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Abstract

Let M = {v),v2 ... vy} be an ordered set of vertices in a graph G. Then
(d{u,v1),d(u,v2) ... d(u,v,)) is called the M-coordinates of a vertex u of G. The
set M is called a metric basis if the vertices of G have distinct M-coordinates. A
minimum metric basis is a set A with minimum cardinality. The cardinality of a
minimum metric basis of G is called minimum metric dimension. This concept has
wide applications in motion planning and in the field of robotics. In this paper, we
have solved the minimum metric dimension problem for Illiac networks.
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1 Introduction

A circulant undirected graph denoted by G(n;£{1,2 ... j}),1 < j < |}/, for
n > 3, is defined as a graph with vertex set V = {0,1 ... n — 1} and edge set
E={(3,5) : 1 —il = s(modn), s € {1,2 ... 5} [18]. See Figure 1. It is clear that
G(n; £1) is the undirected cycle C, and G(n;£{1,2 ... |2]}) is the complete
graph K.

Figure 1: A circulant graph G(10; +{1,2,3})

The circulant graphs are an important class of topological structures of in-
terconnection networks. For example, undirected circulant networks arise in
the context of Mesh Connected Computer suited for parallel processing of data,
such as the well-known ILLIAC type computers.
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ILLIAC was the name given to a series of supercomputers built at the Uni-
versity of Illinois at Urbana-Champaign. The ILLIAC IV was one of the first
attempts at a massively parallel computer; first large-scale array computer, with
a computation speed of 200 million instructions per second, about 300 million
operations per second and 1 billion bits per second of I/O transfer via a unique
combination of parallel architecture and the overlapping or "pipe-lining" struc-
ture of its 64 processing elements. In all, 5 computers were built in this series
between 1951 and 1974. Design of the ILLIAC VI began in early 2005.

The Illiac interconnection network consists of n? processors that could be
depicted as the elements of an n x n matrix, each processor is directly con-
nected through an undirected link to its immediate neighbours in its row and
column and additional wrap-around connections exist. The Illiac network with
16 processors is shown in Figure 2(a) can be represented as a circulant graph
G (16; % {1,4}) as shown in Figure 2(b). Generally the Illiac network with n?
processors can be represented as a circulant graph G(n?; £{1,n}) [18].

Figure 2: (a) An Illiac network with 16 processors (b) Circulant graph
G(16; +{1,4})

2 An Overview of the Paper

Let M = {v;,v2 ... v,} be an ordered set of vertices in a graph G. Then
{d(u,v1),d(u,v2) ... d(u,vy)) is called the M-coordinates of a vertex u of G. The
set M is called a metric basis if the vertices of G have distinct M-coordinates.
A minimum metric basis is a set M with minimum cardinality. The cardinality
of a minimum metric basis of G is called minimum metric dimension and is
denoted by B(G) [9]. The minimum metric dimension (mmd) problem is to
find a minimum metric basis. If M is a metric basis then it is clear that for
each pair of vertices u and v of V \ M, there is a vertex w € M such that
d(u,w) # d(v,w).
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This problem has application in the field of robotics. A robot is a mechanical
device which is made to move in space with obstructions around. It has neither
the concept of direction nor that of visibility. But it is assumed that it can
sense the distances to a set of landmarks. Evidently, if the robot knows its
distances to a sufficiently large set of landmarks its position in space is uniquely
determined.

The concept of metric basis and minimum metric basis has appeared in the
literature under a different name as early as 1975. Slater in [16] and later in [17]
had called a metric basis and a minimum metric basis as a locating set and a
reference set respectively. Slater called the cardinality of a reference set as the
location number of G. He described the usefulness of these ideas when working
with sonar and loran stations. Chartrand et al. [6] have called a metric basis
and a minimum metric basis as a resolving set and a minimum resolving set.

If G has p vertices then it is clear that 1 < 8(G) < p — 1. Harary et al. [9)
have shown that for the complete graph K, the cycle C, and the complete bi-
partite graph Kpm,», the minimum metric dimensions are given by 8(K,) = p—1,
B(C,) = 2 and B(Kmn) = m +n — 2. This problem has been studied for grids
(11], trees, multi-dimensional grids [10], Petersen graphs (3], De Bruijn graphs
(12}, Kautz networks [13], Benes and Butterfly networks [14], Honeycomb net-
works [15], Uniform Theta graphs and Quasi-uniform Theta graphs [4], Binary
Tree Derived Architectures [2], and Hyper tree Derived Architectures [3).

The mmd problem is NP-complete for general graphs [8]. Recently Manuel
et al. [14] have proved that the mmd problem is NP-complete for bipartite
graphs by a reduction from 3-SAT, thus narrowing down the gap between the
polynomial classes and NP-complete classes of the mmd problem. The method
adopted is due to Khuller et. al. [10)].

In this paper, the minimum metric dimension problem for Illiac networks
has been solved.

The following theorem is crucial to our results in this paper.

Theorem 1 [10] Let G be a graph with minimum metric dimension 2 and let
{a,b} C V be a metric basis in G. The following are true:

1. There is a unique shortest path P between a and b.

2. The degrees of a and b are at most 3.

3. Every other node on P has degree at most 5. B

3 Minimum Metric Dimension

Let G(n?; & {1,n}), n > 3 be an Illiac network. As a graph, G has n? vertices
and 2n%edges. Further G contains 7+ 1 edge-disjoint cycles, one is Hamiltonian
and the rest are cycles on n vertices [18]. We denote the Hamiltonian cycle by
C. Assume that C is drawn as a circle in the plane. The geometric diameter of
C through a is called the mirror through a. In Figure 3, the mirror through a
is shown by a broken line.

We now determine the minimum metric dimension of the Illiac networks.



Figure 3: G(10; +{1,2})

Theorem 2 Let G = G(n?; £ {1,n}) be an Illliac network. Then B(G) = 3, for
n > 3.

Proof. Since G is 4-regular, in view of Theorem 1, G cannot have a metric
basis of cardinality 2. Hence 8(G) > 2. To prove the theorem we exhibit a
metric basis M of cardinality 3. We consider two cases.

Case(i): n is odd

Fix a vertex a in C. Let the vertices of G be @,a1, a2, ... a¢, by b2 ... by, where
t = (n? — 1)/2. Then the mirror through a divides V(G) \ {a} into two sets S;
and Sz, where $; = {aj,az ... ar} and Sa = {b1,b2 ... b;}. See Figure 4.

We begin with M = {a}. The vertices at distance  from @ are ai, @;n4(i—j)
@jn—(izj)s Bis Djnt(imj) Djn—(img) fr 1 <2< [3),1 <j < i, and ajn_gi—y),
@n(i=i)s bin—(i=j) bmt—g for [3] <isn-Lli-[3] <j< (3] We
augment M by including e So, M = {a,al%J}

Then, for 1 < s < |3], 1 < k < |3]. the vertices Opik-[3] Pno-ki[3)
in S; and the vertices bpsyk—n; Ons—k+1 In S2 are equidistant from both a and
23] and hence have the same M-coordinates. Now, we include O3]+t in

We compute the distances of these equidistant pairs in S; from G| g [+1°
PJ

d(at—L§J+l’ans+k-|—§‘-'}) =n—k—-s+1

d(az—L§J+l'ana—k+[%]) =n—-k—s—-1.

This implies that d(a'-[%_Hl'a'M*'k-[a"‘]) # d(a‘"HJ“’a"’"""H]) for
1<s<|3],1<k<|3] ie, M distinguishes pairs of vertices in 5.

We next consider the pairs of vertices in Sz having same M-coordinates and
compute the distances from G| 3|41

For 8 = 1,bnsik—n = b and bps—g+1 = bpn—i41. Thus
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Figure 4: G{25; +{1,5}} with M = {a, a2,a11}
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Similarly, for 2 < s < |3

)

[2] -s+3 k=1
d(at_l._!ij_'_l»bns-i-kn):[ [3]1+k—s+2 2<k<|3]
Hlekms k=13

and

[2]-s+1 k=1
d(ag_ L§J+1nbns—k+1) = {

2

[B]+k-s-2 2<k<|3]

Therefore, d(ac—L-;-JHvank—n) # d(at—[:,t_]+1’bns-‘k+l) for 1 < s < |3
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and1<k< |3

Hence, any two vertices in G are at unequal distances from at least one
element of M. Thus M = {a’al%J’at-l_%'JH} is a metric basis for G and
consequently 3(G) = 3.

Case(ii): n is even.

Figure 5: G {16;+ {1,4}} with M = {a,a2,b5}

For a € C, let a* denote the vertex in C such that d(a,a*) equals the
diameter of C. Let a,a;,as ... as,a*,b,by,bs ... by be the vertices of G, where

t = "—22‘—1 . The mirror through a passes through a* and it divides the set

V(G) \ {a,a"} into two sets S = {a1,a2 ... a;} and Sz = {b1,b; ... b} so that
the vertex a; in S; becomes the mirror image of the vertex b; in Sy, fori =1
to t. See Figure 5.

Asin Case(i), let M = {a} The vertices a, @jn4(i—j)s Ajn—(i—j)s b,',bj"+(,~_j),
bin—(i—j) for 1 < i < Zand 1 < j < i(wheni=n/2andj=n/2a" =
n3/2 = baz/2), and Qjn_(j+(n-i-1)): Gin—(i=j): Ojn—(j+(n-i-1))» Bjn—(i—j). for
2<i<n-1land (i+1)-% < j< 3 are at distance i from a. Hence it is
necessary to augment M.

Let M = {a,ez}. Then any two vertices in S1(S2) have distinct M-
coordinates. But, we find that the pairs (@ns—g+%,bns—2 —(k-1)) for 1 < s < 3,
1<k< ‘%; (ans+k:bns—k) for1<s< %v 1<k< ‘%? (ans—kvbns—s--o-(k—s-f-l))
fors=1%,1<k< % (a" (= aw1) ,bt—(n-2)) have the same M-coordinates.

Include bz in M. We now compute the distances of these pairs of vertices
having same M-coordinates from by.

For1<s<32 1<k<%,

d(bg,ans—g+k) = k+5 and d (b%,bm_%_(k_l)) =k+s-2
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Thus d (by, ane—g+k) # d (b, bre—g—(h-n)) or 1S5 < 3,1 k<],
For1<s< 3. 1<k< 3,

d(b;z-.,an,q.k) = -'23 —k+s+1and d(bg.,bn,_k) = 12‘- —k+s-1.

This implies that d (by,anssx) #d (bg,bns—x) for 1 <s< 2,1<k< 3.
Fors=%,1<k<},

d (bs,ans—k) =n—k and d (b%,bm_%(k_,ﬂ)) =n—k-2

Hence d (bg, ano—r) # d (b, brs—g(hb-ssn) ) for s=3, 1S k< .

Similarly, d (bg}-.,a‘) =n-1,d (b;.,bg_(n_z)) =n-2.

This implies that d (bg,a”) # d(bg,bi—(n-2)). Thus M = {a,a3,b5} isa
minimum metric basis for G and consequently 5(G) =3. =

0j3

Remark 1 Theorem 2 is not true when n = 3. In fact, for n = 3, we have the
following theorem.

Theorem 3 (G {9;+{1,3}}) =4.

Proof. Let the vertices of the graph G(9; £+ {1,3}) be a, a1, a2, a3, a4, by, b3,
b2, by forming a Hamiltonian cycle C as shown in Figure 6.

Figure 6: G(9; £{1,3})

We prove that no three vertices of the graph form a metric basis. Let
M be any one of the 3-subsets: {a,a:,a2}, {a,a1,a3}, {a,a1,a4}, {a,a1,b4},
{a,a2,a4}, {@,a2,b4} and {a,a3,b3}. Then M = {a,a;,a2} is not a metric ba-
sis because a3z and b; have the same M-coordinates. Similarly, the remaining
3-subsets are not metric bases, since the pairs ay, ay; by, b3; az, a4; a1, a3; a;,az
again and by, by are equidistant from each vertex of the corresponding 3-subset.

This implies that B8(G(9;+{1,3})) # 3. As there are only two vertices
with same M-coordinates for any chosen M, we include one more vertex in M.
Without loss of generality, we take M = {a,a1,02,a3}. Hence 8(G) =4. =

4 Conclusion

We have solved the minimum metric dimension problem for undirected Illiac net-
works G(n?;£{1,n}). The problem has been considered already for G(n; {1,2
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. J}: 7 =2,3,4 (1, 7). Thus the problem remains open for G(n;{1,2 ... j}),
Jjz5.
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