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Abstract

For a graph G and a non-zero real number o, the graph invariant
Sa(G) is the sum of the a*® power of the non-zero signless Laplacian
eigenvalues of G. In this paper, we obtain sharp bounds of S.(G)
for a connected bipartite graph G on n vertices and a connected
graph G on n vertices having a connectivity less than or equal to k,
respectively, and propose some open problems for future research.
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1 Introduction

Let G = (V,E) be a simple connected graph with vertex set V =
{v1,v2,..., v, } and d; be the degree of the vertex v; for i € {1,2,... ,n}
The Laplacian matrix and the signless Laplacian matrix of G are defined as
L(G) = D(G) — A(G) and Q(G) = D(G) + A(G) respectively, where A(G)
is the adjacent matrix and D(G) is the diagonal matrix of vertex degrees of
G. It is well known that both L(G) and Q(G) are symmetric and positive
semidefinite, then we can denote the eigenvalues of L(G) and Q(G), called
respectively the Laplacian eigenvalues and the signless eigenvalues of G, by
p1(G) 2 p2(G) = ... 2 pn(G) =0 and 1(G) 2 q2(G) > ... 2 ¢n(G) 2 0.
If no confusion, we write u;(G) as p;, and ¢;(G) as g;, respectively.
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Let A1, A2,..., A, be the eigenvalues of A(G). The famous graph energy
E(G), introduced by Gutman [6], is defined as E(G) = Z |Ail. This quan-

tity has a long known application in molecular—orbltal theory of organic
molecules and has been much investigated(see {7], [8]).
In [12], Klein and Randié defined the Kirchhoff index as Kf(G) =

3 7i4, where r;; is the effective resistance between v; and v;. It was proved
i<j

later by Zhu et al.[26], Gutman and Mohar [10] that K f(G) = n 2 -. The

Kirchhoff index was widely used in electric circuit, probabilistic theory and
chemistry(see (10, 17, 24]). Most of its results can be found in the survey
[25].
Recently, the so-called Laplacian energy Er(G) [13] and the Laplacian-
n

energy-like invariant LEL(G) [16] defined respectively as E(G) = Z p2,

LEL(G) = E /i have been investigated. Stevanovié et al. [19] showed

that the LEL-va.nant is a well designed molecular descriptor, which has
great applications in chemistry. For more details on LEL(G), we refer
readers to the survey [14].

Motivated by the definition of LEL(G), Jooyandeh et al.[11] introduced

the incidence energy IE(G) of G, which is defined as IE(G) = 2 V. In

[9}, relations between I E(G) and LEL(G) and several sharp upper hounds
for IE(G) are obtained.
Since the definition of LEL(G) and Kirchhoff index, Zhou [22] put

forward a general form s,(G), i.e., 5.(G) = Z 1%, where a is a non-zero
=1

real number and h is the number of non-zero Laplacian eigenvalues of G.
Zhou called it the sum of powers of Laplacian eigenvalues of G, achieved
some properties and bounds for s, where a # 0,1, and discuss further
properties for s and s 3 In the sequel, some bounds of s, for connected
bipartite graphs were obtained in [20], which improve some known results
of [22]. Moreover, Zhou [23] established some bounds for s, in terms of
degree sequences and Chen et al. [4] presented a lot of bounds of s4(G)
for a connected graph G in terms of its number of vertices and edges,
connectivity and chromatic number respectively, some of which generalize
those results in [24]. Recently, Das et al. [5] obtained some lower and
upper bounds on s4(G) for G in terms of n, the number of edges, maximum
degree, clique number, independence number and the number of spanning
trees, and presented some Nordhaus-Gaddum-type results for s4(G) of G.

Based on the definition of LEL, so, and IE, Liu and Liu [15] put
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forward the sum of powers of the signless Laplacian eigenvalues of G, de-
noted by S,(G) = Z:;l g5, where o is a non-zero real number and h is
the number of non-zero signless Laplacian eigenvalues of G. Obviously,
S51(G) =2m, S} 1(G) = IE(G). They determined the graphs on n vertices
with the ﬁrst second or third largest value of S, when o > 0 and present-
ed some bounds for S, in terms of {n,m, Z,(G)} where m is the number
of edges in G and Z,(G) = Y 1., d¢, especially in terms of {n,m, Z»(G)}
(Z2(G) usually written as M;(G), is called the first Zagreb index). Ac-
cording to the relations between S, and {n,m, Z5(G)}, some bounds for
IE are also presented. In [18], Oscar Rojo and Eber Lenes derived an
upper bound for JE(G) of G on n vertices having a connectivity less than
or equal to k, and showed that this upper bound is attained if and only if
G = K V(KUK _k_1), where G; V Gy is the graph obtained by starting
with a disjoint union of G, and G, and adding edges joining every vertex
of G to every vertex of G2, called the join of G, and G5. Moreover, Saieed
Akbari et al. [1] established some relations between s,(G) and S,(G) when
a belongs to different intervals, that is, So(G) > so(G) if 0 < @ < 1 or
2 < a £ 3, while 5,(G) < 54(G) if 1 £ a < 2, and the equality holds if
and only if G is a bipartite graph.

The vertex connectivity(or just connectivity) of a graph G, denoted by
k(G), is the minimum number of vertices of G whose deletion disconnects
G. It is conventional to define x(K,) =n — 1.

Let B, be the family of the connected bipartite graphs on n vertices,
Fn be the family of the simple connected graphs on n vertices, respectively.
Let V¥ = {G € F,|x(G) < k}. In this paper, we will derive a sharp bound
of S4(G) with o < 1 in B, in Section 3, and derive a sharp bound of
So(G) with & > 1 in V¥ in Section 4, respectively, and propose some open
problems in these sections for future research.

2 Preliminaries

In this section, we introduce some basic properties which we need to
use in the proofs of our main results.

Lemma 2.1. ([2]) Let G be a graph with n vertices and e be an edge of G.
Then 0 < qn(G —€) < ¢n(G) < ¢n-1(G - €) < gn1(G) < -+ < 1 (G ~¢)
< a(G).

Note that E g:(G) — Z qi(G — e) = 2, by Lemma 2.1, we have the

following result 1mmed1ately

Theorem 2.1. Let e be an edge of G. Then So(G) > Sa(G —¢) fora >0,
and S4(G) < Sa(G — ¢) for @ < 0.
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Lemma 2.2. ([3]) If G is bipartite, then Q(G) and L(G) share the same
eigenvalues.

3 Bounding S,(G) in B,

In this section, we derive a sharp bound of S,(G) with a < 1 for a
connected bipartite graph G on n vertices, and propose an open problem
about S,(G) with a > 1.

We can see that S,(G) = s4(G) for a bipartite graph G by Lemma 2.2,
so the following results in this section also hold for s,.

Let o(M) be the spectrum of the square matrix M. By simple calcu-
lation, 0(Q(Kr.s)) = {r + s,r*=1,sl"=1) 0} where Al means that X is an
eigenvalue with multiplicity ¢.

Thus, by Theorem 2.1, the following result is obvious.

Theorem 3.1. Let G be a bipartite graph with v and s vertices in its two
partite sets. (1) If a > 0, then So(G) < (r + 8)* + (r —1)s* + (s — 1)r°,
with equality if and only if G = K, 5; (2) If & < 0, then Sa(G) > (r+5s)* +
(r —1)s* + (s — 1)r®, with equality if and only if G = K 5.

Theorem 3.2. Let G be a bipartite graph with n vertices and a < 1. (1) If
@ <0, then So(G) = n®*+(|2] - 1) [2]" +([3] - D) |2]®, with equality
if ond only if G = K| 4| 147, (2) f0<a <], then So(G) < n®+ (| 2] -

1) [2]% +([2] - 1) |2]°, with equality if and only if G = KH‘J[’:‘]

Proof. The proof of (2) is similar to (1). Now we show (1) holds.

If o < 0, let G, be a bipartite graph with » and s vertices in its two
partite sets, having the minimum value of S, among all the connected
bipartite graphs with n vertices. Without loss of generality, assume that
1 <r <'s. By Theorem 3.1, G, = K, , for some r € {1,2,..., (3|} with
r+ s = n. Note that 0(Q(K,)) = {r + 5,7~ 1, sI"=1,0}. Thus

Sa(Krs) =n"+ (r—1)s® + (s - 1)r*
=n*+(r-1n-r)*+(n-r-1r*
= 1% = [(n = 1)+ + 7241 4 (n — 1)[(n = ) + 7).

Let f(r) = —[(n—r)** 4re++(n-1)[(n—r)*+r*] with1 < r < | }].
Then f/(r) = (@ + 1)[(n —r)* — %] —a(n — 1)[(n — 7)*"t —ro71].

If r=|2| = %, then n — r =, and therefore f'(r) =0.

Otherwise, r < %, ie., n — 7 > r. By Cauchy mean-value Theorem,

_mye-1__a-1 - a—-2
there exists £ € (r,n — r) satisfying ("(':_)_r)o_:o = 1505125_, = %;—251

Thus we have
r)n -1 = 1

F1(r) = [(n =) =rf(a+1) —a(n - 1)- CFTT—
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=[n—r)*=r)(a+1) - (@-1)- 2]

Notethat a < O, n—7 >rand 0 <7 < é <n—7<n-1, we
havea—1<0, (n —7)* -~7r* <0, 3—‘2—1- > 1 and (o:-l—l)—(cu—l)"—g—l >
(¢+1) = (x—1) =2 > 0. Hence, f'(r) <0, that is, f(r) is decreasing for
1<r<(3).

Therefore, So(Krn-r) = n® + f(r) with 1 < r < |2] is minimum
if and only if r = |%]. It follows that G, = K[H‘»’-’ and S,(G) >

n*+ (13- DI+ (51 - D15/ O

Remark 3.1. By Lemma 2.2, LEL(G) = §1(G) and Kf(G) = nS_,(G)
for G is a bipartite graph. Hence, Theorem 3.1 and Theorem 3.2 generalize
the results of Liu and Huang for the Laplacian-energy-like invariant (Corol-
lary 2.4, [14]) and the results of Yang for the Kirchhoff index (Theorem 3.1,
[21]). In our proof, some techniques in [4] are referred.

Comparing the results of Theorem 3.1 and Theorem 3.2, we put forward
the following conjecture to close this section.

Conjecture 3.1. Let G be a bipartite gra%h with n vertices. If & > 1, then
Sa(G) <n+ (3] -1 [51" +([3] -1 [3]°,
with equality if and only if G = KL%J'H']'

4 Bounding S,(G) in V¥

In this section, we characterize the extremal graph of S,(G) in V¥ and
derive a sharp upper bound of S,(G) with @ > 1 in V,’f. Moreover, we
propose an open problem about S, (G) with o < 1.

By simple calculation, o(Q(K,)) = {2n — 2,(n — 2)I*~1}. Actually,
Theorem 2.1 implies that

Theorem 4.1. Let G € F,,. (1) If o > 0, then So(G) < 2%(n — 1)* +
(n ~1)(n — 2)* with equality if and only if G = K,. (2) If a < 0, then
Sa(G) 2 2%(n —1)* + (n — 1)(n — 2)™ with equality if and only if G = K,,.

Throughout the following paper, let G*, G. be the graphs having the
maximum and the minimum value of S,(G) among the graphs in VX,
respectively. Let |U| be the cardinality of a finite set U, and G(i) =
KV (KiUKp_ ;) where i € {1,2,..., I_"—;—kj}

Theorem 4.2. Let n, k be positive integers with 1 < k < n—1, G*(G.) be
defined as above. Then (1) G* € {G(1),G(2),--- ,G(|25%])} when a > 0;
(2) G. € {G(1),G(2),- -+ ,G(|25%])} when a < 0.
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Proof. The proof of (2) is similar to (1). Now we show (1) holds.

Let G € V¥ and o > 0.
Casel: k=n-1.

From Theorem 4.1, S4(G) < So(Kn) with equality if and only if G =
K,. Note that K, = G(1), the result is true for k =n — 1.
Case 2: 1<k<n-2

By Theorem 2.1, there is a graph G* with the maximum value of S (G)
in VX. Let U C V(G*) such that G* — U is a disconnected graph and |U| =
x(G*). Hence, |U| < k. Let G1,Ga,...,Gr be the connected components
of G* - U.

We claim that r = 2. If r > 2, then we can construct a new graph
H = G* + e where e is an edge connecting a vertex in G with a vertex in
G5. Clearly, x(H) < |U| € k since H is connected and H —U =G* +e-U
is disconnected. Thus, H € V¥ and G* = H —e. By Theorem 2.1, S,(G*) <
So(H), which is a contradiction. Therefore r = 2, that is, G*—U = G1UG>.

We claim that x(G*) = k. If K(G*) < k, then |U| < k. Construct a new
graph H = G* + e where e is an edge joining a vertex u € V(G;) with a
vertex v € V(G3). Hence, s(H) < |U|+1 £ k since H — U is a connected
graph and H — U U {u} is disconnected. Therefore H € Vk. By Theorem
2.1, So(G*) < So(H), which is also a contradiction. Thus, £(G*) = k.

Let |V(G:)| = i. Then |V(G;)| = n — k — i. Repeating application of
Theorem 2.1 enables to write G* = Ki V (K; U Ky—k—;) = G(i) where
ie{1,2,...,|%%]}. m]

Remark 4.1. In our proofs of Theorem 4.2, some techniques in (18] are
referred.

When a > 1, we search for the value of ¢ for which S.(G(i)) (% €
{1,2,...,125%)}) is maximum. In this proof, we need the spectrum of
Q(G(?)), which is given in [18].

Lemma 4.1. ([18]) The spectrum of Q(G(3)) is
o(Q(G())) = {a1(4), g2, 43(3), (n—2)F 7Y, (ki—2)[= Y, (n—i—2)lr—k=i=1l},

where ¢y (3) =n—2+§+%ﬂk—2n)2+161'(k—~n+i), g2 =n-2, and
g3()) =n—2+ % - L\ /lk = 2n)? +16i(k — n +7).

Theorem 4.3. Let n, k be positive integers with 1 < k <n -1, G € V¥
and o > 1. Then

Sa(G) < ba(n, k) (4.1)

where

ba(n, k) = k(n — 2)* + (n — k — 2)(n — 3)° .
+[n—2+§+%\/(k——Qn)z-*-lﬁ(k—n-%-l)]




+[n-2+§—%ﬂk—zn)2+16(k-n+1)]°

The equality (4.1) holds if and only if G = K V (K3 U Kp—g—1).
Proof. Let G* be defined as above. Then G* = G(i) for some i € {1,2,...,
[25%} by @ > 1 and Theorem 4.2. By Lemma 4.1, we have
Sa (G’(z))—k(n 2)°‘+(z——1)(k+z—2)°‘+(n k—z—l)(n—z—2)°‘

+|n - 24+ %+ 1 /(k—2n) +16i(k — n + i)
+[n—2+5— 1\ /(F=2n)? + T6i(k - n+z)f
=k(n—2)* + (k+i—2)°F! 4 (n — i — 2)o+
—(k~D[(k+5i-2)* + (n -1 —2)°]
+ n—2+ 5+ 3/(k—2n)? + 16i(k — n+z)

+n 2+ & - 1/(k—2n)2 +16i(k — n+z)

Let
f(z) = (x+k-2)2+(n-2-z)** —(k—-1)[(z + k - 2)% + (n — 2 — 79

+[n—2+£+%\/k——2n)2+16$(k-n+z)]
+[n 2+ % - 1/(k—2n)% + 16z(k - n+x)]
withlstl""‘J.Then

fliz) =a(k-1)[(n—2—-z)>"! - (z + k- 2)>7]
—(a+1)[(n-2-2)* - (z+k—2)%

+ 4da[2z—(n~k)] . 2n+k—4+\/(k—2n)2+16z(k—n+a:) a-l
V(k=2n)2 416z (k—n+x) 2
da2z—(n—k)] 2n4k—d—y/(E—2m) T 162 (k—nFa) |
T (k=2n)216z(k-ntz) 2

fz=|25 "J—"; thenn—-z=z+k,s0 f'(z) =
Otherwise, z < ——k, i.e., n—z > r+k and therefore n—z—2 > z+k-2.
By Cauchy mea.n-value Theorern, there exists { € (x+k—2,n—z - 2)

a-— a-1 o =2
satisfying ("(_3:7’3:): :gii:g;o = ("‘;5126_, = “Q—‘EI Thus we have
f'() ] 1
=[(n—2—-2)*—(z+k-2)%]: [a(k — 1) e e AT (ot 1)]
+ 4af2z—(n—k)] . -2n+k—4+m—2n)3+162(k—n+m) a-l
V/(k=2n)2 416z (k—n+z) 2
4a[2z—(n—k)] . -2n+k—4—,/(k—2n)2+1sz(k—n+=) a1
p)

T Vk=2n)it16z(k-nta) |
=[n-2-2)*~(z+k-2)° - [(a-1) 5L —(a+1)]

da[2z—(n—k)] [ 2n+k—d+y/G=2n)2 4 162(k-nt2) |
\/(k—2n)2+16:(k—n+:r:) 2

-1

+
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4a[2z—(n—k)] ‘ 2n+k-4-\/(7—2n)2+1sz(k-n+x)] a-l
V(k=2n)2+16z(k~n+z) 2
Notethata > 1,z < 1'-2‘-5, n—zc—-2>z+k—2and € > z+k-22> k-1,
we have f'(z) < 0, that is, f(x) is decreasing for 1 <z < |25%].
Therefore, So(G(3)) = k(n—2)*+ f(i) with1 <i < [2-2'-5_| is maximum
if and only if i = 1. It followings that G* = K V (K U Kn—k—1). O

Note that S,(G) = 2m, where m is the number of edges in G. From
Theorem 4.3, we have

Corollary 4.1. Let n, k be positive integers with1 <k <n—1, and G be
any graph in VX with m edges. Thenm < 1by(n,k) = é—(n2 —3n+2k+2),
with equality if and only if G = K V (K1 U Kn_g—1)-

The trace of the matrix X = (Zij)nxn is defined as tr(X) = Y7 2,
which is also equal to the sum of eigenvalues of X. Obviously, EL(G) =
tr(L(G)?) = tr{(D(C) — A(G))?], and Sx(G) = tr(Q(G)?) = tr{(D(G) +
A(G))2]. ‘Since tr[D(G)A(G)] = 0, tr[(D(G) + A(G))? = tr[(D(G) —
A(G))?, which implies that E(G) = S2(G). Thus, we have

Corollary 4.2. Let n, k be positive integers with 1 < k < n — 1, and
G € VX, Then EL(G) < ba(n, k) = n® +2n% + (2k + 5)n + k? — k — 2, with
equality if and only if G = K V (K1 U Ky—k—1).

The edge connectivity of G, denoted by £(G), is the minimum number
of edges whose deletion disconnects G. Let ek = {G € F,|e(G) < k}.

Corollary 4.3. Let n, k be positive integers with1 <k <n—1, G be any
graph in e£ and o > 1. Then So(G) < ba(n, k), with equality if and only if
G=K,V(K1UKn_f_1).

Proof. Since k(G) < &(G), it follows £ C V. Let G € €k, the corollary
follows from the fact Kj V (K3 U Kn_k—1) € ££. m]

In [18], the authors proved that S (G) = IE(G) £ b%(n, k) for any
graph G in V%, and the equality holds if and only if G = K V(K \UK,_k—1),
that is, when o = 3, S4(G) < ba(n, k) also holds for any graph G in VE.
Following from the fact, and comparing the results of Theorem 4.1 and
Theorem 4.3, we propose the following conjecture.

Conjecture 4.1. Let n, k be positive integers with1 <k <n-1,G¢€ VEk
and a < 1. Then we have

(1) If 0 < @ < 1, then So(G) < ba(n, k) with equality if and only if G =
K.v (K[ UK,_k-1).

(2) If @ < 0, then Sa(G) = ba(n, k) with equality if and only if G =
K Vv (K] UKn_k-1).
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