A new sufficient condition for graphs to be (a, b, k)-critical graphs *†

Sizhong Zhou[‡]
School of Mathematics and Physics
Jiangsu University of Science and Technology
Mengxi Road 2, Zhenjiang, Jiangsu 212003
People's Republic of China

Abstract

Let a, b and k be nonnegative integers with $2 \le a < b$ and $b \equiv 0 \pmod{a-1}$, and let G be a graph of order n with $n \ge \frac{(a+b-1)(2a+b-4)-a+1}{b} + k$. A graph G is called an (a,b,k)-critical graph if after deleting any k vertices of G the remaining graph of G has an [a,b]-factor. In this paper, it is proved that G is an (a,b,k)-critical graph if

$$|N_G(X)| > \frac{(a-1)n+|X|+bk-1}{a+b-1}$$

for every non-empty independent subset X of V(G), and

$$\delta(G) > \frac{(a-1)n+b+bk}{a+b-1}.$$

Furthermore, it is shown that the result in this paper is best possible in some sense.

Keywords: graph, neighborhood, minimum degree, [a, b]-factor, (a, b, k)-critical graph

2010 Mathematics Subject Classification: 05C70

^{*}Receive date: September 2, 2009

[†]Supported by the National Natural Science Foundation of China (Grant No. 11371009) and the National Social Science Foundation of China (Grant No. 14AGL001).

†Corresponding author. E-mail address: zsz_cumt@163.com (S. Zhou)

1 Introduction

The graphs considered here are finite undirected graphs which have neither loops nor multiple edges. We refer the readers to [1] for the terminologies not defined here. Let G be a graph. We use V(G) and E(G) to denote its vertex set and edge set, respectively. For any $x \in V(G)$, the degree of x in G is denoted by $d_G(x)$. The minimum degree of G is denoted by $\delta(G)$. The neighborhood $N_G(x)$ of x is the set of all vertices in V(G) adjacent to x and for $X \subseteq V(G)$ we write $N_G(X) = \bigcup_{x \in X} N_G(x)$. For $S \subseteq V(G)$, we use G[S] and G - S to denote the subgraph of G induced by G and G are two disjoint subsets of G and G are denote the number of edges from G to G by G and G are two disjoint subsets of G and G are denote the number of edges from G to G by G and G are two disjoint subsets of G and G are denote the number of edges from G to G by G and G are two disjoint subsets of G and G is called independent if G has no edges.

Let a, b and k be nonnegative integers with $1 \le a \le b$. An [a, b]-factor of graph G is defined as a spanning subgraph F of G such that $a \le d_F(x) \le b$ for each $x \in V(G)$ (where of course d_F denotes the degree in F). And if a = b = r, then an [a, b]-factor of G is called an r-factor of G. A graph G is called an (a, b, k)-critical graph if after deleting any k vertices of G the remaining graph of G has an [a, b]-factor. If G is an (a, b, k)-critical graph, then we also say that G is (a, b, k)-critical. If a = b = r, then an (a, b, k)-critical graph is simply called an (r, k)-critical graph. In particular, a (1, k)-critical graph is simply called a k-critical graph.

Favaron [2] investigated the properties of k-critical graphs. Cai and Favaron [3] got a toughness condition for a graph to be a (2,k)-critical graph. Liu and Yu [4] studied the characterization of (r,k)-critical graphs. Liu and Wang [5] obtained a necessary and sufficient condition for a graph to be an (a,b,k)-critical graph. Li [6] showed a degree condition for graphs to be (a,b,k)-critical graphs. Li [7] got two sufficient conditions for graphs to be (a,b,k)-critical graphs. Zhou [8] obtained an independence number and connectivity condition for a graph to be an (a,b,k)-critical graphs. Zhou and Jiang [10] showed a binding number condition for a graph to be an (a,b,k)-critical graph.

The following results on k-factors and (a, b, k)-critical graphs are known.

Theorem 1 [11] Let $k \geq 2$ be an integer and G a graph of order n with $n \geq 4k - 6$. If k is odd, then n is even and G is connected. Let G satisfy

$$|N_G(X)| \ge \frac{|X| + (k-1)n - 1}{2k - 1}$$

for every non-empty independent subset X of V(G), and

$$\delta(G) \ge \frac{k-1}{2k-1}(n+2).$$

Then G has a k-factor.

Theorem 2 [9] Let a, b, k be nonnegative integers such that $2 \le a < b$, and let G be a graph of order n with $n \ge \frac{(a+b-1)(2a+b-5)+b+1}{b} + \frac{bk}{b-1}$. Suppose for any subset $X \subset V(G)$, we have

$$N_G(X) = V(G)$$
 if $|X| \ge \left\lfloor \frac{(b(n-1)-bk)n}{(a+b-1)(n-1)} \right\rfloor$; or

$$|N_G(X)| \ge \frac{(a+b-1)(n-1)}{b(n-1)-bk}|X|$$
 if $|X| < \left\lfloor \frac{(b(n-1)-bk)n}{(a+b-1)(n-1)} \right\rfloor$.

Then G is an (a, b, k)-critical graph.

Theorem 3 [10] Let G be a graph of order n, and let a, b and k be nonnegative integers such that $1 \le a < b$. If the binding number bind $(G) > \frac{(a+b-1)(n-1)}{bn-(a+b)-bk+2}$ and $n \ge \frac{(a+b-1)(a+b-2)}{b} + \frac{bk}{b-1}$, then G is an (a,b,k)-critical graph.

Theorem 4 [12] Let a, b and k be nonnegative integers with $1 \le a < b$, and let G be a graph of order n with $n \ge \frac{(a+b)(a+b-2)}{b} + k$. Suppose that

$$|N_G(X)| > \frac{(a-1)n+|X|+bk-1}{a+b-1}$$

for every non-empty independent subset X of V(G), and

$$\delta(G) > \frac{(a-1)n + a + b + bk - 2}{a+b-1}.$$

Then G is an (a, b, k)-critical graph.

In this paper, we obtain a new sufficient condition by using neighborhoods of independent sets for a graph to be an (a, b, k)-critical graph. The main result is the following theorem, which is an extension of Theorem 1 and an improvement of Theorem 4.

Theorem 5 Let a, b and k be nonnegative integers with $2 \le a < b$ and $b \equiv 0 \pmod{a-1}$, and let G be a graph of order n with $n \ge \frac{(a+b-1)(2a+b-4)-a+1}{b} + k$. Suppose that

$$|N_G(X)| > \frac{(a-1)n+|X|+bk-1}{a+b-1}$$

for every non-empty independent subset X of V(G), and

$$\delta(G) > \frac{(a-1)n + b + bk}{a+b-1}.$$

Then G is an (a, b, k)-critical graph.

In Theorem 5, if k = 0, then we obtain the following corollary.

Corollary 1 Let a and b be integers such that $2 \le a < b$ and $b \equiv 0 \pmod{a-1}$, and let G be a graph of order n with $n \ge \frac{(a+b-1)(2a+b-4)-a+1}{b}$. Let G satisfy

$$|N_G(X)| > \frac{(a-1)n+|X|-1}{a+b-1}$$

for every non-empty independent subset X of V(G), and

$$\delta(G) > \frac{(a-1)n+b}{a+b-1}.$$

Then G has an [a, b]-factor.

2 The Proof of Theorem 5

In order to prove Theorem 5, we depend heavily on the following lemma.

Lemma 2.1 [5] Let a, b and k be nonnegative integers with a < b, and let G be a graph of order $n \ge a + k + 1$. Then G is an (a, b, k)-critical graph if and only if for any $S \subseteq V(G)$ with $|S| \ge k$

$$\sum_{j=0}^{a-1} (a-j)p_j(G-S) \le b|S| - bk, \quad or$$

$$\delta_G(S,T) = b|S| + d_{G-S}(T) - a|T| \ge bk,$$

where $p_j(G-S)$ denotes the number of vertices in G-S with degree j, $T = \{x : x \in V(G) \setminus S, d_{G-S}(x) \le a-1\}$ and $d_{G-S}(T) = \sum_{x \in T} d_{G-S}(x)$.

Proof of Theorem 5. Let G be a graph satisfying the hypothesis of Theorem 5, we prove the theorem by contradiction. Suppose that G is not an (a, b, k)-critical graph. Then by Lemma 2.1, there exists some subset S of V(G) with $|S| \geq k$ such that

$$\delta_G(S, T) = b|S| + d_{G-S}(T) - a|T| \le bk - 1,\tag{1}$$

where $T = \{x : x \in V(G) \setminus S, d_{G-S}(x) \le a-1\}$. Obviously, $T \ne \emptyset$ by (1). Set

$$h = \min\{d_{G-S}(x) : x \in T\}.$$

In terms of the definition of T, we obtain

$$0 \le h \le a - 1$$
.

Since $T \neq \emptyset$, we may choose a vertex $t \in T$ with

$$h = \min\{d_{G-S}(t) : t \in T\}.$$

According to the choice of t, we have

$$\delta(G) \le d_G(t) \le d_{G-S}(t) + |S| = h + |S|,$$

that is,

$$|S| \ge \delta(G) - h. \tag{2}$$

Now in order to prove the theorem, we shall deduce some contradictions by the following three cases.

Case 1. $2 \le h \le a - 1$.

Using (1) and $|S| + |T| \le n$, we have

$$bk - 1 \ge \delta_G(S, T) = b|S| + d_{G-S}(T) - a|T|$$

$$\ge b|S| - (a - h)|T|$$

$$\ge b|S| - (a - h)(n - |S|)$$

$$= (a + b - h)|S| - (a - h)n,$$

which implies

$$|S| \le \frac{(a-h)n + bk - 1}{a+b-h}. (3)$$

On the other hand, we obtain from (2) and $\delta(G) > \frac{(a-1)n+b+bk}{a+b-1}$

$$|S| \ge \delta(G) - h > \frac{(a-1)n + b + bk}{a+b-1} - h.$$

Combining this with (3), we get

$$\frac{(a-1)n+b+bk}{a+b-1} - h < |S| \le \frac{(a-h)n+bk-1}{a+b-h}.$$
 (4)

Let the LHS and RHS of (4) be denoted by A and B, respectively. Then (4) says that

$$A - B < 0. ag{5}$$

But, after some rearranging, we find that

$$(a+b-1)(a+b-h)(A-B)$$

$$= (h-1)(bn-(a+b-1)(a+b-h)-bk+a-1)$$

$$-(a-2)(a+b-1)$$

$$\geq (h-1)(bn-(a+b-1)(a+b-2)-bk+a-1)$$

$$-(a-2)(a+b-1)$$

$$\geq (h-1)(b(\frac{(a+b-1)(2a+b-4)-a+1}{b}+k)$$

$$-(a+b-1)(a+b-2)-bk+a-1)-(a-2)(a+b-1)$$

$$= (h-1)(a-2)(a+b-1)-(a-2)(a+b-1)$$

$$= (h-2)(a-2)(a+b-1),$$

that is,

$$(a+b-1)(a+b-h)(A-B) \ge (h-2)(a-2)(a+b-1). \tag{6}$$

From $2 \le h \le a-1$ and $2 \le a < b$, we have $(h-2)(a-2)(a+b-1) \ge 0$. In terms of (6) and $2 \le h \le a-1$, we obtain

$$A-B>0$$
.

That contradicts (5).

Case 2. h = 1.

According to (2) and $\delta(G) > \frac{(a-1)n+b+bk}{a+b-1}$, we get

$$|S| > \frac{(a-1)n+b+bk}{a+b-1} - 1.$$
 (7)

Subcase 2.1. $|T| \ge \frac{b(n-k-1)}{a+b-1} + 1$.

Using (7), we obtain

$$|S| + |T| > \frac{(a-1)n + b + bk}{a+b-1} - 1 + \frac{b(n-k-1)}{a+b-1} + 1 = n.$$

This inequality contradicts $|S| + |T| \le n$.

Subcase 2.2. $|T| < \frac{b(n-k-1)}{a+b-1} + 1$.

In terms of (7), we have

$$\delta_G(S,T) = b|S| + d_{G-S}(T) - a|T|
\geq b|S| - (a-1)|T|
> b(\frac{(a-1)n+b+bk}{a+b-1} - 1) - (a-1)(\frac{b(n-k-1)}{a+b-1} + 1)
= bk - (a-1).$$

that is,

$$\delta_G(S,T) - bk \ge b|S| - (a-1)|T| - bk > -(a-1). \tag{8}$$

Since $b \equiv 0 \pmod{a-1}$ and b|S|-(a-1)|T|-bk>-(a-1), we obtain b|S|-(a-1)|T|-bk>0.

Combining this with (1) and (8), we have

$$bk-1 > \delta_G(S,T) > bk$$
.

This is a contradiction.

Case 3. h = 0.

Set $I = \{x : x \in T, d_{G-S}(x) = 0\}$. Obviously, $I \neq \emptyset$ by h = 0, and I is independent. Thus, we have by the assumption of Theorem 5

$$|S| \ge |N_G(I)| > \frac{(a-1)n + |I| + bk - 1}{a+b-1}.$$
 (9)

Using (9) and $|S| + |T| \le n$, we obtain

$$\begin{split} \delta_G(S,T) &= b|S| + d_{G-S}(T) - a|T| \\ &\geq b|S| + |T| - |I| - a|T| \\ &= b|S| - (a-1)|T| - |I| \\ &\geq b|S| - (a-1)(n-|S|) - |I| \\ &= (a+b-1)|S| - (a-1)n - |I| \\ &> (a+b-1) \cdot \frac{(a-1)n + |I| + bk - 1}{a+b-1} - (a-1)n - |I| \\ &= bk - 1. \end{split}$$

which contradicts (1).

From the argument above, we deduce the contradictions. Hence, G is an (a, b, k)-critical graph. This completes the proof of Theorem 5.

Remark 1. Let us show that the condition $\delta(G)>\frac{(a-1)n+b+bk}{a+b-1}$ in Theorem 5 can not be replaced by $\delta(G)\geq\frac{(a-1)n+b+bk}{a+b-1}$. Let $b>a\geq 2, k\geq 0$ be three integers such that b+k is even and $b\equiv 0\pmod{a-1}$. Let $n=\frac{(a+b-1)(2a+b-4)-a+1+(a+2b-1)k}{b}\geq\frac{(a+b-1)(2a+b-4)-a+1}{b}+k$. Since $b\equiv 0\pmod{a-1}$, n is an integer. Put $l=\frac{2a+b-4+k}{2}$ and m=n-2l=n-(2a+b-4+k). Set $G=K_m\bigvee lK_2$. Obviously, $\delta(G)=m+1=\frac{(a-1)n+b+bk}{a+b-1}$ and $|N_G(X)|\geq m+|X|>\frac{(a-1)n+|X|+bk-1}{a+b-1}$ for every non-empty independent

subset X of V(G). Let $S = V(K_m) \subseteq V(G)$, $T = V(lK_2) \subseteq V(G)$, then $|S| = m \ge k$, |T| = 2l. Thus, we obtain

$$\begin{split} \delta_G(S,T) &= b|S| + d_{G-S}(T) - a|T| \\ &= b|S| + |T| - a|T| = b|S| - (a-1)|T| \\ &= b(n - (2a + b - 4 + k)) - (a-1)(2a + b - 4 + k) \\ &= bn - (a + b - 1)(2a + b - 4 + k) \\ &= bk - (a-1) < bk. \end{split}$$

By Lemma 2.1, G is not an (a, b, k)-critical graph. In the above sense, the result in Theorem 5 is best possible.

Remark 2. [12] Let us show that the condition $|N_G(X)| > \frac{(a-1)n+|X|+bk-1}{a+b-1}$ in Theorem 5 can not be replaced by $|N_G(X)| \ge \frac{(a-1)n+|X|+bk-1}{a+b-1}$. Let $b > a \ge 2, k \ge 0$ be three integers with $b \equiv 0 \pmod{a-1}$, and let $n = \frac{(a+b-1)^2}{a-1} + k$. Clearly, n is an integer. Since $b \equiv 0 \pmod{a-1}$ and $b > a \ge 2$, we have $b \ge 2(a-1)$. Thus, we obtain $n = \frac{(a+b-1)^2}{a-1} + k \ge \frac{2(a+b-1)^2}{b} + k > \frac{(a+b-1)(2a+b-4)-a+1}{b} + k$. Let $G = K_{a+b+k} \bigvee ((a+b)K_1 \cup (\frac{(a+b-1)^2}{a-1} - 2(a+b))K_2)$. It is easy to see that $|N_G(X)| \ge \frac{(a-1)n+|X|+bk-1}{a+b-1}$ for every nonempty independent subset X of V(G) ($|N_G(X)| = \frac{(a-1)n+|X|+bk-1}{a+b-1}$ for $X = V((a+b)K_1)$) and $\delta(G) = a+b+k > \frac{(a-1)n+b+bk}{a+b-1}$. Set $r = \frac{(a+b-1)^2}{a-1} - 2(a+b)$. Let $S = V(K_{a+b+k}) \subseteq V(G)$ and $T = V((a+b)K_1 \cup \{x_1, x_2, \cdots, x_r\}) \subseteq V(G)$, where $\{x_1, x_2, \cdots, x_r\} \subset V(rK_2)$. Then $|S| = a+b+k \ge k$, $|T| = a+b+r = \frac{(a+b-1)^2}{a-1} - (a+b)$. Thus, we get

$$\delta_G(S,T) = b|S| + d_{G-S}(T) - a|T|$$

$$= b(a+b+k) + \frac{(a+b-1)^2}{a-1} - 2(a+b)$$

$$-a(\frac{(a+b-1)^2}{a-1} - (a+b))$$

$$= bk - 1 < bk.$$

According to Lemma 2.1, G is not an (a, b, k)-critical graph. In the above sense, the condition $|N_G(X)| > \frac{(a-1)n+|X|+bk-1}{a+b-1}$ in Theorem 5 is best possible.

References

- J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press, London, 1976.
- [2] O. Favaron, On k-factor-critical graphs, Discussions Mathematicae Graph Theory 16(1)(1996), 41-51.
- [3] M. Cai, O. Favaron and H. Li, (2, k)-Factor-critical graphs and toughness, Graphs and Combinatorics 15(1999), 137-142.
- [4] G. Liu and Q. Yu, k-factors and extendability with prescribed components, Congressus Numerantium 139(1)(1999), 77-88.
- [5] G. Liu and J. Wang, (a, b, k)-critical graphs, Advances in Mathematics (China) 27(6)(1998), 536-540.
- [6] J. Li, A new degree condition for graph to have [a, b]-factor, Discrete Mathematics 290(2005), 99-103.
- [7] J. Li, Sufficient conditions for graphs to be (a, b, n)-critical graphs, Mathematica Applicata (Wuhan) 17(3)(2004), 450-455.
- [8] S. Zhou, Independence number, connectivity and (a, b, k)-critical graphs, Discrete Mathematics 309(12)(2009), 4144-4148.
- [9] S. Zhou, A sufficient condition for a graph to be an (a, b, k)-critical graph, International Journal of Computer Mathematics 87(10)(2010), 2202-2211.
- [10] S. Zhou and J. Jiang, Notes on the binding numbers for (a, b, k)-critical graphs, Bulletin of the Australian Mathematical Society 76(2007), 307-314.
- [11] D. R. Woodall, k-factors and neighbourhoods of independent sets in graphs, Journal of the London Mathematical Society 41(2)(1990), 385-392.
- [12] S. Zhou and Y. Xu, Neighborhoods of independent sets for (a, b, k)-critical graphs, Bulletin of the Australian Mathematical Society 77(2)(2008), 277-283.