ON THE TREE DOMINATION NUMBER OF A RANDOM
GRAPH

LANE CLARK AND DARIN JOHNSON

ABSTRACT. We prove a two-point concentration for the tree domi-
nation number of the random graph Gn p provided p is constant or
p — 0 sufficiently slow.

1. INTRODUCTION

Let G be a graph with vertex set [n] = {1,...,n} and let ¢ # S C [n].
S is called a dominating set of G iff for every vertex u € [n] — S there is a
vertex v € S such that uv € E(G). S is a tree dominating set of G iff Sis a
dominating set and the induced subgraph G[S] is a tree. The domination
number ¥(G) is the smallest integer s such that there exists a dominating
set of G of cardinality s. The tree domination number yr(G) is the smallest
integer s such that there exists a tree dominating set of G of cardinality s
where we set y7(G) = 0 if no such § exists.

Unlike dominating sets there exist graphs without tree dominating sets.
Obviously a disconnected graph has no tree dominating set. For each i € [3],
take a connected graph G;, choose one vertex v; € V(G;), and form the
graph G by adding the edges v1v2, v1v3 and vovs to Gy UG UG3. Then G
is a connected graph. Any connected dominating set S of G must contain
v1,v2,v3. Then G[S] contains the cycle vyvovs and is not a tree. This
example is readily extendable to further infinite families of connected graphs
with no tree dominating sets. Chen et al. [4] provide other examples of
graphs with no tree dominating set and ask if it is possible to classify all
graphs that do. Rautenbach [10] showed the question is NP-complete even
for regular graphs. Chengye et al. [5] found the tree domination number
for certain generalized Peterson Graphs. A natural question arises: “With
what probability do graphs with tree dominating sets occur?”. In this paper
we answer this question and prove a much stronger result.

G(n,p) is the set of all graphs G, p with vertex set [n] and edges chosen
independently with probability 0 < p = p(n) < 1. Hence for each Gy p,
Pr(G,,p) = p®Cn»)(1 _p)(g)—e(c,.,,). For a given graph property A we say
A occurs asymptotically almost surely (a.a.s.) if Pr(Gy p has property 4) —
1lasn — oo.

A graph parameter ¢ is said to have a two-point concentration iff a.a.s.
&(Ghn,p) is precisely one of two values (depending on p,n). The first author

ARS COMBINATORIA 118(2015), pp. 227-241



[6] proved a two-point concentration for the strong matching number of the
random graph. Weber [11] showed if p = - then a.a.s. ¥(Gnp) is either
|loga n — loga(loganinn)) + 1 or |logan — logz(logz nlnn)| + 2. Godbole
and Weiland (8] refined this result showing if p is constant or p — 0 suf-
ficiently slow then a.a.s. ¥(Gn,p) is either {logyn — logs(logpnlnn) +1
or |log,n — logy(logpnInn)| + 2. Bonato and Wang (3] showed for con-
stant p that a.a.s the independent domination number (G, ) belongs to
an interval (depending on p,n) whose width goes to infinity with n. The
current authors (7] recently proved if p is constant or p — 0 sufficiently
slow then a.a.s. i(Gn p) is either |logy,n — logy(logynInn) +log, 2] + 1 or
|log, 7 — logy,(logy nInn) + log, 2] + 2. See (2, 9] for further examples.

In this paper we show if p is constant or p — 0 sufficiently slow then
a.a.s. 77(Gn,p) is either {logp,n — logp(logbn (Inn + ¢) + logy 2)| + 1 or
|logpn — logb(logbn (Inn + c) + logy2)] + 2, where ¢ = 2In (pe/q3) if
p> (1-p)? /e and ¢ = 0 otherwise. We then briefly discuss how this result
relates to other variations of the domination number. Our notation and
terminology follow {2, 9].

2. Two-PoINT CONCENTRATION

Throughout this section we will use p as the probability an edge exists
in G = G, and ¢ = 1 — p as the probability an edge does not exist in G.
For convenience, we define b = %. We will also make extensive use of the
inequalities

(1) 1 -z < exp{-z}, T € (—00,00)

1

We begin by defining the random variable X as the number of tree dom-
inating sets of cardinality & in G and Y, as the number of tree dominating
sets of size s or less. Clearly Y, = Y_;_; Xk. Using Cayley’s Formula and
the fact that a tree of order k has k — 1 edges,

E(Xk) ( )kk——2 k— lq() k+1(1 )n—k

and by linearity of expectation

(2) l—xZexp{-——_x—m},ze[O,l).

L

B = Y- (3 )Rt g

k=1
We now state our first lemma.
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Lemma 2.1. Let p be constant or going to 0 such that p > eln®n/n.
If s = |logyn — logs(logen (Inn + ¢)) + log, 2|, then E(Y,) — 0, where

c=2In (-Eg-) ifp> -(lei and ¢ = 0 otherwise.
q

Proof. Lemma 2 of [8] states the expected number of dominating sets of size
less than or equal to 7 = |logy, n — logy (logs n1lnn)| goes to 0 if p > e—]’;:—"

Since every tree dominating set is a dominating set it is clear E(Y;) — 0
as n — oo. It remains to show,

Y E(X4) 0.

k=r+1
Using Stirling’s inequality and (1),

E(Xk) ( )kk -2 k-1 () k+1(1 q )n—k

k k
< (?;:2) 1=K+l gy {_(n _ k)qk}

2
gexp{k]nn+k+ ln(q) +{(k—-1)In (g) - ng* —-%ln (ql)}

_ pe ok KN (p
_exp{klnn+kln<q%) ng 2ln(q) ln(q)}

:=exp{f{k)}.
Now

£ = S 5(R) = lnn+1“(q )*"I“(q>" "“"(;)

Note f'(k) is decreasing for all positive value of k and f’(log, n —logp(logy n
(Inn + ¢)) + logy 2) > 0 for sufficiently large n. So for sufficiently large n,
we have f(k) increasing for all k < logp 7 — logy(logen (Inn + ¢)) + logy, 2.
Hence, setting k = log, n — logs(logp n (Inn + ¢)) + log, 2 we have

E(Ys) <(k —r)exp{f(k)}

<(k- k1 kln{ =) — ——=In{=)-In(=

<( r)exp{ nn+ n(q%) ng 5 n(q n 7
2logpn pe c

sves (gonrs) o0 { (1 (55) - 5) eom

(ln2 —In (qf )) logy(logy n (lnn + ¢))

- % logy2(logyn (Inn + ¢)) In (%)
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(50 () e ()}

K
pr<§-’—'1”—°andc=0 or, ifp>g—1l)%andc=2ln(2§-) then

E(Y,) — 0 as n — oco. Here p > il—ﬂﬁ if p > .242526 and p < & —""ﬁ
if p < .242525. This calculation can be made arbitrarily precise but ‘the
actual value of p such that p = ﬂ)—%- is irrational. If p = p(n) — 0

then p < 1—’31;‘}— for sufficiently large n. It is now important to note we
assumed k is to be positive between r and s, this condition is met so long
as p > (eln® n)/n. This is the same requirement as Lemma 2 of (8]. O

In(2

Lemma 2.2. Let p be constant or going to O such that % > %—ﬁl If
s = |logp n — logy, (logy n (Inn + c)) +logy 2] +2, then E(X,) — oo, where

c=2ln (5—;—) ifp> Ll—f’l%— and ¢ = 0 otherwise.

Proof. Using inequality (2), Stirling’s Formula, and that (n)i = (1—o(1))n*
for k2 = o(n),

E(Xk)—( )Lk 2(1 q—k)n —k_k-1 (,) —k+1
> (:) KA2(1 - g lgla)
2(1 - o(1) 7 CKE=2(1 Ry pE 1R (i K2 = o(m)

>(1 - o(1) kz(j’—(l @ Gk o)

ng® k 1 p
>(1- O(l))k2 \/_ { T_—q:— (2) In (;)-l-(k—l)ln(a }

k 2
K. (1
2(1 - o(1)) exp {klnn+ In (%) k- l'f’qk -5 (E) -In (g)

3) -3 k- ln(27r)} = f(k).

The condition k? = o(n) is satisfied if p > Inn/nt and k = logyn —
log, (logy 2 (Inn + c)) + logb2 + ¢, where € > 0 and c any constant. An-
alyzing the denvatlve v d f(k) shows f(k) is increasing as long as k is
much smaller than ng® which is true for large n when assuming the above
mentioned condition. Substituting k = s on the left and k¥ = logon —
logp (logon (Inn + ¢)) + logy 2 + 1 on the right in (3) it follows that for
sufficiently large n
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E(X,)

3 3
q pe cq
—qk) + log, n (l (q%) - ——‘2(1—qk))

- gln(k) —In (q%) logu(logen (Inn +¢)) — = ln ( ) logs2(logen (Inn + c))

+ln(q ) loge 2 - 5In (q) S1n G) —-;-ln(21r)}

which clearly goes to infinity with n when p is constant. If p = p(n) — 0
then for n sufficiently large, p(n) < .242525 hence ¢ = 0, and

1
E(Xs) >(1 —o(1)) exp {% logp,n Inn (1 -3 ‘i’qk) +logyn In (p_%)

2(1—-o0(1))exp {% logen Inn (

q
- %ln( ) logy2(logp, n lnn)+ln( q)logb2— —]n( ) - gln(k)
—-;- ln(27r)} > (1-o0(1))exp{A - B}

where

1 1 q’}
=3 loghbnlnn mp: + logpn
1 1
B =logpn In (I_’) + 5111( )logb (logon Inn) + ln( ) logy, 2
+ l1n (%) + 2 In(logs n) + > Linem).

Note log,n ~ % and p > lﬁf, hence, p > w. Thus for n suffi-
ciently large,

_1 ki
A—§ ogpnlnn T—¢ + logpn

1 1
= —logpnlnn (1 - ——L—) + logbn
2 1 — g%logbn]nn
2n
1 q%
> §logbnlnn - I +logy,n
1— 2a%
2
3 1
1 1-—B% _g3
=§logbnlnn 2 %q + logpn
1-2g

231



Using the inequality £ <1 - (1 — z)? we obtain

—(1-p)} 2
Azelogbnlnn -1—(—1—@—- +logbn2p—logbnlnn+logbn.
4 3 8
-2
Define C as:
2
4) ¢ = Plogonlnn ) n.

8
We will now find p such that for n sufficiently large C/12 is larger than all
terms in B. Hence,

5 (1—o(1))exp{A - B} > (1-o(1))exp{C — B}
(5) > (1—o(1)) exp {C/2} — oo.
It is obvious that the last four terms of B are dominated by the first or sec-

ond so we will only compare the first and second terms to C/12. Comparing
the first term,

C 1
= > -
T logpnln (p)
if for sufficiently large n

(6)

Comparing the second term,

[t
ot

2(3)

Inn °

2

&I

% > % logy, (logynInn) In (logy, nlnn)

if for sufficiently large n

p | 7 (5m)

(7 2 ()
96 2ln*n
Clearly (6) implies (7) and the assumption p > lﬁf and the lemma is
n

proved. ]
Lemma 2.3. Let p be constant or going to O such that 93;- > lihg-? If
s = |log, n — logy (logon (Inn +¢)) + logy 2| + 2, then

Vazr(X,) 50

E*(Xs)

where c = 21In (E:f) ifp> Q;gﬁ and ¢ = 0 otherwise.
q

Proof. Recall Var(X,) = E(X2) — E*(X,) and

232



2
E(X?) =E ( > Xs)

SCnlIS|=s
where for all § C [n] and G = Gy,

1 S is a tree dominating set of G
0 otherwise.

Xs(G) = {

Expanding the square and using linearity of expectation we have

E(X?)=E(X)+ Y.  E(XsXr).
8, TC[n}.{T)=|S|=s
S,T distinct

Note
E(XsXT)
=Pr(S is a tree dominating set and T is a tree dominating set)
=Pr(S and T are induced trees and S and T are dominating sets)
< Pr(S and T are induced trees and S and T both dominate (S U T)€)
=Pr(S and T are induced trees) Pr(S and T both dominate (S U T)°).
Let m = |SNT| then
Pr(S and T both dominate (SUT)%) = (1 — 2¢° + ¢g**~™)"~2s+m,
Take two trees Ty and Ty of order s labeled with the vertices of S and T
such that V(T1) N V(T2) = SN T, then
Pr(S =T, and T = Tp) = p?¢~D=IBTINET2)| 2((5)=s+1)=(F) HETINET)

By Cayley’s formula there are s°~2 ways to choose T} and at most s*~2

ways to choose T,. Hence,

Pr(S and T are induced trees) < s2(*=2 (2

2(s—1)—e(SNT)
) g2(0)-(3)
q

where e(S N T) is the number of edges in SNT. Since S and T must be
trees, 0 < e(SNT)<m—1and e(SNT)=0when m=0. If p> 3 then

P 2(s-1) . -
Pr(S and T are induced trees) < s2(-2) (E) q2(2)—(,).

Ifp< 3,

2(s—-1) —m+1 . -
Pr(S and T are induced trees) < s?(*=2) (g) (2-’) qz(z)_(z),
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n—s8\ (s (2s-2) (B 2(s—1) qz(;) (1- 2° + q29)n—23
s—=0/\0 q

2(s—1) s~-1
n)sz(s—-z) (g) ' Y fi(m) + E(X,) - E*(X,)

m=1

aem = (2) (72) 0 a0t ooy )

2(s-1)
n\(n—58\(8\ o2 (P 2(3)(1 — 94° 2s\n—2s
Var(X,) < s) (5—0) (O)s (q) g/ (1-2¢° + q%°)

2(s—1) s—1
Deen (B) X ) +B0G) ~ XK

+ S
m1
where
fam) = (:;) (sn _ :l) (1 —2¢° +g2™)" " g20)-(5) (2_’) o

We write s = logy, n —logp(logy n (Inn+c¢)) +logy 2+¢ where e = ¢(n) =
|logy, n—logp (logy 7 (In7 + ¢))+logy, 2] +2—logy, n+logy (logy n (Inn + ¢))+
logp 2 and observe that 1 < e < 2.

It is immediately obvious for any s such that E(X;) — oo,

E(X;) = o(Ez(Xs)).
Further

@ (Z - 3) ((s)) P (g)%—l) (1 - 2" +¢%) > ~E(X,)

SEAX) (- )~ 1) SECK) (exp {EL 1 -1) oy )

and
4sq°
-1)—0
(oo {25} 1)

as n — oo provided p > 1—"—%—’3
n
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To show

(n) 2(s—2) ( )2(3—1)2)’1("‘) = o(E2(X,))

s

and

( ) 2(s— 2)( )Z(s—l)zfz(m) = o(EX(X.)),

we first note that for sufﬁcxently large n,

Alm) < (1) el (1 24"+ g2 2069
<o(” ) (s"i"'"), (1= 2¢° + g% 20 (3)
<2(s)<sns m) exp (n(~24" +*~™) *G-(3) by (1)),

n%n

where the second inequality holds for p > LT Similarly
n

§—

m . - -m+1
fa(m) <2 (:1) (SL_;{)—'- exp (n(-2¢° + qzs-m)) qz(z)_(z) (g) )
Define

g1(m) —2( )(s '"‘) exp (n(=2¢° +¢%*~™)) qZ(;)—(';‘)

-m+1

s—m

— n s 4 25— 2()—-(™) (P
g2(m) :=2 (m) (s_—_m_)‘ exp (n(—2¢° + ¢*~™)) ¢ (2)-(3) (a)
Now consider the ratio of consecutive terms of gy(m) and go(m). Let

a(m+1) ¢ ™(s—m)?

hy(m) := ) = T exp {npg?*~™"1}
_gm+1) ¢ m(s—-m)* (p\7! -
ha(m) := 92(m) = w(m+ 1) (E) exp {npq2 1} )

We will show for i = 1 or i = 2, hy(m) > 1 if m > mp for some
mo(n) — oo, hence g; is first decreasing and then increasing. Further we
will show g;(1) > gi(s — 1), which implies E;;ll fi(m) < sgi(1). Observe

(s —1)2 25—2 logp2 1 plogp2n (Inn + c)?
(1) = _2_qrexP {npq } < 2qn **p dng—1+2¢ —0

if p > Inn/n?, and for sufficiently large n,
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g~ *t! 2! ¢ €logyn (Inn+c¢)
hils — 1 N> q x {pq gb }
-1 = exp {npq’} 2 logp2n (Inn +¢) exp 2

21

provided p # 1 — o(1). By identical calculations for n sufficiently large,
hz(l) <1 and hz(s - 1) > 1.

Further, h;(m) > 1 iff

m > logp (%) — 2logy, (logy 7 (Inn + ¢))
+ logy | In m +2-1
(s —m)?

m > logp (4p ) — 2logy (logpn (Inn + ¢))
m-—1
+logs (1n (PEEEN ) et

(s —m)?

and ho(m) > 1 iff

Define
z,(m) = log (4p ) + logy (1 (———"((’s”:i))gm))
— 2log, (logyn (Inn+c¢)) +2e—1
dn np(m + 1)g™!
z5(m) = logy, ? + logy { In - my ))
— 2logy (logpyn (Inn + ¢)) +2¢ — 1.
Now
( - (3_1_ Wz )"“ (1“ 1né))s+ mé))
%zl(m) =

(m+1)(s —m) (In (242l ))

and the zeros of the numerator are:

1-@*\/(3‘1‘@)2“3(“@)‘lf%
2

2
L R | _ 3 _ 8
s—1 1niéji(s+1) (1 (s+1)1n(1q-)) (s+1)2In%(1)
5 .
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Using Taylor Series with remainder about 0 it follows that if 0 < z <
3 — 2v/2, then for any y such that |y| < z

2 82
1—3y———8z— <V(1-3y)2-8y2<1-3y+ z

(1-6z+22)% (1-6z+22)%

Lettingy =2 = m, we then have
q

Z 2y (m) = (m+1_ﬁl§-7_5) (m—8+,rf§+6)
(m+1)(s —m) (In (24=tlg™))

dm
8

where 4] < T

z
2(1 _ 6 1
e+ 01 (3) (1= sty + )
Thus § = G( ]nn) — 0 asn — oo.

Hence on (—o0,—1) and (In'l( =) — 144685~ 2ln'1( 1) - 6), z1(m)
is decreasing, and on ( —1 ln_l( ) —1+46) and (s - 2ln'1( 1)y -34,9),
x(m) is increasing. Thus m; = ln'l( =) —1+4 is a relative maximum and
mg =s5—2In" l( =) — 4 is a relative minimum of z,(m).

Note m; € [l,s—l] iffp<1—e"7-5 and m, € [1,s—1]iff p< 1—e~ T3,
Also for n sufficiently large, z;(m) is continuous on [1,s — 1], for every
me[l,s—1] we have zi(m) € [1,s—1],and s—1 > z;(1) > z1(s —1) > 1.

Ifp>1-e 1_5 then z;(m) has an absolute maximum at 1 and an
absolute minimum at s—1on [1,s —1]. The above information and the
intermediate value theorem imply there exists a unique mg € [1,s—1] such
that mo = z1(mop) and z1(mg) > z1(s — 1).

1 2

If 1 -e77% < p <1-—e 1%, then z1(m) has an absolute maximum at
1 and an absolute minimum at mz on [1, s—1]. The above information and
the intermediate value theorem imply there exists a unique mgo € (1,5 — 1]
such that mo = z(myg). Further, one can show by iteration that z, (mo) 2
z1(s —1).

fp<1- e'&‘, then z;(m) has an absolute maximum at m; and
an absolute minimum at ms on [1,s — 1]. The above information and the
intermediate value theorem imply there exists a unique mg € [1,s—1] such
that mg = z,(mo). Further, one can show by iteration that z;(mp) >
z1(s — 1).

Thus, in any of the three cases, there exists a unique mp € [1,5— 1] such
that for each m > mg = z1(mg) we have m > z;(m).

Also
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(mz_ (s—l—ml—%—))m— (1_3715)3*?(25)
(menie—m) (n (PEEE=))

and by identical calculations we see z2(m) is decreasing and increasing
on the same intervals as z;(m). Thus the absolute extrema of z2(m) in
[1,s—1] are located at the same locations as the relative extrema of z(m).
Further, z2(1) > z2(s — 1). Hence there exists mp € {1, s —1] such that for
all m > mg we have m > za(m).

Now, for n sufficiently large

n(mo + 1)g™° _ logyn (Inn +¢)s

which goes to infinity as n goes to infinity. Also, logy, (‘%‘-) > 2logy(logy n
(Inn + ¢)) and 2¢ — 1 is bounded, thus mg — co. Therefore, if i =1 or 2
hi(m) > 1iff m > mg — 00 as n — 00. So m > mg iff hy(m) > 1.

It remains to show g;(1) > gi(s — 1) for i =1 and 2. First note ¢;(1) =
g2(1) and g1(s—1) < go(s—1), so we only need show that 92(1) 2 ga(s—1).

——T2(m) =

dm

This last inequality is true iff

s—1 _ —s+2
n_! exp {ng®~1} > nexp{ng**'} ¢ ) (2)

(s—1) q
iff .
n’” s—2_(*7')—s+2 2s—1 s+1
GO g('3) 2 exp {ng? ! —ng°*'} 21
and for n sufficiently large
-2 s— =N, 5 — s
mp 2q( 2 +2exp{nq2 l—nq +1}

=2

2
> —p’q exp{-ng"*!}

ns—2 2
2—-p'qT exp{-ng

Zexp{(s— 2)Inn — sin(s) — sln (%) - f;ln (%) _ nq’“}

(1-g¢*h) € 1. (1)
>exp{ —————Llogpn Inn—(2+ - )Inn—--lo lo Inn+¢))ln| =
p{ 5 ogb ( 2) n — 5 logs" (logs n( N

1 e+1
- (lns+ In (;) + cq2 ) logw 'n.}

> exp {-g— logbn Inn —3lnn — %logb2 (logb . (Inn +c¢))In (-};)
1 e+1
- (lns+ In (;) + cq2 ) logbn} ,
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In? (l2a
which goes to infinity as n — 0o so long as p > {22 and p > —y L.

Inn

These conditions are clearly satisfied by the hypothesis.
We have thus shown for, i =1ori =2,

s=1
Y fi(m) < sq1(1).
m=1
2(s—-1) 9
Finally, we show (%) (5) §2s—D+1g.(1) = o(E%(X,)). Since g1(1) =
92(1) we need only perform the estimate once. Now

() ()" gy
E*(X,)
_2s?n*"lexp{n(—2¢° + ¢>*~1)}
(DA =g)Hma(s —1)!
2s® exp{n(—2¢° + ¢>*~1)}

(I -0(1))n(1—g%)% (s? = o(n))
2s® exp{n(—2¢* + ¢>*~1)} i
< (1 —0(1))nexp{—l_2-n£;} (by (2))

253 2q°
< —-90° 2s—1
—(1—o<1>)ne"p{"< Tt )}

243 n(2q + 1)q2‘."l

<

ST o)™ { 1-¢ }
2logp3n 3logy’ n (Inn + c)2g2e-1

(1 —-o(1))n 4n(1 - ¢°)

-0

ifp> ﬂ%’l We have thus shown if s = logyn — logy, (logs 2 (Inn + ¢)) +
n

logy 2 + € = {logy n — logy, (logp 7 (In7 + ¢)) + logy 2] + 2 then Var(X,) =

o(E%(X,)) and the lemma is proved. | a

We now can state our main result.

n(1
Theorem 2.4. If p is constant or going to 0 such that g;- > 1_]§£_)’ then
a.a.s. Y7(Gnp) is equal to [logyn — logy, (logy n (Inn + ¢)) + logy, 2] +1

or |logyn — logy (logyn (Inn +¢)) + logy 2] + 2, where ¢ = 2In (Bi%) i
q

P> gl—:ﬂ% and ¢ = 0 otherwise.
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Proof. Let s = |log, n — logy, (logpn (Inn + ¢) + logy, 2]. By Markov’s In-
equality and Lemma 2.1

Pr(Y, 21) <E(Y;) - 0.

Thus a.a.s. v7(G) > s + 1 or y7(G) = 0. By Chebyshev’s Inequality,
Lemma 2.2, and Lemma 2.3

Var(X
Pr(Xs+2 = 0) < Pr(|Xo42 — E(Xe42)] 2 E(Xs42)) < ar(Xov2) _ o

= E*(Xo42)
Thus a.a.s. there exists a tree dominating set of cardinality s 4+ 2, hence
yr(G) < s+ 2 and v7(G) #0. Thus yr(G) is either s +1 or s + 2. O

3. RELATIONSHIP TO OTHER DOMINATION PARAMETERS

Let G be a graph with vertex set [n] and let ¢ # S C [n]. S is a connected
dominating set of G iff S is a dominating set of G and the induced subgraph
G|S] is connected. S is a total dominating set of G iff for every vertex u € [n]
there is a vertex v € S such that uv € E(G). The connected domination
number v.(G) is the smallest integer s such that there exists a connected
dominating set of G of cardinality s. The total domination number ,(G)
is the smallest integer s such that there exists a total dominating set of G
of cardinality s.

The tree domination number is closely related to both the connected
and total domination numbers. In fact a non-trivial tree dominating set of
a graph G is both a connected dominating set and a total dominating set
of G. Thus by determining the (non-trivial) tree domination number of a
random graph we have also bounded its connected and total domination
numbers above. Godbole’s result [8] on the domination number of a random
graph provides a lower bound.

Let a(n,p) = |logbn — logy (logyn Inn)| 4+ 1 and b(n,p,c) = |logon —
logy, (logy 2 (Inn + ¢)) +logy, 2| +2 where b = -li—p. Hence, we have shown:

Theorem 3.1. If p is constant, then a.a.s.
a(n, ) £ Ye(Gn,p), Y(Gn,p) < b(n, p;c).

where c = 21n (ﬂi-) ifp> gl—lﬂﬁ and ¢ =0 otherwise. O
q

It should be noted Bonato and Wang (3] proved v;(Grp) < |logbn —
logp, (logyn Inn)] + 2. We conjecture a similar two-point concentration

for ¥e(Gn,p)-
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