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The classical Stirling numbers of the first and second kind, denoted by
s(n,k) and S(n, k) respectively, were first introduced by James Stirling
in [23]. The study of different generalizations and extensions of Stirling
numbers were popular among many mathematicians. Among them were
M. Koutras [16], A. Broder [2], B. El-Desouky {11], T. Cacoullous [3], L.
Carlitz [5, 6], L. Hsu and P. Shiue [13], H. Yu [24] and the references therein.
In (13], Hsu and Shiue defined a pair of inverse relations that unifies the
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Stirling numbers of the first and second kind, and all other generalizations
by the other mentioned authors. They used the symbols {S!(n, k), $%(n, k)}
to denote these Stirling numbers which some call the unified generalization
of Stirling numbers. On the other hand, the weighted Stirling pair, denoted
by {S(n, k; o, B,t), S(n, k; B, &, —t)}, by Yu in [24] are exactly the same pair
of numbers with the ones used by Hsu and Shiue except for the manner in
which these pairs were defined respectively.

Some generalizations of the classical Stirling numbers were based on the
one discovered by Katriel [14] in 1974 that the classical Stirling numbers
of the second kind S(n, k) appeared as coefficients of the normal ordering
expressions in the boson annihilation a and creation operator a* satisfying
the commutation relation

aat —ata=1 (1)

of the Weyl algebra. That is,

(a%a)" = Zn: S(n,k)(a*)*a*. (2)

k=0

In line with this, a generalization was obtained by Blasiak et. al. {1] in
2004 which is given by

[(a+)ras)]n - (a+)n(r—s) Z S,s(n, k)(a"')ka,k, (3)

k=s

This was further generalized by Mendez et. al. [19] in 2005 as

ns
(a*)™a’" ... (a*) a2 (a*)a™ = (a¥)* Y Ses(k)(at)*a*
k=s
where 7 = (r1,72,..-,7n), § = (51,82,..-,8x) and d, = Yo (r; — 8:).
Recently, Mansour et. al. 18] generalized the commutation relation in (1)

as
UV -VU=hV?

where h is the Planck constant and obtained the following generalization
of Stirling numbers
(VU)™ =) Son(n, H)VC-RHEUE,
k=1

Another generalizations of the classical Stirling numbers are the ones
defined by El-Desouky in [11]. These are the multiparameter noncentral
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Stirling numbers of the first and second kind which are defined as

n

()n =) _ s(n, k; &) (t/a)x, (4)
k=0
(t/a)n =) _ S(n,k;@)(t)k, (5)
k=0
respectively, where & = (ap, 1, 02,...,05-1) and

n-—1
t/a)n = [t - as), (t/a)o =1. (6)

j=0

These numbers possessed some properties including the vertical generating
function and the following triangular recurrence relations

s(n+1,k;a) = s(n, k- 1;8) + (o4 — n)s(n, k; &), )

S(n,k;a) = S(n— 1,k —1;@) + (k — an_1)S(n - 1,k;).  (8)

In addition to these, one can easily obtain the following explicit formula

k
(ki) = 17 -1 (5 /. ©)

§=0 J

by rewriting (5) into the following form

n k
n= S(n, j;@)j' . ).
(k/) ZO (n, ;87 (J)

In a recent paper of Caki¢ et. al. [4], the pair {s(n,k;a), S(n,k;&)} was
redefined in terms of the differential operators which is parallel to that in
(2). The purpose of which is to establish explicit formulas for the numbers.
With this definition, the multiparameter noncentral Stirling numbers of the
second kind are seen to be closely related to those numbers defined in (3).

The study of g-analogues of some well-known identities and numbers
has been the interest of several mathematicians for many years ago. For
instance, a g-analogue of the known binomial inversion formula

=y (j)gj o = 3 (1 (f) 5 (10)
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is given by
= Tk d  (noy [k
=Y H 0 = g = S (~1)F3q("3 )H fio
j=0 ‘7 q j=0 ‘7 q
which is known to be the g-binomial inversion formula ( see [8] ). The

number
J —i
[kJ — [k]j.q H k T+
j q [J]q i=1 q - 1

is a g-analogue of the binomial coefficient which is also known as the g-
binomial coefficient or Gaussian polynomial (with g # 1) where

j=1 k k-1 k-2 k—j+1
2 (gF -1 -1)(g" 1) (g - 1)
(kljq = il;[)[k —idlg= (q—1)F
is the g-factorial of k of order j and [jlg! = [1]¢[2]4[3]q - : - [4]q is the g-
factorial of j with (5], = 9— is the g-real number.

For the classical Stlrlmg numbers, L. Carlitz [7] was the first one to
define their g-analogues and was discussed thoroughly by H. Gould in [12].
In line with this, Corcino et. al. in [10] established a g-analogue for the
unified Stirling numbers in [13] and this g-analogue was further investigated
by Corcino and Barrientos in [9]. On the other hand, Katriel [15] defined
a g-analogue of S(n, k) using the following normal ordering relation

(VU" = Sy(n, )V*U*
k=0

such that UV — ¢VU = 1. This was generalized further in [20](22][21] as

n
(VU = V=) Y " S0 (n, k) VAU (12)
k=0
and
Is|
ViU YTyt YT = Ve Y SE o(n, k)VEU* (13)
k=81
where r = (71,72,...,7n), 5 = (51,82,...,5n) and dn = 31, (r; — s;) such

that, in the paper by Schork [22], the g-bosonic operators a} and a, in [15]
are heing used to replace V and U in (12), respectively, while, in the paper
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by Mendez and Rodriguez [20], the operators X and Dy are being used to
replace V' and U in (13), respectively, where

flgz) - f(x)
(g— 1)z

and the g-analogue Sf.,s(n, k) satisfies the following explicit formula

-qu(x) =

S¢,s(n, k) EH (—1)k=74(*7") HU +di_q)eg  (14)

=1

In this paper, we define a g-analogue for the multiparameter noncentral
Stirling numbers s(n, k;&) and S(n,k;&) by means of triangular recur-
rence relations. Some properties such as vertical and horizontal recurrence
relations, horizontal generating functions, explicit form, orthogonality and
inverse relations for these g-analogues are established as well as some ad-
ditional properties for the classical case. The study of multiparameter Bell
numbers and Bell polynomials with their respective g-analogues are also
introduced.

2 Multiparameter g-Noncentral Stirling
Numbers of the First Kind

For simplicity, we use [z] = [z], to denote the g-real number z in the
following sections. To attain our objectives, there is a need to define some
new identities which are useful in the sequel. Now, as a g-analogue for (6),
the multiparameter g-generalized factorial will be defined as

n~1
(it)/ 1), = TT (0 - [es)), (15)
j=0

where ([t]/[a])q,0 = 1. It is also known that the transition of an expression
to its g-analogue is not unique. Hence, we may define another g-analogue
for the falling factorial of t of order n given hy

On=tt-1)(t=2)--(t—n+1), (t)o=1.
That is, we have
(D, = ()] = (D] = (2D -~ ([t] = [= = 1)), (16)

where ([t]); = 1. Since it can be shown that ([t]/[a])gn — (¢/a)n and
([£), = (£)n as ¢ — 1, the two previously defined identities are proper
g-analogues of their respective classical identities.
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Definition 2.1. Let n and & be non-negative integers,

[&] = ([aO]’ [Otll, sy [an—l])

where [a] < [o] < ... < [an-1] and the numbers @, j = 0,1,2,...,n -
1, be real numbers. A g-analogue of the numbers s(n,k; &), denoted by
sq[n, k; [a]), is defined by

sqln+ 1, k; [o]] = sqln, k — 1; [a]] + ([ex] — [1]) sqfn, ks [o]) for k21, (17)

where 5,[0,0; [e]] = 1 and s4[n, k; [o]) = 0 for k > h. We call s,[n, k; [o]] as
multiparameter q-noncentral Stirling numbers of the first kind.

It is easy to verify that as ¢ = 1, ([ax] — [n]) = (ax —n). Hence, the
recurrence relation in (17) becomes the recurrence relation in (7), that is,
the numbers s4[n, k; (a]] can be considered as a g-analogue of the numbers
s(n,k;@). We note that the definition of the numbers s4[n, k; []] is in
the form of a triangular recurrence relation. In the following theorem, we
present a vertical recurrence relation for the numbers s,4n, k; [a]].

Theorem 2.2. For non-negative integers n and k, the multiparameter g-
noncentral Stirling numbers of the first kind sq[n, k; [a]] satisfy the following
vertical recurrence relation:

sqn+1,k+1;[a]] = Z foeril)osy sqlds k; [a]]. (18)
[a ])J-{-
Proof. By repeated application of (17), we can easily obtain (18). O

As a consequence to this theorem, we have the following corollary which
contains a vertical recurrence relation for the multiparameter noncentral
Stirling numbers of the first kind. This can easily be obtained by taking
the limit of (18) as ¢ — 1.

Corollary 2.3. The vertical recurrence relation for the multiparameter
noncentral Stirling numbers of the first kind is given by

s(n+1,k+1;a) = Z%’ﬁgz‘—ﬁsu,k a), (19)

where (0gt+1)n+1 @5 the falling factorial of a1 of order n + 1.
Using the notation,
k-1
{~[nl/[ef}y = ] (~[n) + [em)), (20)
m=0

with initial condition that {—[n]/[a]}, = 1, we will now state the horizontal
recurrence relation for the numbers sq(n, k; [a]].
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Theorem 2.4. For non-negative integers n and k, the multiparameter g-
noncentral Stirling numbers of the first kind sy[n, k; [a]] satisfy the following
horizontal recurrence relation:

sl ki (@ s e ey 1
oln ki [o]] = 2_)0 Vi, SRt Lkl @

Proof. Evaluating the right-hand side of (21) using (17) and reindexing the
sum, we obtain the left-hand side of (21). O

If we take the limit of (21) as ¢ — 1, we have the following corollary

Corollary 2.5. The horizontal recurrence relation for the multiparameter
noncentral Stirling numbers of the first kind is given by

s(n k; &) = Z( 1)’{7%‘1“ s+ Lk+ji+ L&), (22)

3=0

where {-n/a}, .., = Trlo (—n + am).

The next theorem presents the horizontal generating function for the
numbers sq[n, k; [@]]. This is necessary in establishing the orthogonality
and the inverse relatlons of s4(n, k; [a]] and S,[n, k; [a]].

Theorem 2.6. Lett be a real number and n a non-negative integer. The
multiparameter q-noncentral Stirling numbers of the first kind sq[n, k; [o])
satisfy the following horizontal generating function:

([t = sqln. k; [@]([£]/ ) g, (23)
k=0

Proof. We prove this by induction on n. Clearly, (23) holds when n = 0.

Now, assume that (23) also holds for n > 0. Then by Definition 2.1,
n41

> sqln + 1,k [al)([t)/ [o)) g,

k=0

Z {sq[n, k: [od] (t] — [ox]) + ([ek] = [n]) sqlm, ks (]} ([8]/[0])q.x

([t - M)qu[n k; [o)([t]/[od)q.x
([t] = [n]) ([t])

([t])n+1 .

This completes the proof. a

It
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Again, when ¢ — 1, we obtain the following generating function.

Corollary 2.7. The multiparameter noncentral Stirling numbers of the first
kind satisfy the following generating function

n

(t)n =) _ s(n, k; &) (t/)x- (24)

k=0

This generating function is useful in obtaining the orthogonality relation
of multiparameter noncentral Stirling numbers. It is usually being paired
with the corresponding generating function for S(n, k; @). However, the said
orthogonality relation will be obtained in the next section as a limiting case,
when g — 1, of the orthogonality relation for multiparameter g-noncentral
Stirling numbers.

3 Multiparameter g-Noncentral Stirling
Numbers of the Second Kind

Definition 3.1. Let n and k be non-negative integers,

[e] = ([ew], [ea), - ., [@n—1])

where [ag] < [1] < ... < [@n—1] and the numbers o, j = 0,1,2,...,n -
1, be real numbers. A g-analogue of the numbers S(n, k; &), denoted by
Sqln, k; [@]), is defined by the triangular recurrence relation

Saln, ks [ad] = Sqln = 1,k — 15 o] + ([K] = [an-1]) Sqfn — L, k; [e]],  (25)

where 5,[0,0; [a]] = 1 and Sy[n, k;[a]] = O for k > h. We call S,(n, k; [a]]
as multiparameter g-noncentral Stirling numbers of the second kind.

It is easily verified that by repeated application of (25), we obtain the
following theorem.

Theorem 3.2. For non-negative integers n and k, the multiparameter g-
noncentral Stirling numbers of the second kind Sg(n, k; [a]] satisfy the fol-
lowing vertical recurrence relation:

= ([ +1)/[e) 4,

Syln+1,k+1;a]] = J;‘ CEICI® Sl & e]]. (26)

Consequently, if we take the limit of (26) as ¢ — 1, we have the following
corollary.
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Corollary 3.3. The vertical recurrence relation for the multiparameter
Stirling numbers of the second kind is given by

(k+1
S(n+1,k+1;a Z(T%%S(j,k;d). (27)

The notation s
{~lonl}i = [ (~le] +m)]) (28)
m=0
will be used in the following theorem.
Theorem 3.4. For non-negative integers n and k, the multiparameter g-

noncentral Stirling numbers of the second kind Sy[n, k; [c]] satisfy the fol-
lowing horizontal recurrence relation:

q[nk[an—z( _1) {{[h"]+:ﬁ‘q[n+1,k+j+1;[&11. (29)

Proof. The proof is established by simply evaluating the right-hand side of
(29) using (25) to obtain Sy(n, k; [o]]. a

If we take the limit of (29) as ¢ — 1, we have

Corollary 3.5. The horizontal recurrence relation for the multiparameter
noncentral Stirling numbers of the second kind is given by

—onm
S(n, k; &) = Z(l >k+1+15(n+1,k+j+1;&). (30)
j (—an)k+1

where <_°‘")k+g+l = ]'Ikm';jo(—a +m) is the rising factorial of —c of order

k+3+1.

The following horizontal generating function is essential in obtaining the
explicit formula for the numbers S, [n, k; [@]] as well as in the establishment
of the orthogonality and the inverse relations of s¢[n, k; ]| and S, [n, k; [¢]].

Theorem 3.6. Let t be a real number and n a non-negative integer. The
multiparameter g-noncentral Stirling numbers of the second kind Sg[n, k; []]
satisfy the horizontal generating function

([61/led)gm = 3 Sqfr, ks [ad) ([e]) 4 - (31)
k=0
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Proof. (By induction on n). Clearly, (31) is true for n = 0. Now, assume

that (31) is also true for n > 0. Then by Definition 3.1,
n+1

> Syln + 1,k [al) ([t
k=0

n

= 5" {Sqln. ki [ad] ([t] - [k]) + (k] = o)) Sl &s [ed]} (2D

= ([t] = lan=1]) D Sqln. ks fad] ([t

k=0

([t] = [en]) ([)/[e])g,n
(it)/[ed)gm+1-
Hence, the proof is finished. ]

Taking ¢ — 1, we obtain the corresponding generating function for
S(n, k; &).

Corollary 3.7. The multiparameter noncentral Stirling numbers of the
second kind satisfy the following generating function

(t/o)a =D S(n, k; @)(t)- (32)

k=0
Theorem 3.8. For nonnegative integers n and k, the g-analogue Sy[n, k; [a])
satisfy the explicit formula
k

S (- 1)r-gl5) [f] ()/leDan.  (33)
] q

j=0

Saln. k; @] = ﬁ

Proof. From Theorem 3.6,

((Kl/[od)gn = Y Sqln, s el) ((K);

j=0

=[], {s il a,[ [TH (KD, }

Applying the g-binomial inversion formula in (11) gives us

Saln k: 5] (K])e Z( ~p=3gC) ] (elan
[k]q J ¢

Simplifying this equation yields (33). 0

3

[
Ma-
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Remark 3.9. The explicit formula in Theorem 3.8 is analogous to that in
(14).
Remark 3.10. Since the following limits hold:

g1 |7

tm =k i 7] = (7). dmG/ieen = Gl

then, by making use of (9), we have

k
. oy L IRVETLAYY
fmSin k6 = g >0 () v
= S(n, k;a).
This implies that Sy[n, k; [a]] is a proper g-analogue of S(n, k; a).

Note that the identity from Theorem 2.6 can be written as
k

([t = D sqlk, m; [d]((£)/ [e])gm-

m=0

Combining this with the identity in Theorem 3.6 gives us

n k
&)/ leDan = D Seln.k;fad] D sqlk,m; [a]}([t)/[])gm
k=0

m=0
= > {Z Sqln, k; [ad)sq [k, m; [&]]} (ie)/[e)g,m-
m=0 \k=m
Comparing the coefficients of ([t]/[a])q,m gives us
3 Sibn ks fallsglbmial) = { AT A g

k=m
The symbol d,,.,, is called the Kronecker delta. Similarly, we have
n

3 sqln ks [1Sq [k, m3 (3] = Sran.

k=m
Hence, the following theorem holds
Theorem 3.11. For non-negative integers m, n and k, the multiparam-
eter g-noncentral Stirling numbers of the first and second kind satisfy the
following orthogonality relation:

n

S Soln. ks [@llsqlk,ms (@] = 3 sqln, ks 6l)Sqlk, mi (3] = Sun.  (39)

k=m k=m
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When ¢ — 1, we obtain the following orthogonality relation for the
multiparameter noncentral Stirling numbers.

Corollary 3.12. For non-negative integers m, n and k, the multiparameter
noncentral Stirling numbers of the first and second kind satisfy the following
orthogonality relation:

n

i S(n, k;&)s(k,m; &) = ) _ s(n, k; &)S(k,m; &) = bn.  (35)

k=m k=m

Remark 3.13. Note that this orthogonality relation can also be obtained
using (24) and (32) by following the same argument above.

Now, using the orthogonality relation in Theorem 3.11, we have the
following inverse relation.

Theorem 3.14. For non-negative integers n and k, the multiparameter g-
noncentral Stirling numbers of the first and Second kind satisfy the following
inverse relation:

Fo= sqln.k; [ollgx <= gn =D _ Sqln, k; o} i (36)
k=0 k=0
Proof. If the condition
fa =" sqln,k; [odlge
k=0

holds, then

n k
Zs [n, k; []) fi S Syln ki [d] Y sqlksm; [@]lgm

k=0 m=0
= Z { Z Sq [n’ k; [&”Sq [k7 m; [5‘]]} 9m-
m=0 \k=m

By Theorem 3.11, we have

Z AR Z Smngm
k=0 m=0

= On-

The converse can be shown similarly. O
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The following theorem can easily be deduced from Theorem 3.14.

Theorem 3.15. For non-negative integers n and k, the multiparameter q-
noncentral Stirling numbers of the first and Second kind satisfy the following
inverse relation:

fe= sqln. k;[ollgn <> gk = > _ Sqln, ki [a]) fa. (37)

n>k n>k

Remark 3.16. When ¢ — 1, we get the corresponding inverse relations
for multiparameter noncentral Stirling numbers:

fa =) s(n ki (@)gk <= gn =Y _ S(n, k; &) fx. (38)
k=0 k=0
and
fe=)_ s(n,k;&)gn <> gr =Y _ S(n,k;G)fn. (39)
n>k n>k

4 Multiparameter ¢-Noncentral Bell numbers

The classical Bell numbers B, is defined as the sum of Stirling numbers of
the second kind (see [8] for the properties). That is

B,=)_S(nk). (40)
k=0
The numbers B,, can be expressed exlicitly as
IS i
Similarly, the polynomials
Ba(z)=)_ S(n,k)z* (42)
k=0
is known as the Bell polynomials and is given by the formula
- "
B, (z)=e"* ;0 7 (43)

Parallel to (40) and (42), we establish a multiparameter noncentral version
for the numbers B,, and polynomials B,(z), respectively. For this purpose,
we have the following definition.
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Definition 4.1. Let n and k be non-negative integers,
a = (ao,al, . ,an_l)

where ap < a3 < ... < a,—; and the numbers o, j = 0,1,2,...,n ~ 1,
be real numbers. The multiparameter noncentral Bell numbers, denoted by
B, (&), is defined by

Bn(@) =)_S(nk;a) (49)
k=0
and the multiparameter noncentral Bell polynomials, denoted by B.(&; z),
by .
Bn(&z)=)_S(n,k;a)z". (45)
k=0

In the following theorem, we present an explicit form for the numbers
B, (&) and polynomials B,(&; ), respectively.

Theorem 4.2. For non-negative integers n and k, where n > k, the poly-
nomials B, (&; ) satisfy the following explicit formulas
- - J/e
Bp(a;z)=e€"" Z ( {7‘)" i, (46)
j20
Consequently, when = = 1, the numbers B,(a) satisfy
Ba(a;1) = ety L2 / °‘)" : (47)
j>0
Proof. Combining the explicit formula for S(n, k; &) in (9) with (45) gives

us
Z S(n, k; &)z*
k=0

k .
_ (=1 /e)nz*
= 22 GRS

k>0 j=0

B.(a;z)

Reindexing the summations and further simplification results to

Ba(zx) = ZZ( 1)} (J{:)nm"‘f

3201420

- (39) (z2)

e~ % Z (]/a)n J

i20
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Equation (47) is obtained by letting z = 1 in the above equation. a

It is known that if X is a Poisson random variable with mean ), then
the n*® factorial moment of X, denoted by Ejx[(X )n], is given by

EX[(X)n] = A"
and the n** moment of X, denoted by E\[X "], satisfy
E\[X™] = Bn(}),
where By () is the Bell polynomials in (42).

Now, considering X to be a Poisson random variable with mean A, we
may write the relation in (5) as

(X/a)a =) S(n, k;&)(X)s.
k=0

Taking the expected value of both sides of this equation yields
E\[(X/a)a] = ) S(n,k;G)Ex[(X)i]
k=0

= Z S(n, k; @)\*
=0
= Bn(a; ).
This result is embodied in the following theorem.

Theorem 4.3. If X is a Poisson random variable with mean A, then the
following factorial moment holds:

- ), M
Brl(X/a)) =™ 3 i (48)
iz
Note that if «; =0 for i = 0,1,...,n — 1, then

J“A’

Ex(X/a)a] = e}

ji>0

= E\X".

This makes our factorial moment E[(X/a),] a generalization of the ordi-
nary n'® moment E)[X™). It is also worth mentioning that the factorial
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moment in (48) is related to the generalized factorial moments of a Poisson
random variable X with mean A given by the pair

BA(BX +1] a)a] = e 30 G On (49)
120
Ex[(aX =] B)n] = € ; o= 71 Bhn s, (50)

for real or complex numbers ¢, 8 and . These are the identities established
by the authors in [17] where the expression

(BX +| @)n H(BX +v - je)

is the generalized falling factorial of BX + 7 of increment «. That is, if we
letf=1,y=0anda=(0-a,1 0, --,(n—1)-a) in (49), we can verify
that

EA[(BX + 7] o)n] = Ex[(X/)n]-

In the following definition, we present g-analogues for the identities in
Definition 4.1, respectively.

Definition 4.4. Let n and k be non-negative integers,

[o] = (ool [oa): - - [an—1])

where [ag] < [01] < ... < [@n—1] and the numbers ¢, j =0,1,2,...,n—1,
be real numbers. A g-analogue for the numbers B, (&), denoted by B, »[&],
is defined as

Buglal = 3 &) 5,[n, k; o] (51)
k=0

and for the polynomials B, (&; z), denoted by By »[&; z], as

n

Bnglaiz) = Y ¢3S, [n, k; [af)z*. (52)

We call B,, 4[&] and B, 4[@; z] as multiparameter g-noncentral Bell numbers
and polynomials, respectively.

Applying the explicit formula in Theorem 3.8 to (52) yields
Z ¢ S,fn, k; [l

®
g\2
Z([ En

By gl@; x]

Z l)k‘iq(k;j) []JC] ([5)/[e))g.nz"-
q

i=0
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Reindexing the summations and since
k
(K]}, = [Klqtq(?),
we have

>3 (-1 gB 1]/ [0]) gz

_ (g“”{}f;’)"' )(gq()( xr)

Applying the known g-exponential function

Bnqla;z) =

éq(t) =
20

and we obtain the following explicit formula

B g[6;2] = &g(—2) Y L2 an (/[)am

= Ul

Moreover, when £ = 1, we have

Bl = (1) 3 (/1o

320 B
These results are embodied in the following theorem.

Theorem 4.5. The explicit forms for the g-analogues B, 4|&; z] and B, 4(&)
are given respectively by

nq[a’x] =8 ( x)Z ([J][/][]o‘] q,n (53)
ji>0 g
and
nq[a] —_ eq Z ([J]/[a])q: . (54)
320 []]q

The following is easily observed.

Remark 4.6.
gl_gi Bngla;z] = Bn(a;z),

lim Brgls] = Ba(a).
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5 Summary and Recommendations

This study defined g-analogues of both kinds of multiparameter noncentral
Stirling numbers by means of triangular recurrence relations. Horizontal
and vertical recurrence relations, explicit formula, generating functions and
the orthogonality and inverse relations of the g-analogues have been estab-
lished. The horizontal and vertical recurrence relations and the generating
functions were derived by proper application of the triangular recurrence
relations, while the explicit formula and the orthogonality and inverse re-
lations were obtained using the generating functions and the g-binomial
inversion formula. Moreover, a multiparameter noncentral Bell numbers
were defined in terms of the second kind multiparameter noncentral Stir-
ling numbers and certain Dobinski-type formula has been obtained. Con-
sequently, a factorial moment of Poisson random variable was established
using the Dobinski-type formula. Furthermore, a kind of g-analogue of
multiparameter noncentral Bell numbers is defined as the sum of multipa-
rameter g-noncentral Stirling numbers of the second kind.

As a continuation to this research work, the authors recommend the
following interesting problems:

1. To define the multiparameter g-noncentral Stirling numbers in terms
of g-differential operators which is parallel to the one being done in

[4].

2. To establish a g-analogue of multiparameter noncentral Stirling num-
bers in line with relation (13) satisfying

UV —qVU = hV>.

This can possibly lead us to a more general combinatorial interpreta-
tion of the generalized Stirling numbers in terms of rook theory.

3. To establish a g-factorial moment of Poisson random variable by
means of the multiparameter g-noncentral Bell numbers.

4. To obtain the Hankel transform or determinant of the sequence of
multiparameter noncentral Bell numbers as well as the sequence of
multiparameter g-noncentral Bell numbers.
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