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Abstract

This paper is a contribution to the study of the automorphism
groups of 2— (v, k, 1) designs. Let D bea 2—(v,31,1) designand G <
Aut(D) be block-transitive and point-primitive. If G is unsolvable,
then Soc(G), the socle of G, is not 2Fy(q).
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1 Introduction

This paper is part of a project to classify groups and 2 — (v, k, 1) designs
where the group acts transitively on the blocks of the design. A 2— (v, k,1)
design D = (P, B) is a pair consisting of a finite set P of points and a
collection B of k—subsets of P, called blocks, such that any 2-subsets of
P is contained in exactly one block. Traditionally one defined v =: |P|
and b =: |B|. Our interest is in the situation where there is a group G of
automorphisms that acts transitively on B. This implies in particular that
every block has same number % of points (where 2 < k < v). It is not
hard to see that every point lies on same number r of blocks. The numbers
v, b, k,r are known as the parameters of D.
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Let G < Aut(D) be a group of automorphisms of a 2— (v, k, 1) design D.
Then G is said to be block-transitive on D if G is transitive on B and is said
to be point-transitive ( point-primitive) on D if G is transitive (primitive)
on P. A flag of D is a pair consisting of a point and a block through that
point. Then G is flag-transitive on D if G is transitive on the set of flags.
By a theorem of Block (see [1]) our block-transitive automorphism group
G will be transitive also on points.

This article is a contribution to the study of the automorphism groups
of 2 — (v,k,1) designs. The classification of block-transitive 2 — (v,3,1)
designs was completed about thirty years ago (see {2]). In (3] Camina
and Siemons classified 2 — (v,4,1) designs with a block-transitive, solv-
able group of automorphisms. Li classified 2 — (v, 4, 1) designs admitting a
block-transitive, unsolvable group of automorphisms (see [4]). Tong and Li
classified 2— (v, 5, 1) designs with a block-transitive, solvable group of auto-
morphisms in [5]. Han and Li [6] classified 2— (v, 5,1) designs with a block-
transitive, unsolvable group of automorphisms. Liu classified 2 — (v, k,1)
(where k = 6,7,8,9,10) designs with a block-transitive, solvable group of
automorphisms in [7]. In [8], Han and Ma classified 2 — (v, 11,1) designs
with a block transitive classical simple group of automorphisms. Dai and
Zhao classified 2 — (v, 13, 1) designs with block-transitive, unsolvable group
of automorphisms whose socle is Sz(g) in [9]. In this article we consider
2 — (v, 31, 1) designs with a block-transitive, unsolvable group of automor-
phisms and prove the following theorem.

Main Theorem. Let D be a 2 — (v,31,1) design, G < Aut(D) be
block-transitive and point-primitive. If G is unsolvable, then the socle of
G is not isomorphic to 2Fy(q).

Before starting the body of the article we introduce some notation. Let
D be a 2—(v,k,1) design and G be an automorphism group of D that acts
transitively on blocks. If B is a block, Gg denotes the setwise stabilizer
of B in G and G(p) is the pointwise stabilizer of B in G. In addition, GE
denotes the permutation group induced by the action of Gg on the points
of B. Then G® = Gp/G ).

The second section describes several preliminary results concerning the
Ree groups 2Fy(q) and 2 — (v, k, 1) designs. In the third section we give the
proof of the theorem.

2 Preliminary Results

The Ree groups 2F4(q) are the fixed points of a certain automorphism of the
Chevalley groups of type Fy over a finite field F = GF(q), where ¢ = 227+1
n > 0. Ree [10] showed that the groups 2F;(g) are simple if ¢ > 2, while
Tits [11) showed that 2F4(2) is not simple but possesses a simple subgroup
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of index 2. In this paper we treat that 2Fy(q) are simple, that is, ¢ > 2 and
n>1 Leta=2n+1and T =2F,(q). Then ¢ = 2° and the order of T is
a'3(g - 1)(¢* + 1)(¢* - 1)(¢® +1).
There are two important parameters of a 2— (v, k, 1) design, the number
b of blocks and the number » of all blocks through a point. In fact we have
bk = vr and bk(k — 1) = v(v—1). Thus r = (v —1)/(k — 1). We can show
that b >vandsok<r. fk=rthenv=k%—-k+1;ifr > k+1, then
v < k2
We use a result of W. Fang and H. Li [12]. Define the following con-
stants:
by = (b,v), ba = (b,v—1), ky = (k,v), and k2 = (k,v-1).
Using the basic equalities for 2 — (v, k,1) design, we get the Fang-Li
Equations:
k= klkz, b= blbz, T = bgkg, and v = blkl.
We shall state a number of basic results which will be used repeatedly
throughout the paper.

Lemma 2.1 ([13]) Let G = 2F,(q), where ¢ = 22"+ withn > 1 and M be
mazimeal in G. Then M is conjugate to one of the subgroups in the table
below.

Table 1
Strcture Oder Remarks
P =[g"]: (PSL(2,q) x (g—1)) [ ¢*(¢+1)(¢—1)? | parabolic
P, =[g":(*Ba(q) x (g—1)) | ¢*(g=1)*(¢>+1) | parabolic
SU(3,q): 2 2‘13(‘1 - 1)'
e (g+1)%(¢* —g+1)
(Zg+1 X Zg41) : GL(2,3) 48(q +1)°
(Zgwevmatr X Zoyeymgsr) 1 196] | 96(g + ev/2q +1)2 if ; ; gl’
z .12 12(q% + €v/2¢7 +
g2 +ev2q? +q+ey/Ta+1 qg+ey/2q+1)
PGU(3,q):2 2¢°(q - 1)(¢ +1)?
“Ba(g) 12 2¢°(¢* +1)(g = 1)
Bs(g) : 2 2;12“((4‘ - 1))(«;(34 - 1)) —
9 (g —1)g+1) | g=gq5 an
2Fy(g0) 0(qcﬁ,4 - 1)((§g°+ 1) d is a(;)rime

Conversely, if H is conjugate to one of these groups, then Ng(H) is
mazimal in G.

Lemma 2.2 ([14]) Let T = 2Fy(q) be an exceptional simple group of Lie
type over GF(q), and G be a group with T QG < Aut(T). Suppose that M
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is a mazimal subgroup of G not containing T. Then one of the following
holds:

(1) |M| < ¢®|G: T;

(2) TN M is a parabolic subgroup of T';

(3) TN M = L3(3).2 or Ly(25), if ¢ = 2.

Lemma 2.3 ([8]) Let G and D = (P,B) be a group and a design, and
G < Aut(D) be block-transitive, point-primitive but not flag-transitive. Let
Soc(G) =T. Then
v
IT1 < 3ITaPIG : T,

where o € P, A is the length of the longest suborbit of G on P.

Lemma 2.4 ([15]) Let G = T : (z) and act block-transitively on a 2 —
(v,k,1) design D = (P,B). Then T acts transitively on P.

3 Proof of the Main Theorem

For prove the Main Theorem, we prove the following two lemmas firstly.

Lemma 3.1 Let D be a 2 — (v,31,1) design, G be block-transitive, point-
primitive but not flag-transitive. Then v = 930bg + 1.

Proof. Since k = 31 and k; = (k,v), k1 = 1 or 31. If k; = 31, then klv,
by [14], G is flag-transitive, a contradiction. Hence we have k; = 1. Thus
v=k(k—1)by+1=1930b; + 1.

Lemma 3.2 Let D be a 2 — (v,31,1) design, G be block-transitive, point-
primitive but not flag-transitive and Soc(G) = T be even order. If G be
unsolvable, then |T| < 466|T,|%|G : T

Proof. Let B = {1,2,---,31} € B. Since G is unsolvable, then the
following possibility for the structure of Gg, the rank and subdegree of G
does not occur:

Type of Gg | Rank of G | Subdegree of G
930

Y mrenaen N
(1) 931 1, by, ba, -+ , by

Otherwise, |G?| is 0odd and hence |G| is odd, which contradicts the fact that
|T| is even. Thus A > 2b;. By Lemma 2.3 we have H%l—; <%|G:T| < ﬁ-
|G : T|. 1t follows by Lemma 3.1 that ]'TI%IF < @z-%zzﬂJG :T| < 466-|G : T|.

Now we can prove our Main Theorem stated in the Introduction.
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Suppose that Soc(G) = 2F4(q) = T. Thus 2Fy(q) < G < Aut(2Fy(q)).
We have G = T : (z), where z € Out(T). Let o(z) = m. Then m|a and
|Gl = ¢'%(q — 1)(¢® + 1)(¢* — 1)(¢® + 1). By [16], G is not flag-transitive.
Since G is point-primitive, G, is the maximal subgroup of G. By Lemma
2.2 we have |G4| < q'%|G : T|, G N T is a parabolic subgroup of T,
M = L3(3) or Ly(25), if g =2 . We shall consider three cases to prove the
Main Theorem.

Case 3.1: |Gq| < ¢'?|G: T|.

Since G is block-transitive, by Lemma 2.4, T is point-transitive. Hence
|Ga| = |Ta|m and so |T,| < q*2. It follows by Lemma 3.2 that

IT| < 466|Tx|%|G : T| < 466¢%%|G : T'| = 466¢**m.
It follows that

_ 3 4 _ 6
(¢-1)a H;EZ @ *Y « 66m < 466-a.

Since ¢4 — 1 > ¢3(q — 1), we have
(g —1)% < 466a.
Recall that a =2n+1 > 3, ¢ = 2%. We have
(2¢ - 1)% < 466a. (1)

Let f(z) = (2*—1)2—4662. Ifa > 6, then f'(a) = 2In2.(2%—1)-2° — 466 >
f'(6) > 5123 > 0. Hence f(a) > f(6) = 1173 and we have

(2% — 1)% > 466a + 1173.

This, together with (1), gives a contradiction. Hence a < 6 and a = 3, 5.
Since v = 930bz + 1 is odd by Lemma 3.1 and v = Tl%’ T, contains a
Sylow 2-subgroup of T. Together with Lemma 2.1, the only possibilities
for T, are cases where T, = P, and Ty = P;.
Case 3.1.1: a=3

1) Te=hH
Then we have
36 .25 . £2.72,122.10.237.
v_1=%—1= 2785 2376 3123. 7219 37109 1 _ 8741225024,

By Lemma 3.1 we have v — 1 = 930b, and so 930|8741225024, a contradic-
tion.
2 T.=Ph
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We have
_ 1T 1_23“-35-52~72-132~19-37-109
T Tl - 236 .5.72.13

which contradicts with the fact 930|(v — 1).

Case 3.1.2: a=5

In this case we also can get contradictions in the same way as the case
where a = 3.

Case 3.2: G4 NT is a parabolic subgroup of T'.

Looking at the list of maximal subgroups of 2Fy(q) in Lemma 2.1, we
can see that the parabolic subgroup of 2Fy(q) is conjugate to P or P, and
hence T, = P; or T, &£ P».

IfT, = P, thenwehavev—1=|T:To| -1 =¢?(1+qg+¢*+g*+¢%+
q" +¢°). It follows by Lemma 3.1 that 3-5-31|1+¢+¢*+¢*+¢% +q" +¢°,
hence 3|1 + g+ ¢% +¢* +¢%+¢" +¢°. But

1 (mod 3), g=1 (mod 3),
2 (mod 3), g=2 (mod 3),

v—1 — 1 = 1210323464,

1+q+q3+q4+qe+q7+q9§{

which is a contradiction.

IfT, = P, thenwehavev—1=|T: To| -1 = q(14+¢®>+ g3+ g%+ ¢+
q® +¢°). By Lemma 3.1 we have 3-5-31|1+¢% +¢* + ¢° + ¢° + ¢% + ¢°,
hence 3|1 +¢% + ¢* +¢° +¢® + ¢® + ¢°. But

1 (mod 3), g=1 (mod 3),

1+? 4+ +¢°+¢° +¢¥ +¢° =
CHEtete e te 1 (mod 3), g=2 (mod 3),

a required contradiction.

Case 3.3: G, NT = L3(3).2 or Ly(5).

In this case ¢ = 2 and |T| = |2F4(2)] = 2'2- 33 .52 . 13. Hence we have
v=|T: T, =2%-5% or 25-3. It follows by Lemma 3.1 that 930|1599
or 930|95, which is a contradiction. This completes the proof of the Main
Theorem.
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