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Abstract

We give a characterization of strongly multiplicative graphs. First, we in-
troduce some necessary conditions for a graph to be strongly multiplicative.
Second, we discuss the independence of these necessary conditions. Third,
we show that they are altogether not sufficient for a graph to be strongly
multiplicative. Fourth, we add another necessary condition. Fifth, we
prove that this necessary condition is stronger than the mentioned neces-
sary conditions except one. Finally, we conjecture that the condition itself
is stronger than all of them.

1 Introduction

Beineke and Hegde (3] call a graph G with n vertices strongly multiplica-
tive if its vertices can be labeled with distinct integers 1,2, ...,n such that,
the labels induced on the edges by the product of their end-vertex labels are
all distinct. They prove the following graphs are strongly multiplicative:
trees, cycles, wheels, K, if and only if » < 5, K., if and only if r < 4 and
P, x Py,. They then consider the maximum number of edges a strongly
multiplicative graph of n vertices can have. Denoting this number by A(n),
they show: A(4r) < 6r2, A(4r + 1) < 672 4+ 4r, A\(4r +2) < 6r2 +6r + 1 and
A(4r +3) < 6r% + 10r + 3. Adiga, Ramashekar, and Somashekara [2] give
the bound A(n) < EQZ,LQ +n-2-%1, R%’ where p(i) is the smallest
prime dividing <. For large values of n this is a better upper bound for A(n)
than the one given by Beineke and Hegde. It remained an open problem to
find a nontrivial lower bound for A(n) until R. Kafshgarzaferani succeeded
in finding a formula for A(n) in [9).

Beineke and Seoud (4] study the strong multiplicativity for small powers
of paths and cycles.

Seoud and Zid [10] prove the following graphs are strongly multiplicative:
wheels, 7K, for all r and n at most 5, 7K, forr >2and n =6 or 7, rK,,
for r >3 and n =8 or 9, K,,, for all r, and the corona of P, and K,, for
allnand 2 <m < 8.
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Acharya, Germina, and Ajitha [1] prove that Ko + K, quadrilateral snakes,
Petersen graphs, ladders and unicyclic graphs are strongly multiplicative.
They define a graph with g edges and a strongly multiplicative labeling to
be hyper strongly multiplicative if the induced edge labels are given by the
set {2,3,...,q+1}.

They show that every hyper strongly multiplicative graph has exactly one
nontrivial component that is either a star or has a triangle and every graph
can be embedded as an induced subgraph of a hyper strongly multiplicative
graph.

Throughout this paper, we use the basic notations and conventions in graph
theory as in [7], and in number theory as in [8], [6] and [11}. We use
| A| to denote the size of the set A, i.e., its number of elements, [Ti=T A
to denote the cartesian product of the sets Aj, Az, ..., An, and A — B to
denote the usual difference between the sets A and B. All graphs here are
simple, i.e., containing no loops or multiple edges.

2 Some necessary conditions

2.1 Properties of strongly multiplicative graphs

Definition 2.1.1. [4] A simple graph G with n vertices is said to be
strongly multiplicative if its vertices can be labeled with distinct integers
1,2,...,n such that the labels induced on the edges by the product of the
end vertices are distinct. A graph which is not strongly multiplicative is
said to be non-strongly multiplicative.

Definition 2.1.2. A maximal strongly multiplicative graph of n vertices
is a strongly multiplicative graph such that adding any new edge yields a
non-strongly multiplicative graph.

Remark The maximal strongly multiplicative graph is not unique (i.e.,
there are many non-isomorphic maximal strongly multiplicative graphs of
the same number of vertices). So, we denote them by R¥(n), where the
first graph is denoted by R!(n), and soon ... .

Examples 2.1.1. The following graphs are the maximal strongly multi-
plicative graphs of 6 vertices.

B

156




Considering the four previous graphs without labeling, we see that the they
are all isomorphic except the second graph.

Definition 2.1.3. [8] A positive integer n # 1 is said to be prime if it has
no divisors other than 1 and n, while it is said to be composite if it is not
prime.

Definition 2.1.4. [8] Let = be a non-negative real number. The Gauss’s
function w(x) is defined to be the number of primes not exceeding z.
Theorem 2.1.1.(Condition 1) [9] The ma.xima.l strongly multiplicative

graph of n vertices has A\(n) = 1'1-'1—11 P B are l‘%n%’ —-k+1],

/—r_ mk
where 8(m, k) = E.E:IT{-I ! [Lvik_JJ

Theorem 2.1.2.(Condition ’2) If G is a strongly multiplicative graphs
of order n, then w(G) < 1+ Z”(") |log,, (n)], where p; is the ith prime
number, and w(G) is the clique number of G, namely the maximum order
of a complete subgraph of G”.

Proof. The vertices whose labels are 1,2, 22, ..., 2llog:(n)] 3 32 3llogs(n)]

|.1°8 ( )J
5,52,..., 5108 (W] po s, pfr(n), ,p"(n)p "™ 77 can be adjacent in any strongly

multiplicative graph of n vertices, since the product of any two of them gives
different value from that of any two others (from the fundamental theorem
of arithmetic), then they form a complete subgraph of a maximal strongly
multiplicative graph. Now, we see that adding any new vertex whose label
is 5 to these vertices yields omitting all vertices whose label is p; satisfying
that p; divides s. So, w(G) < 1+Zf$) {log,, (r)], where p; is the i* h prime
number.

Condition 3

If the minimum degree of a graph G of n vertices is greater than the
largest minimum degree in all corresponding maximal strongly multiplica-
tive graphs 6(n), then the graph is non-strongly multiplicative.
Condition 4

If G is a graph of n vertices, which has more than t(n) vertices of degree
n — 1, where t(n) is the maximum number of vertices of degree n — 1 in
all maximal strongly multiplicative graphs of n vertices, then G is non-
strongly multiplicative.

Lemma 2.1.3. [6]

If p is a prime number, then np # i for all n,i,5 < p.

Lemma 2.1.4.

If p is a prime number, then ¢(p) = t(p— 1)+ 1, where ¢(n) is the maximum
number of vertices of degree n — 1 in all maximal strongly multiplicative
graphs of n vertices, and §(p) = 6(p — 1) + 1, where d(n) is the largest min-
imum degree in all maximal strongly multiplicative graphs of n vertices.
Proof. From the previous lemma, the vertex having the label p in a maxi-
mal strongly multiplicative graph of p vertices is adjacent with all the other
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vertices, hence t(p) = t(p — 1)+ 1,and 6(p) =d(p— 1) + 1.

2.2 Independence of some necessary conditions

Now, we show that the four necessary conditions for strongly multiplica-
tive graphs are independent, and they are altogether not sufficient for non-
strong multiplicativity of a graph by using the following table.

Table 2.2.1.

n | An) | 2+ 27 |log,, (n)] | 6(n) | t(n)
2 1 3 1 2
3 3 4 2 3
4 6 5 3 4
51 10 6 4 5
6 | 13 6 4 3
71 19 7 5 4
8| 24 8 5 4
9| 31 9 6 5
10| 36 9 6 4
Example 2.2.1. Only Condition 1 which proves that the following graph

is non-strongly multiplicative.

/

\/

(n = 8) For Condition 2 : Kg = K, £ llog, oy € G. For Condition

3 : the minimum degree of the graph equals 5 = §(8). For Condition 4 :
the number of vertices of degree 7 = 4 = ¢(8). But for Condition 1 : the
number of edges of G m = 25 > 24 = A(8).

Example 2.2.2. Only Condition 2 which proves that the following graph
is non-strongly multiplicative.
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(n = 10) For Condition 1 : the number of edges of G is m = 36 = A(10).
For Condition 3 : the minimum degree of the graph equals 0 < 6 = §(10).
For Condition 4 : the number of vertices of degree 9 = 0 < 4 = ¢(10). But
For Condition 2 : Kg = K2+ZI'=‘§°’ Llog,, (10)) CcG.

Example 2.2.3. Only Condition 3 which proves that the following graph
is non-strongly multiplicative.

(n = 8) For Condition 1 : the number of edges of G is m = 24 = A\(8). For

Condition 2 : Kg = K, £ log,, (8)] Z G. For Condition 4 : the number

of vertices of degree 7 = 0 < 4 = t(8). But For Condition 3 : the minimum
degree of the graph equals 6 > 5 = §(8).

Example 2.2.4. Only Condition 4 which proves that the following graph
is non-strongly multiplicative.

(n =10, G = K5 + K;5) For Condition 1 : the number of edges of G is
m = 35 < 36 = A(10). For Condition 2 : Ky = K2+Zf'_“°’l|°s,,i(10)1 ZG.

i=1

For Condition 3 : the minimum degree of the graph equals 5 < 6 = §(10).
But For Condition 4 : the number of vertices of degree 9 = 5 > 4 = #(10).
Example 2.2.5. Here we give an example of a non-strongly multiplica-
tive graph, but the four conditions fail to decide that it is non-strongly
multiplicative, i.e., they are altogether not sufficient for non-strong multi-
plicativity of a graph.

P
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(n = 8) For Condition 1 : the number of edges of G is m = 24 = A(8). For
Condition 2 : Kz = K, F519 llog,, ®)] € G. For Condition 3 : the mini-
mum degree of the graph equals 5 = §(8). For Condition 4 : the number
of vertices of degree 7 = 1 < 4 = t(8). It remains to show that the graph
G is non-strongly multiplicative.

The following graphs are all the maximal strongly multiplicative graphs of

8 vertices.

From the previous graphs we notice that since the minimum degree in
some of them equals 4, it follows that our graph, which has minimum de-
gree equals 5, is not a subgraph of those graphs. Also, in the remaining
graphs, the number of vertices of degree at most 6 is less than 8, since the
number of vertices of degree at most 6 in our graph equals 8. It follows
that our graph is not a subgraph of any maximal strongly multiplicative
graph of 8 vertices. Hence it is non-strongly multiplicative.

2.3 Other necessary conditions

Definition 2.3.1. [11] If n is a positive integer, the function 7(r) called
the tau function, is defined to be the number of positive divisors of n, i.e.,



T(n) :=|{deN:d|n}|

The tau function satisfies the following properties:

Theorem 2.3.1. [11] If (m,n) = 1, then 7(mn) = 7(m)7r(n), ie., T is
multiplicative.

Theorem 2.3.2. [11] If p is a prime number, then

T(p%) =a+1

Corollary 2.3.3. [11] If n = p{'p5?...p;*, where the p’s are distinct prime
numbers, then

(n) = [Ty (a: +1)

Lemma 2.3.4. [6] If n has no divisors less than or equal to \/z, then n is
a prime number.

Definition 2.3.2. For Any two different positive integers 1 < i,j < n, we
define the set V3, := {(k,m):i*xj=ks*m, and 1 <k <m <n}, (i*]
means the product of ij).

For example, if n = 6, V16¢6 = V2(13 = V66 = {(1,6),(2,3)}, and V26-6 =
V3€4 = V162 = {(2i 6)a (3’4)}'

The following lemma. gives a formula to the order of the set Vi

Lemma 2.3.5.

152 jif n2ixj
lv;?j = o
|%52) - Cgjald) ,if n<ixj
1 ,ifz>n
where a(z) =
0 ,ifz<n

Proof. Since the set V7, := {(k,m):ixj=ksm, and1 <k <m < n}

%
and in the first case we iw.ve n 2 ixj, it follows that | VI, | is equal to
the number of all distinct pairs of divisors of i * j except the repeated pair
(VTx3,+/i*j) in case of /T j is a positive integer, also the number 7(i )
is always an even number except in the case when i x j = m2,m € N. So,
| Ve 1= l_ﬂ;'—’zj, if n > i * j, hence the first case is proved. In the second
case we have n < i x j, it follows that | V7; | is equal to the number of
all pairs of the first case except those pairs in which there exists a divisor
exceeds n. So, | V3, |= [ﬂ‘;—’)J - Zdli*j a(d); if n < ixj, hence the second
case is proved.
Definition 2.3.3. A set theoretic operation
Let Ay, Az, ..., Ap be sets satisfying that for each i, | A; [> 1, we define the
operation []i=, A; := {(UR,4;) — U, {a;} : a; € A;}.
Lemma 2.3.6. The operation [];-, A; is well defined.

Proof. The well definition of the operation H:’;I A; is a direct consequence
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of the well definition of the union and difference.
Remark. After calculating all the sets V3; satisfying that | ViI; |> 1,

and calculating H2si~j5n(n-1).l‘c:,l>l V3;» we notice that, for each ele-

ment F € Hgsi.jgn(n-l)JV"

n |51 Viij» we construct a maximal strongly

iej
multiplicative graph by deleting all edges in the set E from the complete
graph of n vertices.
Now, we calculate the degree of the vertex labeled 7 in the maximal strongly
multiplicative graph associated with an element E €[], J<n(n—1),IVa,1>1 Vi
by the following lemma.
Lemma 2.3.7. The degree of the vertex labeled ¢ in the maximal strongly
multiplicative graph associated with an element E € [[o<;.j<n(n- Ve, I>1 Vi
is given by the following function F(¢,E) =n—-1- Z(m)e g 0i(r, s), where

1 Jifr=iors=1
91' (1‘, S) =

0 ,otherwise
Definition 2.3.4. Let G be a given graph of n vertices. We define the
following three sequences :
(1)the sequence of the distinct degrees of vertices in a maximal strongly
multiplicative graph arranged in an ascending order, we call it the max-
imal degree sequence. In fact we have many different sequences of such
type due to the existence of non-isomorphic maximal strongly multiplica-
tive graphs. We denote it by Dpxn) = (d¥), where d¥ is the ith degree of
vertices in the kth maximal strongly multiplicative graph.
(2)the sequences Cpk(n) = (c¥), where c¥ is defined to be the number of
vertices of degree at most d¥ in the kth maximal strongly multiplicative
graph, we call them the maximal strongly multiplicative sequence.
(3)for the given graph G the graph sequences BS = (b¥), where b¥ is de-
fined to be the number of vertices of degree at most d¥ in G.
Example 2.3.1. For n = 6, V55 = V85 = V§ = {(1,6),(2,3)}, and
Vae = Vi = Vi = {(2,6),(3,4)}. So, nzgi*jgs*s,|vg,|>1 V=
{{(1,6),(2,6)},{(1,6),(3,4)},{(2,3),(2,6)},{(2,3), (3,4)}}.
The corresponding graphs are R!(6), R?(6), R3(6),R*(6) are shown in Ex-
ample 2.1.1., their distinct sequences are Dpigy = Dps@) = Dpss) =
{3, 4,5}, CR‘(G) = CR3(6) = Cnd(s) = {1,3, 6},
Dgz(s) = {4, 5}7CR2(6) = {4, 6}, and hence t(ﬁ) = 3,(5(6) =4.
Theorem 2.3.8. (Condition 5) Let G be a simple graph for which there
exists i§ such that bfg < cfg; for every k, then G is non-strongly multiplica-
tive.
Proof. For a fixed k, suppose that there exists i§ such that bix < ci, e,
the number of vertices of degree at most d;x in G is less than the number
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of vertices of degree at most d;x in the corresponding kth maximal strongly
multiplicative graph, which is equal to the number of the labels of those
vertices in the corresponding kth maximal strongly multiplicative graph.
Then, to distribute these labels on the vertices of G we must put them on
vertices of degrees at most d".')" this implies that there exists at least one

label, say 7%, on a vertex of degree at most d;x in the corresponding kth
maximal strongly multiplicative graph must be given to a vertex of degree

more than d;x in G, say v§, then there exist three vertices w§, uk, 2%, where

w is adjacent with v§, and has label say m&, also, the two vertlces uf, 2k

are adjacent having labels, say s§ and t§, satisfying régmk = sktk. Hence
the graph G is not a subgraph of the kth maximal strongly multlphcatlve
graph. Since it happens for each k, it follows that G is not a subgraph of
any maximal strongly multiplicative graph. Hence G is non-strongly mul-
tiplicative.

Now, we’ll show that Condition 5 is stronger than conditions 1,3,4 in the
sense that every non-strongly multiplicative graph by these conditions is
non-strongly multiplicative by Condition 5.

Corollary 2.3.9. If G is a graph of n vertices and m edges such that,
m > A(n), then for each k, there exists i§ such that bix < cix.

Proof. Suppose that the degree of a vertex v; of G is p(i), and suppose
that m, the number of edges of G, is equal to 1 + A(n), and by deleting
an edge we get a strongly multiplicative graph, i.e., G becomes a maximal
strongly multiplicative graph. Suppose that the edge which causes G to be
non-strongly multiplicative with respect to the kth maximal strongly mul-
tiplicative graph is one of gi, hx, connecting the vertices v*, w¥ and y¥, z&
respectively, having the labels 7, s,t,u, such that rs = tu. Without any
loss of generality, suppose that r < s, then the degree of v* after removing
the edge gk is p(r) = d;x and before removing gi the degree is dx +1, then
the number of vertices of degree at most d;x in G is less than that number
in the correspondmg kth maximal strongly multlpllcatlve graph, i.e., there
exists i§ = i¥ such that b; 5 < Cig

Corollary 2 3.10. If the minimum degree of the graph is greater than
d(n), which is defined in Condition 3, then for every k, there exists iy such
that bt'o < Cip-

Proof. Since the minimum degree of the graph is greater than §(n), the
largest minimurn degree in all corresponding maximal strongly multiplica-
tive graphs, then for every k, the number of vertices of degree at most d¥ in
the graph equals to zero which is less than the number of vertices of degree
at most df in the corresponding kth maximal strongly multiplicative graph,
and it is clear that 49 = 1, which satisfies that for every k, 0 = b;, < ¢;,.
Corollary 2.3.11. If a graph G of n vertices has more than t(n) -which is
defined in Condition 4- vertices of degree n — 1, then there exists ip such
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that b;, < ¢;,, for each k.

Proof. Suppose that the number of vertices of degree n—1 in G is greater
than t(r), which is defined in Condition 4, then the number of vertices of
degree less than n — 1 in G is n — t(n), which is less than this number in all
corresponding maximal strongly multiplicative graphs. Then there exists
io (the prelast term) such that by, < ci,, for every k.

In the following table we give the distinct sequences of all maximal strongly
multiplicative graphs of n vertices.

Table 2.3.1.

n DR‘(‘![) CR-‘(,,)

6 | {3,4,5} {1,3,6}
{4,5} {4,6}

7 {4,5,6} {1,3,7}
{5,6} {47}

81 {4,5,6,7} | {1,3,4,8}
{4,5,6,7} | {1,2,5,8}
{5,6,7} {2,6,8}
{5,6,7} {3,5,8}

Example 2.3.2. Condition 5 proves that the following graph is non-
strongly multiplicative, while Condition 2 fails to decide that it is non-

strongly multiplicative.
=7 g\

(n = 8) For Condition 2: Kg = K, FTID llog,, (8)] & G. But For Condition

5 : from table 2.3.1, the corresponding distinct sequences are Dpgi(g) =
{4,5,6,7},Cri(s) = {1,3,4,8}.

DR’(S) = {4) 51 67 7}) CR’(S) = {17 2a 51 8}

Dna(s) = {5, 6, 7},CR3(8) = {2,6,8}.

Dnd(g) = {5,6, 7},0}34(3) = {3,5,8}.

Also, their corresponding graph sequences are B = {0,1,7,8},B% =
{0,1,7,8} ,B% = {1,7,8} ,BL = {1,7,8}.

Conjecture 2.3.1. Condition 5 is stronger than Condition 2 in the sense
that every non-strongly multiplicative graph by Condition 2 is a non-
strongly multiplicative by Condition 5.
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