 0101 w 2 wdwbw’ 37(18{36/ 0| 0(0]G144
0011w® ww?w w?
100100 1 1 1 111
12 010111 1 wwd 2 wbub 24{24/36| 4| 3| 0| G3,
00llwuw? P w wluwd® w w
1001011 1 1111
12 010110 w w?2w32 2 WS 25(24(30|12|0|0] S4
0011lw2w wwPlw?w
100100 1 11111
12 010111 0 ww? 2 ww 24/24{36| 4|3 [0| GZ
001lww®w?w” ww?w’ Wb
100101 111111111
15| 010110 1 ww wPwdwuwwbw™ [16[30/15(30/0{0| S,
00l1lww wb 2w’ 1 wb wwSw” 2
1001000 11111111111
18{010111 1 0 www w wdPwdPw wbw’ w|1(36]36/9]0]/9|G1s
0011lwulwlw2w’ w?w? 1l 1 0W?
10010011111 1111111
18(01011 101 ww ww3w3w32w6w6w7 6 [36(15/22({12| 0| S,4
00l lww?luw?® 2w 0w lw 2 2
1001011 1 1111111111
1810101100 1 1 ww ww?w?2 2 2 w%|4|36[27|6(18[0 Gag
0011wlw w?w32wlw” 1 0 0w?w’w?
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