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Abstract. Two-dimensional codes in LRTJ spaces are subspaces
of the space Matmxs(Z,), the linear space of all m x s-matrices (or
arrays) with entries from a finite ring Z, endowed with the LRTJ-
metric [3,9]. Also, the error correcting capability of a linear code
depends upon the number of parity check symbols. In this paper,
we obtain a lower bound over the number of parity checks of two-
dimensional codes in LRTJ-spaces correcting both independent as
well as cluster array errors.
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1. Introduction

Burst (or cluster) error correcting array codes are developed (5] to
protect clustered errors over a particular subarray part of the transmitted
array message. These types of errors occur in many practical situations e.g.
due to lightening and thunder in deep space and satellite communication.
In fact, burst-error correcting codes are suitable for correcting errors which
do not occur independently but are clustered over a given subarray in the
transmitted array. In many practical situations, the weights of the burst
array errors are not large. In [10], the author considered the problem of
burst error correction in LRTJ-spaces. However, burst error correcting
codes fail to correct even a few independent array errors when these are
not with in bursts of specified order. Therefore, in actual communication,
while it is important to consider correction of low-weight bursts, care must
be taken to correct array errors of upto a specificed weight, no matter where
they occur. Keeping this in view, in this paper, we obtain a lower bound on
the number of parity check digits for 2-dimensional array codes in LRTJ-
spaces correcting simultaneously cluster as well as independent array errors.
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2. Definitions and notations

Let Z, be the ring of integers modulo ¢q. Let Matn,xs(Z,) be the
set of all m x s matrices with entries from Z,;. Then Matmxs(Zq) is a
module over Z;. Let V be a Zg-submodule of the module Matmxs(Zg)-
Then V is called an array code (In fact, linear array code). For g prime,
Z, becomes a field and correspondingly Matmxs(Z,) and V become the
vector space and a sub space respectively over the field Z,. We note that
the space Mat,,xs(Zg) is identifiable with the space Z7**. Every matrix in
Matmxs(Zg) can be represented as an 1xms vector by writing the first row
of matrix followed by second row and so forth. Similarly, every vector in
Z7* can be represented as an m X s matrix in Mat.xs(Z,) by separating
the co-ordinates of the vector into m groups of s-coordinates. Also, we
define the modular value |a| of an element a € Z, by

aj={ @ if 0< a<gq/2
"1l g-a if ¢/2<a<qg-1.

We note that the non-zero modular value |a| can be obtained by two dif-
ferent elements a and g — a of Z, provided {q is odd} or {q is even and

a# [(g/2)}, ie.

g isodd
la| =g —a| if or

gisevenand a#q/2.
If q is even and a = [g/2] or if a = 0, then |a| is obtained in only one
way viz., |a| = a.

Thus, there may be one or two equivalent values of |a| which we shall refer
to as repetitive equivalent values of a. The number of repetitive equivalent
values of a will be denoted by e,, where

e =J 1 i {g isevenanda=gq/2} or {a=0}
h 2 if { ¢ is odd and a # 0} or {q is even, a # 0 and a # q/2}.

We now define the LRTJ-metric as follows 3,9]:
Let Y € Matyxs(Z,) with Y = (y1,¥2," -+ ¥s)-
Define the row-weight of Y as
max|y;| + max{j — 1| y; #0} if Y #0
j=1 i=1
wty(Y) =
0 ifY =0.
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Then 0 < wit,(Y) < [g/2]+s—1. Extending the definition of the row-weight
to the class of all m x s matrices as

wtp(A) = Y _wip(Rs)

i=1
R,
Ry

where A = € Matnxs(Zy) and R; denotes the i** row of A.

R,
Then wt, satisfies 0 < wt,(A) < m([¢/2]+5s—-1) V A € Matmxs(Z,)
and determines a pseudo-metric on Mat,xs(Z,) if we set d(A,A’) =
wi,(A— A')V A A" € Mat,xs(Zg) known as LRTJ-metric. We beserve
the following facts about LRTJ-metric:

1. For s = 1, LRTJ-metric is just the classical Lee metric [13].

2. For ¢ = 2,3, the LRTJ-metric reduces to the RT metric [15].
Remarks.:

1. For ¢ > 3,

LRTJ-wt (A) > RT-wt (A) V A € Matpmys(Z,)

2. For s = 1 and ¢ = 2,3, the LRTJ-metric reduces to the Hamming
metric {14].

Also, we shall use the following notations:

1. [z] = The largest integer less than or equal to x.

2. Q; will denote the sum of repetitive equivalent values up to i i.e.,
Qi=eter+---+e
where e; denotes the repetitive equivalent value of 3.

Note. Ifi < 0say i = —j where j > 0 then Q; = eg+e_1+e_z+---+e_j =
€y = -1.
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3. Lower bound for codes in LRTJ-spaces correcting
independent and burst errors simultaneously

We start with the definition of bursts in m-metric array codes (5].

Definition 3.1. A burst of order pr(or pxr)(1 < p<m,1 <7 < s) in the
space Mat,,xs(F,) is an m x s matrix in which all the nonzero entries are
confined to some p x r submatrix which has non-zero first and last rows as
well as non-zero first and last columns.

Note. For p = 1, Definition 3.1 reduces to the definition of burst for clas-
sical codes [4].

Definition 3.2. A burst of order pr or less (1 < p<m,1 <r < s) in the
space Mat,xs(Fg) is a burst of order cd(or ¢ x d) where 1 <c<p<m
and 1 <d<r<s.

To obtain the desired bound, we need to find all m x s arrays of LRTJ-weght
t or less and additional arrays of LRTJ-weight w or less which are bursts
of order p x 7 or less. We obtain in the next two lemmas, the number of
these array patterns separately.

Lemma 3.1. If G; denote the all m x s arrays in Matyxs(Fq) having
LRTJ-weight t or less then

m!
Ge = Z[q/'zl s @2 s X

. H H’I‘ij!(m - Z Zrﬁ)!

i=1 j=1 i=1l j=1

{a/2] s

<[TII(st@P2@+G-D@-1) . )

i=1j=1
where

rij 20 V 1<i<([q/2], 1<j<s,
[(I/zls

ZZ(i + (G- 1))ri; < d,

i=1j=1
la/2] s

YD ri<m. (2)

i=1 j=1

Proof. Let A € Matmxs(Zg) be an m x s matrix having the LRTJ-weight ¢
or less. Out of m rows of A, let r;;(> 0) denotes the number of rows having
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the LRTJ-weight i 4 (5 — 1) where 1 < ¢ < [¢/2], 1 £ j < 5. Now, there are
following two mutually exclusive ways of obtaining the LRT J-weight r;; of
a row vector:

Case (i): The j** position which is the maximum non-zero position con-
tains the entry with modular value . In this case, the remaining previous
(7 — 1) entries can be filled in (e + €1 + - - - + €;)7~! ways. Therefore, the
number of ways falling in this case by which we can obtain the LRTJ-weight
of a row vector as r;; is given by

eileoter+ -+ eyl = ey (Q;)! )

Case (ii): The j** position which is the maximum non-zero position does
not contain the entry with modular value ¢. In this case, number of choices
for the j** position is e; + e2 + -+ + €;_1. Out of the remaining (j — 1)
positions, choose one position, fill it with entry having modular value ¢; and
the remaining (j —2) positions with any of the ey +e; +- - - +¢; entries from
Z,. The number of ways falling in this case to obtain the LRTJ-weight of
a row vector as r;; is given by

. 3 .
(el+€2"'+€i—l)(J 1 )8i(€0+31 +ootey?

= (Qi-1-1) (j I 1) el(Qi) 2
= (J-1eQi-1 — 1)(@:) > (4)

From (3) and (4), we get the total number of ways in which we can obtain
ri5(1 £4<[g/2], 1< j < s) as LRTJ- weight of a row vector and is given

by

ei(QiY ™ + (7 — 1es(Qizr — 1)(Q:) 2
= e(Q:i)%(Qi+ (5 - 1)(Qi—1 - 1)). (5)

Using (5), the equation (1) satisfying constraint (2) directly follows as the
number of rows of an m x s matrix is m. |

Lemma 3.2. If BY)\ (Z,,t + 1,w) is the total number of arrays of order
m X s in Matyxs(Zg) which are bursts of order p x r having LRTJ-weight
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between t + 1 and w, then
( min(w,s)

m Y (Qu-g-1 = Qe-j-1) ifp=r=1,
i=1

min(w—r+1,8—7r+1)

m Z (Qu-(+r-2)) — Qt-(j+r—2))2 x

=1

B::q,xxrs(z )t+ 1,’(D) = X(Qw—(j+r—2) - Qt—(j+r—2) + 1)1‘—-2 ((
q
ifp=1r22,
(m-p+1)x
min{w~-r+1,8-7+1)
x 3 WL+ L)
j=1

ifp>2,r>1,

where

p!
P _
Lj,r = Z (/2] j+r—1 [9/2] j+r-1

iy ll;ll fl'[=1 r,f!(p—z > r,f>!

=1 f=j
la/2) j+r-1 ‘ Tif
<L T (@ =@+ (=@ -1)) . )
=1 f=j

and iy (1 <1< (g/2),5 < f < j+7r—1 in the ezpression for L} . are non-
negative integers satisfying the following constraints:

at least one of T1; > 0 (1 <1< (q/2], j fized occuring

in the expression for LY,),

at least one of 1y jir—1 > 001 <1< (q/2], §+7 -1 fized),

lg/2) j+r—1
t+1< > > U+ (f -1y < w, (8)
=1 f=j
la/2) j+r-1
Z Z Tif S P
=1 f=j
Ay
Proof. Consider a burst A = A2 where A; = (ay,, 04, ,ai,), of
Am
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order pr(l1 < p < m,1 < r < s) having LRTJ-weight between ¢ + 1 and
w. Let B be the p x r nonzero submatrix of A such that all the nonzero
entries of A are confined to B with first and last rows as well as first and
last columns nonzero. There are three cases depending upon the values of
p and r.

Case 1. Whenp=1, r=1.

In this case, the 1x 1 nonzero submatrix B can have (4, j) as its starting
position in m x s matrix A where j can take values from 1 to min (w, s).
With (7, ) as the starting position of 1 x 1 nonzero submatrix B, entry
in B can be filled in €;—j + er—j41 + -+ + €wo(jo1) = Qu—(j=1) — Qi—j-1
ways as any nonzero element of Z, having modular value between ¢ — j and
w — (j — 1) can be filled in that position. Therefore, number of bursts of
order 1 x 1 having LRTJ-weight between ¢ + 1 and w in Matmxs(Z,) is
given by

min(w,s)
Biis(Zgt+1,w) = m D (Quogiot) — Qemjm1)-
=1

Case 2. Whenp=1, r > 2.

In this case, for the number of starting positions (¢, ) of the 1 x r
nonzero submatrix B in m X s matrix A, i can take values from 1 to m and
7 can take values from 1 to min(w — 7 4+ 1,s — r + 1). Also, with (3,5) as
the starting position of a single rowed submatrix B of the m x s matrix A,
entries in B can be selected in (Qu—(j4r-2)) = Q= (j4r-2))2 X (Qu—(j+r-2)—
Qt—(j4r-2) + 1)"~2 ways as the first and last components of the submatrix
B can be chosen in (Qu_(j3r-2)) — Qt—(j+r-2))® Ways and intermediate
(r — 2) components can be chosen in (Qu-(j4r—-2) — Qe—(j4r—2) + 1) 2
ways. Therefore, the number of bursts of order 1 x r having LRT J-weight
between ¢t + 1 and w in Matmxs(2Z,) is given by

min(w—r+1,8=r+1)

B;;xxrs(zqat'l' lyw) = m Z (Qw—(j+r—2)) - Qt—(j+r—2))2 X
Jj=1

X(Qu—(j4r—-2) = Qe-(jar—2) + 1) 72

Case 3. Whenp>2, r> 1.

In this case, let the p x r nonzero submatrix B starts at the (7,5)t*
position in A. Out of prows of B, let rjy (1 <1< [q/2],j < f<j+r—-1)
be the number of rows of B (and hence that of matrix A) having LRTJ-
weight as {4+ (f —1). Thenmy >0 V1<I<|[g/2,j<f<j+r-1
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The number of ways in which p rows of B can be selected is given by
L?, —2L2 '+ L2? (9)

where L? is given by () and ry (1 <1<[q/2],j < f<j+r—1)being
nonnegatlve integers satisfying (8). Since in the starting position (3, j) of
the submatrix B, ¢ can take values from 1 to (m —p+ 1) and j can take
values from 1 to min(w — r + 1,s — 7 + 1), therefore, summing (9) over ¢
and j, we get number of bursts of order pr (orpxr)(2<p<m,1<r < s)
having LRTJ-weight between ¢ + 1 and w and is given by

m—p+1min(w—r+1,5-r+1)

S g )

i=1 j=1

BP(Zg,t + 1,w)

mX3

min(w~r+1,s—r+1)
(m-p+1) >, (L5 -2Li+ L5,
j=1

I

where L _is given by (7) satisfying the constraints (8). m]

Remark 3.1. The number of bursts of order p x r or less having LRTJ-
weight lying between ¢t + 1 and w is given by

p r
R (Zg,t+1w) = Y > BA(Zg,t+1,w) (10)
c=1 d=1

Now, we obtain the desired bound.

Theorem 3.1. A linear [m x s, k] code of order m x s in LRTJ-spaces that
simultaneously corrects arbitrary errors of LRTJ-weight t or less and bursts
of order p x t or less with LRTJ-weight w or less should have at least

lqu(Gt + R xs(z‘ht +1 w)) (11)

parity checks where Gy and RD)( (Zq,t + 1,w) are given by (1) and (10)
respectively.

Proof. The total number of correctable error patterns for an m-code cor-
recting simultaneous arbitrary errors of p-weight ¢ or less and bursts of
order p x 7 or less with p-weight w), or less is given by

G:+ RPN (Zg,t + 1, w).

Also, the number of available cosets is ¢™*~* and since a linear (m x s, k)
code should have at least as many cosets as the number of correctable error
patterns, we have

g™k > Gy + B2 (Zgyt + 1,0)
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ie.
ms — k > logg(Gy + RE)( (Zg,t + 1, w)).
g

Remark 3.2. The weight constraint over the burst can be removed by
taking w to be the maximum possible weight for a burst of order p x r.
This requires that we take w = p([g/2] + s — 1). The result in that case
reduces to the one given by the following corollary:

Corollary 3.1. A linear [m X s,k] code of order m x s in LRTJ-spaces
that simultaneously corrects independent errors of LRTJ-weight t or less
and any burst of order pr or less should have at least

logy(Ge + RPN o(Zg,t + 1,p((g/2] + s — 1)) (12)

parity checks. 0O

On the other hand, we can derive results for burst correction only.
This requires the dropping of the independent error correction constraint.
Taking ¢ = 0, the corresponding result which is obtained, can be given in
the following corollary.

Corollary 3.2 [10]. A linear [m X s,k] code of order m x s that corrects
all bursts of order p x r or less with LRTJ-weight w or less should have at
least

logq(Gt + R:;zxxrs(z‘h la w)) (13)

parity checks. m]

A bound for independent error correction can also be deduced from the
result obtained in Theorem 3.1. This requires the dropping of the burst
correction constraint. On taking w = t, it gives B2 (Z4,t + 1,w) and
hence R\ (Zg,t + 1,w) = 0. The result so obtained can be given in the
following corollary.

Corollary 3.3 [9]. A linear [m x s,k] code of order m x s in LRTJ-spaces
that corrects independent errors of LRTJ-weight t or less should have at
least

loge(G) (14)

parity checks. m}

Remark 3.3. For g = 2,3, the LRTJ-metric coincides with the RT-metric
and the bounds obtained in (11), (12), (13) and (14) coincides with the
corresponding bounds for RT-metric codes obtained in [12].
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4. Bound for codes in LRTJ-spaces correcting inde-
pendent errors and burst errors with limited inten-
sity

Here, we have the situation in which the effect of the noise on a single
position is no greater than an intensity a(< [¢/2]) and the errors occur
in the form of independent errors as well as bursts. In other words, our
error patterns are independent errors and burst errors with specified LRTJ-
weight and no nonzero entry has an equivalent value greater than a.

To obtain the required bound, we count the number of independent
errors and burst errors of order p x r or less with no entry exceeding a(<
[¢/2]) in equivalent value such the LRTJ-weight of independent errors is
atmost ¢t and LRTJ-weight of clustered errors lies between ¢t + 1 and w. If
Gt denotes the restriction of Gy and B2y ,(Z,,t+1,w,a) (or Ry (Zg, t+
1,w,a)) denotes the restriction of B2y, (Zq,t + 1,w) (resp. RE(Zq,t +
1, w)) for entries not exceeding a in equivalent values, then the total number
of correctable error patterns with bounded intensity a is given by

Gio+ RPN (Zg,t +1,w,0).

mXs

Having calculated the total number of correctable patterns, we now have
the following theorem.

Theorem 4.1. A linear [m x s, k] code of order m x s in LRTJ-spaces that
corrects all independent errors of LRTJ-weight t or less and all bursts of
order p x r or less having LRTJ-weight w or less with no entry exceeding a
should have at least

loge(Gta + RE((Zg, t + 1,w,a).
parity checks. O
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