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Abstract

Let G = (V,E) be a graph without an isolated vertex. A set
D C V(G) is a total dominating set if D is dominating and the
induced subgraph G[D] does not contain an isolated vertex. The
total domination number of G is the minimum cardinality of a total
dominating set of G. A set D C V(G) is a total outer-connected
dominating set if D is total dominating and the induced subgraph
G[V(G) — D] is a connected graph. The total outer-connected dom-
ination number of G is the minimum cardinality of a total outer—
connected dominating set of G. We characterize all unicyclic graphs
with equal total domination and total outer-connected domination
numbers.
Keywords: total domination number, total outer—connected domi-
nation number, unicyclic graphs
AMS Subject Classification: 05C69.

1 Definitions

Here we consider simple undirected and connected graphs G = (V, E).
The distance dg(u,v) between two vertices u and v in G is the length
of a shortest (u — v) path in G. If D is a set and u € V(G), then
dg(u, D) = min{dg(u,v) : v € D}. The neighbourhood Ng(v) of a ver-
tex v € V(G) is the set of all vertices adjacent to v. The degree of a vertex
v is dg(v) = |Ng(v)| and a vertex of degree 1 is called a leaf. A vertex,
which is a neighbour of a leaf, is called a support vertez. For example the
path on two vertices, P,, contains two leaves and two support vertices.
Denote by S(G) the set of all support vertices of G. If a support vertex is
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adjacent to more than one leaf, then we call it a strong support vertez. For
notational convenience we denote the set of all support vertices and leaves
of G by J(G).

Aset D C V(G) is a 2-packing in G if dg(u,v) > 3 foreveryu,v € D. A
subset D of V(@) is dominating if every vertex of V(G)— D has a neighbour
in D.

If G is without an isolated vertex, then a set D C V(G) is a total
dominating set of G if for every vertex v € V(G), there exists a vertex
u € D such that v and u are adjacent. The minimum cardinality of a
total dominating set in G is the total domination number denoted ~;(G).
A minimum tota] dominating set of a graph G is called a 7;(G)-set. The
total domination number of a graph was introduced by Cockayne, Dawes
and Hedetniemi [1] and is now well studied in the theory of domination.

If G is without an isolated vertex, then a set D C V(G) is a total outer-
connected dominating set of G if D is total dominating set of G and the
subgraph induced by V(G) — D is connected. The minimum cardinality of
a total outer—connected dominating set in G is the total outer-connected
domination number denoted 7;-(G). A minimum total outer—connected
dominating set of a graph G is called a 7;.(G)-set. The total-outer con-
nected domination number of a graph was defined recently by Cyman (2]
and further studied, for example, by Hattingh and Joubert [5]. As an im-
mediate consequence of this definitions we have 7:,(G) < 7:c(G). For an
application, we consider a computer network in which a core group of file-
servers has the ability to communicate directly with every computer outside
the core group. In addition, each fileserver is directly linked to at least one
other fileserver and every two computers outside the core group may com-
municate with each other without intervention of any of the fileservers to
protect the fileservers from overloading. A smallest core group with these
properties is a ~y;c-set for the graph representing the network.

A unicyclic graph is a graph that contains precisely one cycle. For any
graph theoretical parameters A and p, we define G to be (A, u)-graph if
AG) = p(G). In this paper we provide a constructive characterization of
all (7, vec)-unicyclic graphs. For any unexplained terms and symbols see
[4].

2 Preliminary results

In our characterization of (7, ~:c)-unicyclic graphs we assume that G is
without isolates. First we present the following observations. The first one
has been taken from [6].

Observation 1 [6] Let T be a tree that is not a star. Then there exists a
~(T')-set that contains no leaf. n
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Moreover, it is no problem to observe that if G is a graph, then each
support vertex is in v, (G)-set. '

The following observation concerns the total outer-connected domina-
tion number of a graph.
Proposition 2 [3] If G is a graph with 1¢(G) < n(G) — 2, then each leaf
and each support verter belong to every minimum total outer-connected
dominating set of G. [ ]

In (3] are constructively characterized all (v, :c)-trees as follows. Let
O be the following operation defined on a tree T

¢ Operation O. Assumez € V(T)—J(T). Then add a path (y1,y2,y3)
and the edge zy;.

Let T be the family of trees such that 7 = {T : T is obtained from Ps by
a finite sequence of operations O} U {P,, P3}. Fig. 1 gives an example of a
tree belonging to 7.

———o—o

°

)
Figure 1: Tree T belonging to the family 7°

It is no problem to observe, that if a tree T with n(T') > 3 belongs to
the family 7', then each vertex of S(T') is of degree 2, S(T) is a 2-packing
and S(T) is a dominating set of T. Hence v,(T) = |J(T)|.

Theorem 3 (3] A tree T is a (v, yic)-tree if and only if T belongs to the
family T . [ |

3 Unicyclic graphs

Now we constructively characterize all connected unicyclic graphs for which
4t(G) = 7c(G). To this aim define C to be the family of all graphs G for
which exists a tree T belonging to the family 7, such that G may be
obtained from T by one of the operations listed below.

e Operation O;. Assume u,v € V(T') — J(T'). Then add the edge uv
(see Fig. 2).
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Figure 2: Graph G obtained from a tree T € T by Operation O;.

e Operation O,. Assume u,v € S(T') and let u' and v’ be the leaves
adjacent to u and v, respectively. Then identify u with v and v’ with
v’ (see Fig. 3).

Figure 3: Operation O,.

e Operation O3. Assume u,v € S(T') and let v’ and v’ be the leaves
adjacent to u and v, respectively. Then identify v with v’ and v with
v’ (see Fig. 4).

Figure 4: Operation Os.

Additionally, let the cycles C3,Cs and Cg belong to C and observe that Cy
may be obtained from Ps € T by Operation O3.
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Lemma 4 If G belongs to the family C, then v(G) = v,.(G).

Proof. If G is a cycle belonging to C, then the result is immediate. If not,
assume first that G is obtained from a tree T € T by Operation Oy, e.g.
G is obtained from T by adding the edge uv, where {u,v} C V(T) - J(T).
Then S(G) = §(T) and J(G) = J(T'). Thus in G, similarly like in T, S$(G)
is a 2-packing and S(G) is a dominating set of G. Hence v,(G) = 2|S(G)| =
[J(G)|. On the other hand, J(G) is a total outer-connected dominating set
of G, so

IJ(G) = 1(G) < 1e(G) < |J(G)]. (1)

Thus 7:(G) = 71¢(G).

Assume now that G is obtained from a tree T’ € T by Operation Oy, e.g.
G is obtained from T by identifying u with v and u’ with v/, where u,v €
S(T) and v/, v are the leaves adjacent in T to u and v, respectively. Denote
by w the vertex obtained by identifying u and v and denote by w’ the vertex
obtained by identifying 4’ and +'. Then S(G) = (S(T) U {w}) - {u,v}
and J(G) = (J(T) U {w,w'}) — {u,v,u',v'}. However in G, similarly like
in T, 8(G) is a 2-packing and S(G) is a dominating set of G. Hence
1(G) = 2|S(G)| = |J(G)|. On the other hand, J(G) is a total outer—
connected dominating set of G, so the inequaity chain (1) cholds and thus
1(G) = 1e(G).

Assume now that G is obtained from a tree T € T by Operation O3,
e.g. G is obtained from T by identifying u with v’ and ' with v, where
u,v € S(T') and u’, v’ are the leaves adjacent in T to u and v, respectively.
Denote by w the vertex obtained by identifying u and v and denote by w’
the vertex obtained by identifying «' and v. Then S(G) = S(T) — {u,v}
and J(G) = J(T) ~ {u,v,«',v'}. Similarly like in T, S(G) is a 2-packing.
Moreover, S(G) U {w,w'} is a dominating set of G, de(w, S(G)) = 3 and
dg(w', S(G)) = 3. Hence v(G) = 2|S(G)| + 2 = |J(G) U {w,w'}|. On the
other hand, J(G) U {w, w'} is a total outer—connected dominating set of G,

so
IJ(G)] +2 = %(G) £ me(G) < |J(G)| +2.

Thus 7(G) = %e(C). »

Lemma 5 If G is connected unicyclic graph with v,(G) = 7c(G), then G
belongs to the family C.

Proof. Let G be a connected unicyclic graph, where C, = (vy,...,vx) is the
unique cycle of G. Assume first that each vertex of Cy, is of degree 2. Then
G is a cycle C;, for some k > 3. It is no problem to see that v;c.(Ci) = k—2
for k > 4 and 7;.(C3) = 2. On the other hand, v,(Ci) < k — 2 for k > 7.
Thus it is possible to verify that if v,(Ck) = ¥:c(Ck), then k € {3,4,5,6}.
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Therefore assume G is not a cycle. If v; € V(Cx), then let T'(v;) be
the tree obtained from G by removing edges v;v;4+1 and v;_jv; (where the
indices are taken modulo k and added 1) and containing v;. Let v; be the
root of T'(v;). Let Dy, be a minimum total outer—connected dominating set
of G.

Assume now, without loss of generality, that dg(v;) > 3 and denote by =
any element of V(T'(v;)) which is not a leaf. Moreover, denote by T'(z) the
subtree of T'(v;) rooted in z. Then z is a cut-vertex and if additionaly z is
in Dy, then either V(G)—D. C V(T'(z)) or V(G)—D;. € V(G)-V (T(z))-
Suppose V(G) — Dic € V(T(z)). Then V(T'(v2)) U---U V(T (vk)) C Dre.
If V(T(v2))U- - -UV (T (vx)) contains a leaf, say u, then Dy — {u} is a total
dominating set of G of smaller cardinality than +;(G), which is impossible.
Therefore dg(ve) = - -+ = dg(vk) = 2. However then Dy — {v2} is a total
dominating set of G of smaller cardinality than 7,(G), a contradiction.

Hence V(G) — Dy € V(G) — V(T(z)). Then V(T(x)) C Dye. If T(x)
contains more that one leaf, say z; and 5 are leaves in T(z), then Dy.—{x1}
is a total dominating set of G of smaller cardinality than v(G), which
is impossible. Therefore T'(z) is a path. If T(x) contains more than 3
vertices and u is the unique leaf of T'(z), then again D — {u} is a total
dominating set of G of smaller cardinality than v.(G), a contradiction.
Therefore |V(T'(z))| = 2 and for this reason if z ¢ V(Cy), then dg(z) = 2
because z is adjacent to exactly one leaf and one parent. Moreover, if
z € V(Cy), then dg(zx) = 3.

Since each support vertex and each leaf is in Dy, we conclude that
1e(G) > 2|S(G)| = |J(G)|- Further, if v; € V(Cx) and |V(T'(w))| = 2,
then V(T'(v;))NDye = V(T (v;)NJ(G). Therefore, since each support vertex
belongs to the total dominating set of G, we conclude that each support
vertex has in every 7:(G)-set exactly one neighbour and since 7:(G) =
v:c(G), every two support vertices of G are at least distance 3 apart, e.g.
S(G) is a 2-packing.

1. Assume V(C)N Dy, = 0. Then V(C) N S(G) = 0 and since Dy, is
dominating, dg(v;) > 3 for each v; € V(Ci). Since removing an edge
(which is not incident to a leaf) of a graph cannot decrease its total
domination number, we obtain

Yte(G) = 1(G) < (G — n1v2) < 71e(G — v1v2). (2)

It is possible to see that D, is also a total outer-connected dom-
inating set of G — v1v2, 50 Yc(G) 2 Vee(G — v1v2) and thus we
have equalities throughout the inequality chain (2). In particular,
Y(G — 1192) = ¥:c(G — v1v2) and since G — vyvs is a tree, Theo-
rem 3 implies that G — vjve belongs to the family 7. Obviously
v1,v2 € J(G — v1v2), so finally we conclude that G may be obtained
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from a tree belonging to the family 7 by Operation ©;. Therefore G
belongs to the family C.

. Assume now, without loss of generality, that v; € V(C) N D,
and dg(vi) > 3. Then |V(T(v1))] = 2, dg(v1) = 3 and v; is a
support vertex. Denote by z the unique leaf adjacent to v;.

Suppose v € Dy.. Then D, — {z} is a total dominating set of G of
cardinality smaller than v,(G), a contradiction. We conclude that z is
the unique neighbour of v; belonging to D,, and thus v, is the unique
vertex of Cj, belonging to Dy.. Suppose now that y, v; € Ng(v2)NDse.
Then, since Dy, is outer—connected, y € V(T'(vp)). Define

D' = {u:u € Dy — V(T(v2))} U
U {u: u is the parent of a vertex belonging to Dy, N V(T (v2))}.

It is no problem to see that |D’| < |Dy.|. Moreover, since v, € D,
D’ — {z} is a total dominating set of G of smaller cardinality than
7:(G), which is impossible. Therefore Ng(vz) N Dy = {v1} and, by
symmetry, Ng(vi) N Dy = {v1}. Thus each vertex of G, which is not
a support, is a neighbour of exactly one support vertex. Therefore
1(C) = 1e(G) = 2|S(G)| = J(G)].

Denote by G the graph obtained from G by splitting v; and z, e.g.
we remove from G the edge v;v2 and we add a path (v}, z’) and the
edge vov] (see Fig. 5).

Uk Ui

Figure 5: Splitting v; and z in G

Of course v,(G) < 1(G1). By the construction of G, and since each
support vertex of a graph is in minimum total dominating set and
S(G1) = S(G) U {vi}, we have %:(G) < %(G:1) — 1. Suppose D, is
a 7t(G1)-set of cardinality 4¢(G) + 1. Then v} € D; and v} has a
neighbour in D;. If 2’ € D,, then D, — {z',v}} is a total dominating
set of G of cardinality smaller than v,(G), a contradiction. Thus
assume =’ ¢ D;. This implies v, € D,. If additionally x € D, then
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D, — {z,v!} is a total dominating set of G of cardinality smaller than
4¢(G). Thus assume z,z’ ¢ D;. Then vx € D; and v2 € D, and
for this reason D; — {v{} would be a ;(G)-set. However, since each
vertex of G, which is not a support, is a neighbour of exactly one
support vertex, D; — {v},v2} is also a total dominating set of G of
cardinality smaller than 7:(G), a contradiction. We conclude that
1t (G) < 1:(G1) — 2 and thus we obtain

Ye(G) = 1(G) € 1(G1) — 2 £ 11c(G1) — 2. (3)

It is possible to see that D;.U{v},z'} is a total outer-connected dom-
inating set of Gy, 50 7tc(G) = Yic(G1) — 2 and thus we have equalities
throughout the inequality chain (3). In particular, 4:(G1) = 1c(G1)
and since G, is a tree, Theorem 3 implies that Gy belongs to the
family 7. Finally we conclude that G may be obtained from a tree
belonging to the family T by Operation Oa. Therefore G belongs to
the family C.

. Assume v; € V(C) N Dy, and dg(v1) = 2. Then, without loss of
generality, vo € D;.. By similar reasoning as in the previous case, we
have dg(v2) = 2. Assume additionally that vs ¢ D;. and v ¢
Dqc. Then since D, is outer—connected, exactly two vertices of V(Cx)
belong to D;c, namely v; and vo. If v3 = vy, then, since G is not a
cycle, dg(vs) > 3. If V(T (v3)) N Dy # 0, then (Dyc — {v1,v2}) U {va}
is a total dominating set of G of cardinality smaller than v(G), a
contradiction. If V(T'(v3)) N Dy = @, then define

D’ = {u:u is the parent of a vertex from D;c NV (T(v3))}
U {vy,v2}.
It is no problem to see that |D’| < |D;c|- Moreover, (D’ — {vq,v2})U

{vs} is a total dominating set of G of smaller cardinality than v,(G),
which is impossilbe.

Thus let v3 # v, that is k > 4. Suppose yi and v; are two distinct
elements of Ng(vk) N Dy and y3 and v, are two distinct elements of
Ng(v3) N Dyc. Then define

D' = {u:u € Dic — (V(T(vk)) UV(T(v3)))} U
U {u: u is the parent of a vertex from Dy N V(T (vk))}
U {u: u is the parent of a vertex from D¢, N V(T (vs))}-
It is no problem to see that |D’| < |Dyc|. Moreover, since vk, v3 € D',

D' —{wv1, vz} is a total dominating set of G of smaller cardinality than
7t(G), which is impossilbe. Thus suppose {yx,v1} € Ng(vk) N Dic
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and Ng(v3)ND;. = {v2}. Then v4 has a neighbour in D;. NV (T'(v4))
(note that possibly v = v4). Define

D' = {u:u€ Dy — (V(T(va)) UV(T(vk)))} U
U {u: u is the parent of a vertex from D,. NV (T(v,))}
U {u: u is the parent of a vertex from Dy, N V(T (vi))}.

It is no problem to see that |D’| < |Dy| (also if vk = vq). Moreover,
since v, v4 € D', D' — {v2} is a total dominating set of G of smaller
cardinality than ~,(G), which is impossilbe. We conclude that v;
is the unique neigbour of v belonging to D;, and v is the unique
neigbour of v3 belonging to D;.. Thus each vertex of G, which is not
a support, is a neighbour of exactly one vertex from S(G) U {v;, v2}.
Therefore 7:(G) = 1:(G) = |J(G) U {v1, v2}|.

Denote by G2 the graph obtained from G by splitting with a twist
v; and v2, e.g. we remove from G the edge vov3 and we add a path
(v, v5) and an edge vsv] (see Fig. 6).

v,
k V4

m vo

U3

Figure 6: Splitting with a twist v; and v, in G

It is no problem to see that ;(G) < 7:(G2). Suppose D; is a 1:(G2)-
set of cardinality smaller than 4;(G) + 2. Then v;,v| € D, and both
v; and v] have a neighbour in D,. If vz,v) € Dy, then D, — {v},v}} is
a total dominating set of G of cardinality smaller than v;(G), which
is impossible. If either vy or v3 in Dy, then D = (D, — {v],v5})U{v2}
is a total dominating set of G of cardinality at most v,(G). However,
since each vertex belonging to Ng(vx) — {vi} has a neighbour in
S(G) and each vertex belonging to Ng(vs) — {v2} has a neighbour
in S(G), D — {vk,vs3} is a total dominating set of G of cardinality
smaller than v,(G), which is impossible. If both v and v3 in Dy, then
D = (D~ {v{, v})U{v2} is a total dominating set of G of cardinality
at most v,(G) + 1. However then D — {v,vs3} is a total dominating
set of G of cardinality smaller than 7:(G), a contradiction.

Therefore,
Yee(G) = 1(G) < 1(G1) = 2 < 1e(G1) — 2. (4)
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It is possible to see that D;.U{v}, v5} is a total outer-connected dom-
inating set of G2, 50 7:c(G) 2 Y:c(G1) — 2 and thus we have equalities
throughout the inequality chain (4). In particular, 1:(G2) = 71c(G2)
and since G; is a tree, Theorem 3 implies that G2 belongs to the
family 7. Finally, we conclude that G may be obtained from a tree
belonging to the family 7 by Operation O3. Therefore G belongs to
the family C.

. Assume now {v1,vs,v3} C V(C) N Dyc. Then by similar reasoning
as in previous cases, we have dg(v1) = dg(v2) = dg(vs) = 2. Since
G is not a cycle, vy # v3. Thus k& > 4. Assume additionally
that vq ¢ D;. and vk ¢ Dy.. Then since D;. is outer-connected,
exactly three vertices of V(C) belong to D;c, namely v;, v2 and v3. If
v4 = Vg, then, since G is not a cycle, dg(v4) > 3. However then (Dy.—
{va,v3}) U {v4} is a total dominating set of G of cardinality smaller
than +;(G), which is impossible. Thus k¥ > 5. Suppose dg(vs) > 3
and |Ng(v4) N Dyc| = 2. Then dg(vs) > 3 and v4 has a neighbour in
V(T (v4))ND:c, denoted vjy. Moreover, Dyc—{v3} is a total dominating
set of G of smaller cardinality than +:(G), which is impossilbe. Thus
v3 is the unique neighbour of v4 belonging to Dy. and vy ¢ D;.. Hence
v} has a son in T'(v4) belonging to Dy, denoted vj. Define

D' = {u:u€ Dy — V(T(vy))}U
U {u: u is the parent of a vertex from Dy NV (T(v4))}

and observe, that as {v1, v, v3, v}, v4} C D', D'—{v3} is again a total
dominating set of G of smaller cardinality than «,(G). Therefore,
dg(v4) = 2. Since G is not a cycle, vx # vs. However then vs ¢ D,
and vg has a neighbour in V(T'(vs)) N Dy, denoted vg. Observe, that
since v € Dy, vg has a son in T'(vs) belonging to D,.. Define

D' ={u:u€ D¢ —V(T(vs))}U
U {u: u is the parent of a vertex from D;. NV (T (vs))}.

It is no problem to see that |D’| < |D;.|. Moreover, as {v;, ve, v, vs,
vt} € D' and dg(vy) = 2, D’ — {v3} is a total dominating set of G
of smaller cardinality than +:(G), which is impossilbe. We conclude
that if 7:(G) = 1(G) and G is not a cycle, then the case when
{v1,v2,v3} C Dy and vy, v € D is impossible.

. Assume at last, {v1,v2,v3,94} C V(C) N D¢e. Then dg(v1) =
dg(v2) = dg(v3) = dg(v4) = 2. Since G is not a cycle, vg # vg. Thus
k > 5. If vs € Dy, then D, — {v3} is a total dominating set of G of

176



smaller cardinality than +,(G), which is impossilbe. Thus vs ¢ D,
and similarly vx ¢ Dq.. Suppose dg(vs) = 3 and [Ng(vs) N Dye| > 2.
Then dg(vs) > 3 and vs has a neighbour in V(T'(vs)) N D, denoted
v5. Observe, that Dy — {v4} is a total dominating set of G of smaller
cardinality than +:(G), which is impossilbe. Thus v4 is the unique
neighbour of vs belonging to D;. and v; ¢ D,.. Hence v} has a son
in T'(vs) belonging to D, denoted vg. Define

D' = {u:u€ Dy~ V(T(vs))}U
U {u:u is the parent of a vertex from D;. N V(T (vs))}.

and observe, that as {vy,v2,v3,vs, v§,vf} C D', D' — {v,} is a total

dominating set of G of smaller cardinality than +;(G). Therefore,
dg(vs) = 2. Since G is not a cycle, vg # vs. However then vg ¢ Dy,
dc(ve) > 3 and ve has a neighbour in V(T'(ve)) N Dy, denoted v}.
Observe, that since vg ¢ Dy, vg has a son in T(vg) belonging to D.
Define

D' ={u:ue€ Dy —V(T(vs))}U
U {u:u is the parent of a vertex from Dy, NV (T'(vs))}.

It is no problem to see that {D’| < [D,.|. Moreover, as {v;, v, v3, v4,

ve,vg} C D', D' —{v4} is a total dominating set of G of smaller cardi-
nality than v;(G), which is impossilbe. We conclude that if v(G) =
¥:c(G) and G is not a cycle, then the case when {v1,v2,v3,v4} C Dic
is impossible.

Our last result gives a characterization of all (7, y:)-unicyclic graphs.
The straightforward proof is omitted.

Theorem 6 Let G be a unicyclic graph. Then v,(G) = 11c(G) if and only
if ezactly one connected component of G is a unicyclic graph belonging to
the family C and each other connected compoment of G is a tree belonging
to the family T. ]
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