Unsolvable Block-Transitive Automorphism Groups of 2 - (v, 31, 1) Designs *

Shangzhao Li^{1,2†}, Shaojun Dai³, Liyuan Jiang¹
¹School of Mathematics and Science, Soochow University,

Jiangsu, 215006, China

²School of Mathematics and Statistics, Changshu Institute of Technology,
Jiangsu, 215500, China

³Department of Mathematics, Tianjin Polytechnic University, Tianjin, 300160, China

Abstract

This paper is a contribution to the study of the automorphism groups of 2-(v,k,1) designs. Let $\mathcal D$ be a 2-(v,31,1) design and $G \leq Aut(\mathcal D)$ be block-transitive and point-primitive. If G is unsolvable, then Soc(G), the socle of G, is not ${}^2F_4(q)$.

MSC: 05B05: 20B25

Keywords: block-transitive; point-primitive; design; socle

1 Introduction

This paper is part of a project to classify groups and 2-(v,k,1) designs where the group acts transitively on the blocks of the design. A 2-(v,k,1) design $\mathcal{D}=(\mathcal{P},\mathcal{B})$ is a pair consisting of a finite set \mathcal{P} of points and a collection \mathcal{B} of k-subsets of \mathcal{P} , called blocks, such that any 2-subsets of \mathcal{P} is contained in exactly one block. Traditionally one defined $v=:|\mathcal{P}|$ and $b=:|\mathcal{B}|$. Our interest is in the situation where there is a group G of automorphisms that acts transitively on \mathcal{B} . This implies in particular that every block has same number k of points (where 2 < k < v). It is not hard to see that every point lies on same number r of blocks. The numbers v,b,k,r are known as the parameters of \mathcal{D} .

^{*}Supported by National Natural Science Foundation of China(Grant No. 11172643, 11271208 and 11301377).

[†]Corresponding author: lszfd2004@163.com.

Let $G \leq Aut(\mathcal{D})$ be a group of automorphisms of a 2-(v,k,1) design \mathcal{D} . Then G is said to be block-transitive on \mathcal{D} if G is transitive on \mathcal{B} and is said to be point-transitive (point-primitive) on \mathcal{D} if G is transitive (primitive) on \mathcal{P} . A flag of \mathcal{D} is a pair consisting of a point and a block through that point. Then G is flag-transitive on \mathcal{D} if G is transitive on the set of flags. By a theorem of Block (see [1]) our block-transitive automorphism group G will be transitive also on points.

This article is a contribution to the study of the automorphism groups of 2-(v,k,1) designs. The classification of block-transitive 2-(v,3,1)designs was completed about thirty years ago (see [2]). In [3] Camina and Siemons classified 2 - (v, 4, 1) designs with a block-transitive, solvable group of automorphisms. Li classified 2-(v,4,1) designs admitting a block-transitive, unsolvable group of automorphisms (see [4]). Tong and Li classified 2-(v,5,1) designs with a block-transitive, solvable group of automorphisms in [5]. Han and Li [6] classified 2-(v,5,1) designs with a blocktransitive, unsolvable group of automorphisms. Liu classified 2 - (v, k, 1)(where k = 6, 7, 8, 9, 10) designs with a block-transitive, solvable group of automorphisms in [7]. In [8], Han and Ma classified 2 - (v, 11, 1) designs with a block transitive classical simple group of automorphisms. Dai and Zhao classified 2-(v, 13, 1) designs with block-transitive, unsolvable group of automorphisms whose socle is Sz(q) in [9]. In this article we consider 2-(v,31,1) designs with a block-transitive, unsolvable group of automorphisms and prove the following theorem.

Main Theorem. Let \mathcal{D} be a 2-(v,31,1) design, $G \leq Aut(\mathcal{D})$ be block-transitive and point-primitive. If G is unsolvable, then the socle of G is not isomorphic to ${}^2F_4(q)$.

Before starting the body of the article we introduce some notation. Let \mathcal{D} be a 2-(v,k,1) design and G be an automorphism group of \mathcal{D} that acts transitively on blocks. If B is a block, G_B denotes the setwise stabilizer of B in G and $G_{(B)}$ is the pointwise stabilizer of B in G. In addition, G^B denotes the permutation group induced by the action of G_B on the points of G. Then $G^B \cong G_B/G_{(B)}$.

The second section describes several preliminary results concerning the Ree groups ${}^2F_4(q)$ and 2-(v,k,1) designs. In the third section we give the proof of the theorem.

2 Preliminary Results

The Ree groups ${}^2F_4(q)$ are the fixed points of a certain automorphism of the Chevalley groups of type F_4 over a finite field F = GF(q), where $q = 2^{2n+1}$, $n \ge 0$. Ree [10] showed that the groups ${}^2F_4(q)$ are simple if q > 2, while Tits [11] showed that ${}^2F_4(2)$ is not simple but possesses a simple subgroup

of index 2. In this paper we treat that ${}^2F_4(q)$ are simple, that is, q > 2 and $n \ge 1$. Let a = 2n + 1 and $T = {}^2F_4(q)$. Then $q = 2^a$ and the order of T is $q^{12}(q-1)(q^3+1)(q^4-1)(q^6+1)$.

There are two important parameters of a 2-(v,k,1) design, the number b of blocks and the number r of all blocks through a point. In fact we have bk = vr and bk(k-1) = v(v-1). Thus r = (v-1)/(k-1). We can show that $b \ge v$ and so $k \le r$. If k = r then $v = k^2 - k + 1$; if $r \ge k + 1$, then $v \le k^2$.

We use a result of W. Fang and H. Li [12]. Define the following constants:

$$b_1 = (b, v), b_2 = (b, v-1), k_1 = (k, v), \text{ and } k_2 = (k, v-1).$$

Using the basic equalities for 2 - (v, k, 1) design, we get the Fang-Li Equations:

$$k = k_1 k_2$$
, $b = b_1 b_2$, $r = b_2 k_2$, and $v = b_1 k_1$.

We shall state a number of basic results which will be used repeatedly throughout the paper.

Lemma 2.1 ([13]) Let $G = {}^2F_4(q)$, where $q = 2^{2n+1}$ with $n \ge 1$ and M be maximal in G. Then M is conjugate to one of the subgroups in the table below.

Table I Strcture Oder Remarks $P_1 = [q^{11}] : (PSL(2,q) \times (q-1))$ $q^{12}(q+1)(q-1)^2$ parabolic $P_2 = [q^{10}] : (^2B_2(q) \times (q-1))$ $\overline{q^{12}(q-1)^2(q^2+1)}$ parabolic $2q^{3}(q-1)$ SU(3,q):2 $(q+1)^2(q^2-q+1)$ $(Z_{q+1} \times Z_{q+1}) : GL(2,3)$ $48(q+1)^2$ $\overline{\text{if }\epsilon} = -1,$ $96(q + \epsilon\sqrt{2q} + 1)^2$ $(Z_{q+\epsilon\sqrt{2q}+1}\times Z_{q+\epsilon\sqrt{2q}+1}):[96]$ q > 8 $12(q^2 + \epsilon\sqrt{2}q^{\frac{3}{2}} +$ $Z_{q^2+\epsilon\sqrt{2}q^{\frac{3}{2}}+q+\epsilon\sqrt{2q}+1}:12$ $\frac{q+\epsilon\sqrt{2q}+1)}{2q^3(q-1)(q+1)^2}$ $\overline{PGU(3,q)}:2$ $\frac{2q^{2}(q^{2}+1)(q-1)}{2q^{4}(q^{2}-1)(q^{4}-1)}$ $^2B_2(q)\wr 2$ $B_2(q):2$ $q_0^{12}(q_0-1)(q_0^3+1)$ $q = q_0^{\delta}$ and ${}^{2}F_{4}(q_{0})$ $(q_0^4 - 1)(q_0^6 + 1)$ δ is a prime

Conversely, if H is conjugate to one of these groups, then $N_G(H)$ is maximal in G.

Lemma 2.2 ([14]) Let $T = {}^2F_4(q)$ be an exceptional simple group of Lie type over GF(q), and G be a group with $T \unlhd G \subseteq Aut(T)$. Suppose that M

is a maximal subgroup of G not containing T. Then one of the following holds:

- $(1) |M| < q^{12}|G:T|;$
- (2) $T \cap M$ is a parabolic subgroup of T;
- (3) $T \cap M = L_3(3).2$ or $L_2(25)$, if q = 2.

Lemma 2.3 ([8]) Let G and $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ be a group and a design, and $G \leq Aut(D)$ be block-transitive, point-primitive but not flag-transitive. Let Soc(G) = T. Then

$$|T| \le \frac{v}{\lambda} |T_{\alpha}|^2 |G:T|,$$

where $\alpha \in \mathcal{P}$, λ is the length of the longest suborbit of G on \mathcal{P} .

Lemma 2.4 ([15]) Let $G = T : \langle x \rangle$ and act block-transitively on a 2 - (v, k, 1) design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$. Then T acts transitively on \mathcal{P} .

3 Proof of the Main Theorem

For prove the Main Theorem, we prove the following two lemmas firstly.

Lemma 3.1 Let \mathcal{D} be a 2 - (v, 31, 1) design, G be block-transitive, point-primitive but not flag-transitive. Then $v = 930b_2 + 1$.

Proof. Since k=31 and $k_1=(k,v)$, $k_1=1$ or 31. If $k_1=31$, then k|v, by [14], G is flag-transitive, a contradiction. Hence we have $k_1=1$. Thus $v=k(k-1)b_2+1=930b_2+1$.

Lemma 3.2 Let D be a 2-(v,31,1) design, G be block-transitive, point-primitive but not flag-transitive and Soc(G) = T be even order. If G be unsolvable, then $|T| \leq 466|T_{\alpha}|^{2}|G:T|$.

Proof. Let $B = \{1, 2, \dots, 31\} \in \mathcal{B}$. Since G is unsolvable, then the following possibility for the structure of G_B , the rank and subdegree of G does not occur:

Type of G_B	Rank of G	Subdegree of G
		930
$\langle 1 \rangle$	931	$1,b_2,b_2,\cdots,b_2$

Otherwise, $|G^B|$ is odd and hence |G| is odd, which contradicts the fact that |T| is even. Thus $\lambda \geq 2b_2$. By Lemma 2.3 we have $\frac{|T|}{|T_{\alpha}|^2} \leq \frac{v}{\lambda} \cdot |G:T| \leq \frac{v}{2b_2} \cdot |G:T|$. It follows by Lemma 3.1 that $\frac{|T|}{|T_{\alpha}|^2} \leq \frac{930b_2+1}{2b_2} \cdot |G:T| < 466 \cdot |G:T|$.

Now we can prove our Main Theorem stated in the Introduction.

Suppose that $Soc(G)={}^2F_4(q)=T$. Thus ${}^2F_4(q) \leq G \leq Aut({}^2F_4(q))$. We have $G=T:\langle x\rangle$, where $x\in Out(T)$. Let o(x)=m. Then m|a and $|G|=q^{12}(q-1)(q^3+1)(q^4-1)(q^6+1)$. By [16], G is not flag-transitive. Since G is point-primitive, G_α is the maximal subgroup of G. By Lemma 2.2 we have $|G_\alpha|< q^{12}|G:T|, G_\alpha\cap T$ is a parabolic subgroup of T, $M=L_3(3)$ or $L_2(25)$, if q=2. We shall consider three cases to prove the Main Theorem.

Case 3.1: $|G_{\alpha}| < q^{12}|G:T|$.

Since G is block-transitive, by Lemma 2.4, T is point-transitive. Hence $|G_{\alpha}| = |T_{\alpha}|m$ and so $|T_{\alpha}| < q^{12}$. It follows by Lemma 3.2 that

$$|T| < 466|T_{\alpha}|^{2}|G:T| < 466q^{24}|G:T| = 466q^{24}m.$$

It follows that

$$\frac{(q-1)(q^3+1)(q^4-1)(q^6+1)}{q^{12}} < 466m \le 466 \cdot a.$$

Since $q^4 - 1 \ge q^3(q - 1)$, we have

$$(q-1)^2 < 466a.$$

Recall that $a = 2n + 1 \ge 3$, $q = 2^a$. We have

$$(2^a - 1)^2 < 466a. (1)$$

Let $f(x) = (2^x - 1)^2 - 466x$. If $a \ge 6$, then $f'(a) = 2ln2 \cdot (2^a - 1) \cdot 2^a - 466 \ge f'(6) > 5123 > 0$. Hence $f(a) \ge f(6) = 1173$ and we have

$$(2^a - 1)^2 \ge 466a + 1173.$$

This, together with (1), gives a contradiction. Hence a < 6 and a = 3, 5.

Since $v = 930b_2 + 1$ is odd by Lemma 3.1 and $v = \frac{|T|}{|T_{\alpha}|}$, T_{α} contains a Sylow 2-subgroup of T. Together with Lemma 2.1, the only possibilities for T_{α} are cases where $T_{\alpha} \cong P_1$ and $T_{\alpha} \cong P_2$.

Case 3.1.1: a = 3

(1) $T_{\alpha} = P_1$

Then we have

$$v-1 = \frac{|T|}{|T_{\alpha}|} - 1 = \frac{2^{36} \cdot 3^5 \cdot 5^2 \cdot 7^2 \cdot 13^2 \cdot 19 \cdot 37 \cdot 109}{2^{36} \cdot 3^2 \cdot 7^2} - 1 = 8741225024.$$

By Lemma 3.1 we have $v - 1 = 930b_2$ and so 930|8741225024, a contradiction.

(2)
$$T_{\alpha} = P_2$$

We have

$$v-1 = \frac{|T|}{|T_{\alpha}|} - 1 = \frac{2^{36} \cdot 3^5 \cdot 5^2 \cdot 7^2 \cdot 13^2 \cdot 19 \cdot 37 \cdot 109}{2^{36} \cdot 5 \cdot 7^2 \cdot 13} - 1 = 1210323464,$$

which contradicts with the fact 930|(v-1)

Case 3.1.2: a = 5

In this case we also can get contradictions in the same way as the case where a = 3.

Case 3.2: $G_{\alpha} \cap T$ is a parabolic subgroup of T.

Looking at the list of maximal subgroups of ${}^2F_4(q)$ in Lemma 2.1, we can see that the parabolic subgroup of ${}^2F_4(q)$ is conjugate to P_1 or P_2 and hence $T_{\alpha} \cong P_1$ or $T_{\alpha} \cong P_2$.

If $T_{\alpha} \cong P_1$, then we have $v-1=|T:T_{\alpha}|-1=q^2(1+q+q^3+q^4+q^6+q^7+q^9)$. It follows by Lemma 3.1 that $3\cdot 5\cdot 31|1+q+q^3+q^4+q^6+q^7+q^9$, hence $3|1+q+q^3+q^4+q^6+q^7+q^9$. But

$$1+q+q^3+q^4+q^6+q^7+q^9\equiv \begin{cases} 1\pmod{3}, & q\equiv 1\pmod{3},\\ 2\pmod{3}, & q\equiv 2\pmod{3}, \end{cases}$$

which is a contradiction.

If $T_{\alpha}\cong P_2$, then we have $v-1=|T:T_{\alpha}|-1=q(1+q^2+q^3+q^5+q^6+q^8+q^9)$. By Lemma 3.1 we have $3\cdot 5\cdot 31|1+q^2+q^3+q^5+q^6+q^8+q^9$, hence $3|1+q^2+q^3+q^5+q^6+q^8+q^9$. But

$$1+q^2+q^3+q^5+q^6+q^8+q^9\equiv \begin{cases} 1\pmod{3}, & q\equiv 1\pmod{3},\\ 1\pmod{3}, & q\equiv 2\pmod{3}, \end{cases}$$

a required contradiction.

Case 3.3: $G_{\alpha} \cap T \cong L_3(3).2$ or $L_2(5)$. In this case q=2 and $|T|=|^2F_4(2)|=2^{12}\cdot 3^3\cdot 5^2\cdot 13$. Hence we have $v=|T:T_{\alpha}|=2^6\cdot 5^2$ or $2^5\cdot 3$. It follows by Lemma 3.1 that 930|1599 or 930|95, which is a contradiction. This completes the proof of the Main Theorem.

Acknowledgement

The authors would like to thank the referee for pointing out errors in the original version of this paper.

References

[1] R. E. Block, On the orbits of collineation groups, Mathematisches Zeitschrift, 96 (1967): 33-49.

- [2] P. C. Clapham, Steiner systems with block transitive automorphism groups, Discrete Math., 14 (1976): 121-131.
- [3] A. R. Camina, J. Siemons, Block transitive automorphism groups of 2 (v, k, 1) block designs, J. Combin. Theory Ser. A, 51 (1989): 268-276.
- [4] H. L. Li, On block-transitive 2-(v, 4, 1) designs, J. Combin. Theory Ser. A, 69 (1995): 115-124.
- [5] W. W. Tong, H. L. Li, Solvable block transitive automorphism groups of 2-(v, 5, 1) designs, Discrete Math., 260 (2003): 267-273.
- [6] G. G. Han and H. L. Li, Unsolvable block transitive automorphism groups of 2-(v, 5, 1) designs, Journal of Combinatorial Theory Ser. A, 114 (2007): 77-96.
- [7] W. J. Liu, Block transitive 2-(v,k,1) designs, Ph. D. Thesis, Zhejiang University, 1998.
- [8] G. G. Han and C. G. Ma, Block transitive 2-(v,11,1) designs and classical simple groups, Advances in Mathematics, 39 (2010): 319-330 (Chinese).
- [9] S. J. Dai and K. Zhao, Block transitive 2 (v, 13, 1) designs and Suzuki Groups, Ars Combinatoria, 105 (2012): 369-373.
- [10] R. Ree, A family of simple groups associated with the simple Lie algebra of type (F_4) , Amer. J. Math., 83 (1961): 401-420.
- [11] J. Tits, Algebraic and abstract simple groups, Am. Math., 80 (1964): 313-329.
- [12] Weidong Fang and Huiling Li, A generalisation of Camina-Gagens Theorem, Math Magazine, (Wuhan), 13 (1993): 437-441 (Chinese).
- [13] G. Malle, The maximal subgroups of ${}^2F_4(q)$, J. Algebra, 139 (1991): 52-69.
- [14] M. W. Liebeck, J. Saxl, On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. London Math. Soc., 55 (1987): 299-330.
- [15] W. J. Liu, S. Z. Li and L. Z. Gong, Almost simple groups with socle Ree acting on finte linear spaces, European Journal of Combinatorics, 27 (2006): 788-800.

[16] F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck and J. Saxl, Linear spaces with flag-transitive automorphism groups, Geom. Dedicata, 36 (1990): 89-94.