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Abstract

Let G = (V, F) be a simple connected graph with n vertices and
m edges. Further let X\;(L), ¢ = 1,2,...,n, be the non-increasing
eigenvalues of the normalized Laplacian matrix of the graph G. In
this paper, we obtain the following result: For a connected graph G of
ordern, A2(L) = A3(L) = - -+ = Aq_1(L) if and only if G is a complete
graph K, or G is a complete bipartite graph K, ,. Moreover, we
present lower and upper bounds for the normalized Laplacian spectral
radius of a graph and characterize graphs for which the lower or upper
bounds is attained.
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1 Introduction

Let G = (V, E) be a simple connected graph with n vertices and m edges
on vertex set V(G) = {v1,v2,...,Un}. For v; € V(G), the degree of v;,
denoted by d; , is the number of vertices adjacent to v; . The average of the
degrees of the vertices adjacent to v; € V(G) is denoted by m;. We will use
the notation i ~ j to denote v; and v, are adjacent vertices. The Laplacian
matrix of G is L(G) = D(G) — A(G), where D(G) is the diagonal matrix
of vertex degrees of graph G and A(G) is the (0,1)— adjacency matrix of

graph G.

The normalized Laplacian matrix of G is defined as L = D(G)~ $L(G)D(G)"
where D(G)“’i is the matrix which is obtained by getting (—%) — power
of each entry of D(G). Throughout this paper let Aj(L) > Ag(L) = --- 2
An(L) = 0 be the eigenvalues of L and call A\;(L) the normalized Laplacian

spectral radius of G.

The normalized Laplacian has gotten increased attention in the last
decade due to its connection with random walks. Chen et al. [2] and
Li (5] established the interlacing results for the normalized Laplacian. S.
Butler 1] gave an improved version of interlacing results for the normalized
Laplacian. The monograph (3] provides a comprehensive survey of results

on normalized Laplacian eigenvalues.

Now we shall see the normalized Laplacian spectrum of some special

graphs. For graph G, S(G) denotes the set of the normalized Laplacian
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eigenvalues. We have

S(Kpq) = {2,1,1,...,1,0} (p+q=n),

n—-2

and S(K")={pfl’nfl"“’nfl’o}’

v

n-1
are the normalized Laplacian spectrum for complete bipartite graph K, 4,

and complete graph K, , respectively.

The rest of the paper is structured as follows. In Section 2 we give some
known results which are used in the Section 3. In Section 3, we obtain:
For a connected graph G of order n, A\2(L) = A3(L) = --- = \,_; if and
only if G is a complete graph K, or G is a complete bipartite graph K, 4.
Also we give lower and upper bounds for the normalized Laplacian spectral
radius of graphs and characterize those graphs for which the bounds are

best possible.
2 Lemmas and results

In this section we give some known results.

Lemma 2.1. [7] Let G be a graph with n vertices and normalized Laplacian

matriz L without isolated vertices. Then

> ML) =tr(L) =n, (1)

i=l1

i N(L) =tr(I?) =n+e_,(G,G), (2)

i=1
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and
n

Y (=M@ =tr((I - L)*) =e~1(G,6) , (3)

i=1

where

Proof: The (i, j)th entry of L = D(G)~#L(G)D(G)~% is

1 ifi=j,

_ l . . ~ .
m if 4 7,

0 otherwise.

Thus we have 3_r_, Ai(L) = tr(L) = n. Since A3(L), i = 1,2,...,n,

are the eigenvalues of L?, we have

> XLy =tr(L?) =n+i > Eld—. =n+e_1(G,G).
iy

i=1 i=1 jijvi
Now,
SA-ML)? = n-2d ML)+ M)
i=1 i=1 i=1
= e1(G,G) by (1) and (2)
= tr((I-L)?.
Hence the proof of the lemma is complete. 0

Lemma 2.2. [3] Let G be a graph with n vertices and normalized Laplacian

eigenvalues A (L) > Xa(L) > -+ 2 A(L) =0. Then

0<M(L)<2.



Moreover, A\(L) = 2 if and only if a connected component of G is bipartite

and nontrivial.

Lemma 2.3. [3] (i): For a graph G of order n, we have

Z /\i (L) S n,
i=1
with equality holding if and only if G has no isolated vertices.
(i) : For a graph which is not a complete graph, we have

’\n—l Sl -

Lemma 2.4. [6] Let A be an n x n complez matriz, and suppose that its

eigenvalues are all real and ordered:

Then
2?—1 Ai 1 - 27"— Ai ?
= i — i=1 <
n + n(n—1) ; : n sh
with equality holding if and only if \y = Ao =+ = Ay

Lemma 2.5. [3] Let G be a graph with n vertices and normalized Laplacian

eigenvalues Ay (L) 2 Mg (L) > --- > A (L) =0. Then

MOz @

Lemma 2.6. [4] Let A be a pxp symmetric matriz and let Ay be its leading

k x k submatriz; that is, Ay is the matriz obtained from A by deleting its
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last p — k rows and columns. Then, fori=1,2,...,k,
Ap—it1(A) € Me—it1(Ar) < Me—ia1(4), (5)
where \;(A) is the i-th largest eigenvalue of A.

3 Bound on the spectral radius of the nor-
malized Laplacian matrix of a graph

In this section we give a lower bound on the spectral radius of the normal-

ized Laplacian matrix of graphs. First we give the following lemma:

Lemma 3.1. Let G be a graph of order n without isolated vertices. Then

M(L) = Ao(L) = -+ = M—1(L) if and only if G is a complete graph K,,.
Proof: If G is a complete graph then A (L) = Xo(L) = -+ = M-1(L) = 725
holds.

Conversely, let Aj(L) = A2(L) = -+ = Aqp—1(L) holds. If G is not a

complete graph then by Lemma 2.3, A,—1(L) < 1 and hence ;. , Ai(L) <

n — 1, a contradiction, by Lemma 2.1. Hence we get the result. O

Theorem 3.2. Let G be a graph with n vertices. Then

M) 21+ \/ =T (G0, ©)

where

n 1 1
e1(G.0) =3 > g =22 35
i~y

i=1 jij~i

Moreover, the equality holds in (6) if and only if G is a complete graph K, .
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Proof: Since normalized Laplacian matrix of G is a real symmetric matrix,
its eigenvalues are real numbers and ordered as A;(L) > Ap(L) > -+ >
An(L) =0. By Lemma 2.1 and Lemma 2.4, we get the required result (6).
Moreover, the equality holds in (6) if and only if A\;(L) = Ap(L) = --- =
An-1(L), by Lemma 2.4, that is, if and only if G is a complete graph K, ,
by Lemma 3.1. O

Remark 3.3. The bound (6) is always better than the bound (4). Because

ea@6) = Y

1j:j~i did;

i=
n

> Z d,—r:z: by the Arithmetic-Harmonic mean inequality

=1
n
2 —— bym;<n-1.
= n-1 ym; S

Using Lemma 3.1, we characterize the graphs in the following theorem.

Theorem 3.4. Let G be a connected graph of order n > 2. Then Jo(L) =
A(L)=-+=An-1(L) fand only if G= K, or G K, ,.

Proof: If G is a complete graph K, then A\ (L) = Ao(L) = A3(L) =--- =
An-1(L) = %5 holds. If G is a complete bipartite graph K, , (p + ¢ = n),
then /\2(L) = /\Q(L) == ’\n—l(L) =1 holds.

Conversely, let Ay(L) = A3(L) = -+ = Ap—1(L). We have to prove that
G = Kpqor G= K,. Now we consider two cases (i) A\1(L) = Aa(L), (ii)
M(L) # Xa(D).
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Case (i): A1(L) = A2(L). In this case we have A\(L) = Aa(L) = A3(L) =

o= Ap1(L) = 727 . Then by Lemma 3.1, G2 K,,.

Case (ii): A\;(L) # M2(L). For n < 4, one can easily see that G is isomor-
phic to K; 2 or Ka2. Otherwise, n > 5. In this case we have G % K,. By

Lemma 2.2, we have A\ (L) < 2. If A\{(L) < 2, then
XL)y=L)y=--=la(l)>1.

Since G 2 K,, by Lemma 2.3, A\,—1(L) < 1, a contradiction. So we must
have A\ (L) = 2 and hence G is a bipartite graph, by Lemma 2.2. Now
we can assume that V(G) = AUB and ANB =&, |A| =p, |B] =4.
By Lemma 2.1, and using given condition, we can conclude that 1 is an

eigenvalue of multiplicity n — 2 of L, that is,

M(L)=XM(L) == a(l)=1

Now suppose that G is not isomorphic to complete bipartite graph K, 5.
So there exists at least one pair of vertices (v;, v) such that v; € A and
v; € B are not adjacent. Let vertex v; be adjacent to v; and also let vertex
vk be adjacent to v; as G is connected and n > 5. So we must have v; € A
and vy € B as G is bipartite. Now we consider two subcases (a) v;ux & E,

(b) ViV € E.

Subcase (a) : v;vr ¢ E. Let L' be the 4 x 4 submatrix of L obtained by
deleting all the rows and columns except i, j, k and [ from L. By Lemma

2.6, we have A;(L) > A; and'Ap(L) > )y, where A; and A, are the largest
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and the second largest eigenvalues of |[L' — AJ | =0, that is,

1-X 0 0 -z
0 1-X -y 0 =0
0 -y 1-x 0 -

-z 0 0 1-A

= 1 _ 1 . — 0 imol;
where z = 7T > 0and y = TJid > 0. Now |L — AI| = 0 implies
A=1+4z, 14y, 1—z, 1—y. So,)\'1>1and/\'2>1,thatis, ML) >1

and Ap(L) > 1.

Subcase (b) : v;ur € E. Let L” be the 4 x 4 submatrix of L obtained by
deleting all the rows and columns except i, j, k and ! from L. By Lemma
2.6, we have A; (L) > /\'1' and (L) > /\'2' , where /\'l' and /\'2' are the largest

and the second largest eigenvalues of [L” — AT | =0, that is,
1-2 0 -z —y
0 1-2 -z 0
- -z 1-A 0
~y 0 0 1-2A

where z = 7317: >0,y= Vﬁ‘ >0andz=\/Tl_d; >0. Now [L"=XI| =0
1 % J

implies

/\=1:t\/%(x2+y2+22:b\/(:I:2+y2+z2)2—4y2z2).
So, Ay >1and A, > 1, that is, \; (L) > 1 and Ag(L) > 1.

From Subcase (a) and Subcase (b), we have A\p(L) > 1, a contradiction.

Hence G = K, ,. (]

Now we are ready to give an upper bound on the spectral radius of the

normalized Laplacian matrix of a graph.

151



Theorem 3.5. Let G be a connected graph of order n with degree sequence

dl,dgp..,dn. Then
’\I(L) < V 2+ e—l(Ga G) ) (7)

where

- 1 1
e_l(G,G)=Z Z Zd_a =2Z-d_,d__7 .
ing

i=1 jijni

Moreover, the equality holds in (7) if and only if G = Kp 4 .

Proof: By Cauchy-Schwarz inequality,

n—1 n—1 2
SR 2 ﬁ(z‘,\,—(m) ®)

=2 =2

= ﬁ (n— /\1(L))2 by Lemma 2.1

> n—2 by Lemma 2.2. 9
Since S°i, A2 (L) =n+e_1(G,G) and Ay (L) =0, we have
n+e_1(G,G) - (L)y>n-2.
From this we get the inequality in (7).

Now suppose that equality holds in (7). Then the equality holds in (8)

and (9). From equality in (8), we get
X(L) = A3(L) =+ = An—1(L).
From equality in (9), we get

ML) =2.
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By Lemma 2.2, G is a connected bipartite graph. By Theorem 3.4, we

conclude that G = K, ;.

Conversely, one can easily see that the equality holds in (7) for complete

bipartite graph K, 4. a
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