ON THE TREE DOMINATION NUMBER OF A RANDOM GRAPH

LANE CLARK AND DARIN JOHNSON

ABSTRACT. We prove a two-point concentration for the tree domination number of the random graph $G_{n,p}$ provided p is constant or $p \to 0$ sufficiently slow.

1. Introduction

Let G be a graph with vertex set $[n] = \{1, \ldots, n\}$ and let $\phi \neq S \subseteq [n]$. S is called a dominating set of G iff for every vertex $u \in [n] - S$ there is a vertex $v \in S$ such that $uv \in E(G)$. S is a tree dominating set of G iff S is a dominating set and the induced subgraph G[S] is a tree. The domination number $\gamma(G)$ is the smallest integer S such that there exists a dominating set of S of cardinality S. The tree domination number S is the smallest integer S such that there exists a tree dominating set of S of cardinality S where we set S under S if no such S exists.

Unlike dominating sets there exist graphs without tree dominating sets. Obviously a disconnected graph has no tree dominating set. For each $i \in [3]$, take a connected graph G_i , choose one vertex $v_i \in V(G_i)$, and form the graph G by adding the edges v_1v_2 , v_1v_3 and v_2v_3 to $G_1 \cup G_2 \cup G_3$. Then G is a connected graph. Any connected dominating set S of G must contain v_1, v_2, v_3 . Then G[S] contains the cycle $v_1v_2v_3$ and is not a tree. This example is readily extendable to further infinite families of connected graphs with no tree dominating sets. Chen et al. [4] provide other examples of graphs with no tree dominating set and ask if it is possible to classify all graphs that do. Rautenbach [10] showed the question is NP-complete even for regular graphs. Chengye et al. [5] found the tree domination number for certain generalized Peterson Graphs. A natural question arises: "With what probability do graphs with tree dominating sets occur?". In this paper we answer this question and prove a much stronger result.

 $\mathcal{G}(n,p)$ is the set of all graphs $G_{n,p}$ with vertex set [n] and edges chosen independently with probability $0 \leq p = p(n) \leq 1$. Hence for each $G_{n,p}$, $\Pr(G_{n,p}) = p^{e(G_{n,p})} (1-p)^{\binom{n}{2}-e(G_{n,p})}$. For a given graph property A we say A occurs asymptotically almost surely (a.a.s.) if $\Pr(G_{n,p})$ has property $A \to 1$ as $n \to \infty$.

A graph parameter ξ is said to have a two-point concentration iff a.a.s. $\xi(G_{n,p})$ is precisely one of two values (depending on p, n). The first author

[6] proved a two-point concentration for the strong matching number of the random graph. Weber [11] showed if $p=\frac{1}{2}$ then a.a.s. $\gamma(G_{n,p})$ is either $\lfloor \log_2 n - \log_2(\log_2 n \ln n) \rfloor + 1$ or $\lfloor \log_2 n - \log_2(\log_2 n \ln n) \rfloor + 2$. Godbole and Weiland [8] refined this result showing if p is constant or $p \to 0$ sufficiently slow then a.a.s. $\gamma(G_{n,p})$ is either $\lfloor \log_b n - \log_b(\log_b n \ln n) \rfloor + 1$ or $\lfloor \log_b n - \log_b(\log_b n \ln n) \rfloor + 2$. Bonato and Wang [3] showed for constant p that a.a.s the independent domination number $i(G_{n,p})$ belongs to an interval (depending on p,n) whose width goes to infinity with n. The current authors [7] recently proved if p is constant or $p \to 0$ sufficiently slow then a.a.s. $i(G_{n,p})$ is either $\lfloor \log_b n - \log_b(\log_b n \ln n) + \log_b 2 \rfloor + 1$ or $\lfloor \log_b n - \log_b(\log_b n \ln n) + \log_b 2 \rfloor + 2$. See [2, 9] for further examples.

In this paper we show if p is constant or $p \to 0$ sufficiently slow then a.a.s. $\gamma_T(G_{n,p})$ is either $\lfloor \log_b n - \log_b(\log_b n \ (\ln n + c) + \log_b 2) \rfloor + 1$ or $\lfloor \log_b n - \log_b(\log_b n \ (\ln n + c) + \log_b 2) \rfloor + 2$, where $c = 2 \ln \left(pe/q^{\frac{3}{2}} \right)$ if $p > (1-p)^{\frac{3}{2}}/e$ and c = 0 otherwise. We then briefly discuss how this result relates to other variations of the domination number. Our notation and terminology follow $\{2, 9\}$.

2. Two-Point Concentration

Throughout this section we will use p as the probability an edge exists in $G = G_{n,p}$ and q = 1 - p as the probability an edge does not exist in G. For convenience, we define $b = \frac{1}{q}$. We will also make extensive use of the inequalities

$$(1) 1-x \le \exp\{-x\}, \ x \in (-\infty, \infty)$$

(2)
$$1 - x \ge \exp\left\{\frac{-x}{1-x}\right\}, \ x \in [0,1).$$

We begin by defining the random variable X_k as the number of tree dominating sets of cardinality k in G and Y_s as the number of tree dominating sets of size s or less. Clearly $Y_s = \sum_{k=1}^s X_k$. Using Cayley's Formula and the fact that a tree of order k has k-1 edges,

$$E(X_k) = \binom{n}{k} k^{k-2} p^{k-1} q^{\binom{k}{2} - k + 1} (1 - q^k)^{n-k}$$

and by linearity of expectation

$$E(Y_s) = \sum_{k=1}^s \binom{n}{k} k^{k-2} p^{k-1} q^{\binom{k}{2}-k+1} (1-q^k)^{n-k}.$$

We now state our first lemma.

Lemma 2.1. Let p be constant or going to 0 such that $p \ge e \ln^2 n/n$. If $s = \lfloor \log_b n - \log_b(\log_b n \ (\ln n + c)) + \log_b 2 \rfloor$, then $E(Y_s) \to 0$, where $c = 2 \ln \left(\frac{pe}{a^{\frac{3}{2}}}\right)$ if $p > \frac{(1-p)^{\frac{3}{2}}}{e}$ and c = 0 otherwise.

Proof. Lemma 2 of [8] states the expected number of dominating sets of size less than or equal to $r = \lfloor \log_b n - \log_b (\log_b n \ln n) \rfloor$ goes to 0 if $p \ge \frac{e \ln^2 n}{n}$. Since every tree dominating set is a dominating set it is clear $E(Y_r) \to 0$ as $n \to \infty$. It remains to show,

$$\sum_{k=r+1}^{s} \mathrm{E}(X_k) \to 0.$$

Using Stirling's inequality and (1),

$$\begin{split} \mathbb{E}(X_k) &= \binom{n}{k} k^{k-2} p^{k-1} q^{\binom{k}{2} - k + 1} (1 - q^k)^{n-k} \\ &\leq \frac{(ne)^k}{k^2} p^{k-1} q^{\binom{k}{2} - k + 1} \exp\left\{ -(n-k)q^k \right\} \\ &\leq \exp\left\{ k \ln n + k + \frac{k}{2} \ln \left(\frac{1}{q} \right) + (k-1) \ln \left(\frac{p}{q} \right) - nq^k - \frac{k^2}{2} \ln \left(\frac{1}{q} \right) \right\} \\ &= \exp\left\{ k \ln n + k \ln \left(\frac{pe}{q^{\frac{3}{2}}} \right) - nq^k - \frac{k^2}{2} \ln \left(\frac{1}{q} \right) - \ln \left(\frac{p}{q} \right) \right\} \\ &:= \exp\{f(k)\}. \end{split}$$

Now

$$f'(k) = \frac{d}{dk}f(k) = \ln n + \ln\left(\frac{pe}{a^{\frac{3}{2}}}\right) + n\ln\left(\frac{1}{q}\right)q^k - k\ln\left(\frac{1}{q}\right).$$

Note f'(k) is decreasing for all positive value of k and $f'(\log_b n - \log_b(\log_b n (\ln n + c)) + \log_b 2) \ge 0$ for sufficiently large n. So for sufficiently large n, we have f(k) increasing for all $k \le \log_b n - \log_b(\log_b n (\ln n + c)) + \log_b 2$. Hence, setting $k = \log_b n - \log_b(\log_b n (\ln n + c)) + \log_b 2$ we have

$$\begin{split} & \mathrm{E}(Y_s) \leq (k-r) \exp \left\{ f(k) \right\} \\ & \leq (k-r) \exp \left\{ k \ln n + k \ln \left(\frac{pe}{q^{\frac{3}{2}}} \right) - nq^k - \frac{k^2}{2} \ln \left(\frac{1}{q} \right) - \ln \left(\frac{p}{q} \right) \right\} \\ & \leq \log_{\mathrm{b}} \left(\frac{2 \log_{\mathrm{b}} n}{\log_{\mathrm{b}} n + c} \right) \exp \left\{ \left(\ln \left(\frac{pe}{q^{\frac{3}{2}}} \right) - \frac{c}{2} \right) \log_{\mathrm{b}} n \right. \\ & + \left(\ln 2 - \ln \left(\frac{pe}{q^{\frac{3}{2}}} \right) \right) \log_{\mathrm{b}} (\log_{\mathrm{b}} n \, \left(\ln n + c \right) \right) \\ & - \frac{1}{2} \log_{\mathrm{b}}^2 (\log_{\mathrm{b}} n \, \left(\ln n + c \right) \right) \ln \left(\frac{1}{q} \right) \end{split}$$

$$-\left(\frac{\ln 2}{2} - \ln\left(\frac{pe}{q^{\frac{3}{2}}}\right)\right)\log_b 2 - \ln\left(\frac{p}{q}\right)\right\}.$$

If $p \leq \frac{(1-p)^{\frac{3}{2}}}{e}$ and c=0, or, if $p>\frac{(1-p)^{\frac{3}{2}}}{e}$ and $c=2\ln\left(\frac{pe}{q^{\frac{3}{2}}}\right)$, then $\mathrm{E}(Y_s)\to 0$ as $n\to\infty$. Here $p>\frac{(1-p)^{\frac{3}{2}}}{e}$ if p>.242526 and $p<\frac{(1-p)^{\frac{3}{2}}}{e}$ if p<.242525. This calculation can be made arbitrarily precise but the actual value of p such that $p=\frac{(1-p)^{\frac{3}{2}}}{e}$ is irrational. If $p=p(n)\to 0$ then $p<\frac{(1-p)^{\frac{3}{2}}}{e}$ for sufficiently large n. It is now important to note we assumed k is to be positive between r and s, this condition is met so long as $p>(e\ln^2 n)/n$. This is the same requirement as Lemma 2 of [8].

Lemma 2.2. Let p be constant or going to 0 such that $\frac{p^2}{96} \ge \frac{\ln\left(\frac{1}{p}\right)}{\ln n}$. If $s = \lfloor \log_b n - \log_b(\log_b n (\ln n + c)) + \log_b 2 \rfloor + 2$, then $E(X_s) \to \infty$, where $c = 2\ln\left(\frac{pe}{a^{\frac{2}{3}}}\right)$ if $p > \frac{(1-p)^{\frac{3}{2}}}{e}$ and c = 0 otherwise.

Proof. Using inequality (2), Stirling's Formula, and that $(n)_k = (1-o(1))n^k$ for $k^2 = o(n)$,

$$E(X_{k}) = \binom{n}{k} k^{k-2} (1 - q^{-k})^{n-k} p^{k-1} q^{\binom{k}{2} - k + 1}$$

$$\geq \binom{n}{k} k^{k-2} (1 - q^{-k})^{n} p^{k-1} q^{\binom{k}{2} - k + 1}$$

$$\geq (1 - o(1)) \frac{n^{k}}{k!} k^{k-2} (1 - q^{-k})^{n} p^{k-1} q^{\binom{k}{2} - k + 1} \text{ (if } k^{2} = o(n))$$

$$\geq (1 - o(1)) \frac{(ne)^{k}}{k^{2} \sqrt{2\pi k}} (1 - q^{-k})^{n} p^{k-1} q^{\binom{k}{2} - k + 1} \text{ (if } k \to \infty)$$

$$\geq (1 - o(1)) \frac{(ne)^{k}}{k^{2} \sqrt{2\pi k}} \exp\left\{-\frac{nq^{k}}{1 - q^{k}} - \binom{k}{2} \ln\left(\frac{1}{q}\right) + (k - 1) \ln\left(\frac{p}{q}\right)\right\}$$

$$\geq (1 - o(1)) \exp\left\{k \ln n + \ln\left(\frac{pe}{q^{\frac{3}{2}}}\right) k - \frac{nq^{k}}{1 - q^{k}} - \frac{k^{2}}{2} \ln\left(\frac{1}{q}\right) - \ln\left(\frac{p}{q}\right)\right\}$$

$$(3) \qquad \qquad -\frac{5}{2} \ln k - \frac{1}{2} \ln(2\pi)\right\} := f(k).$$

The condition $k^2 = o(n)$ is satisfied if $p \gg \ln n/n^{\frac{1}{2}}$ and $k = \log_b n - \log_b (\log_b n (\ln n + c)) + \log_b 2 + \epsilon$, where $\epsilon > 0$ and c any constant. Analyzing the derivative $\frac{d}{dk}f(k)$ shows f(k) is increasing as long as k is much smaller than nq^k which is true for large n when assuming the above mentioned condition. Substituting k = s on the left and $k = \log_b n - \log_b (\log_b n (\ln n + c)) + \log_b 2 + \frac{1}{2}$ on the right in (3) it follows that for sufficiently large n

$$E(X_s)$$

$$\geq (1 - o(1)) \exp\left\{\frac{1}{2}\log_{b} n \ln n \left(1 - \frac{q^{\frac{1}{2}}}{1 - q^{k}}\right) + \log_{b} n \left(\ln\left(\frac{pe}{q^{\frac{3}{2}}}\right) - \frac{cq^{\frac{1}{2}}}{2(1 - q^{k})}\right) \right. \\ \left. - \frac{5}{2}\ln(k) - \ln\left(\frac{pe}{q^{\frac{3}{2}}}\right)\log_{b}(\log_{b} n (\ln n + c)) - \frac{1}{2}\ln\left(\frac{1}{q}\right)\log_{b}^{2}(\log_{b} n (\ln n + c)) \right. \\ \left. + \ln\left(\frac{pe}{q}\right)\log_{b}2 - \frac{1}{2}\ln\left(\frac{p}{q}\right) - \frac{1}{8}\ln\left(\frac{1}{q}\right) - \frac{1}{2}\ln(2\pi)\right\}$$

which clearly goes to infinity with n when p is constant. If $p = p(n) \to 0$ then for n sufficiently large, p(n) < .242525 hence c = 0, and

$$\begin{split} \mathrm{E}(X_s) \geq & (1-o(1)) \exp\left\{\frac{1}{2}\log_{\mathbf{b}} n \; \ln n \; \left(1-\frac{q^{\frac{1}{2}}}{1-q^k}\right) + \log_{\mathbf{b}} n \; \ln\left(\frac{pe}{q^{\frac{3}{2}}}\right) \right. \\ & \left. - \frac{1}{2}\ln\left(\frac{1}{q}\right)\log_{\mathbf{b}}^2(\log_{\mathbf{b}} n \; \ln n) + \ln\left(\frac{pe}{q}\right)\log_{\mathbf{b}} 2 - \frac{1}{8}\ln\left(\frac{1}{q}\right) - \frac{5}{2}\ln(k) \right. \\ & \left. - \frac{1}{2}\ln(2\pi)\right\} \geq (1-o(1))\exp\left\{A - B\right\} \end{split}$$

where

$$\begin{split} A &= \frac{1}{2} \log_b n \ln n \left(1 - \frac{q^{\frac{1}{2}}}{1 - q^k} \right) + \log_b n \\ B &= \log_b n \ln \left(\frac{1}{p} \right) + \frac{1}{2} \ln \left(\frac{1}{q} \right) \log_b^2 (\log_b n \ln n) + \ln \left(\frac{1}{p} \right) \log_b 2 \\ &+ \frac{1}{8} \ln \left(\frac{1}{q} \right) + \frac{5}{2} \ln(\log_b n) + \frac{1}{2} \ln(2\pi). \end{split}$$

Note $\log_b n \sim \frac{\ln n}{p}$ and $p \gg \frac{\ln n}{n^{\frac{1}{2}}}$, hence, $p \gg \frac{\log_b n \ln n}{n}$. Thus for n sufficiently large,

$$\begin{split} A &= \frac{1}{2} \log_b n \ln n \left(1 - \frac{q^{\frac{1}{2}}}{1 - q^s} \right) + \log_b n \\ &= \frac{1}{2} \log_b n \ln n \left(1 - \frac{q^{\frac{1}{2}}}{1 - \frac{q^{\frac{1}{2}} \log_b n \ln n}{2n}} \right) + \log_b n \\ &\geq \frac{1}{2} \log_b n \ln n \left(1 - \frac{q^{\frac{1}{2}}}{1 - \frac{pq^{\frac{1}{2}}}{2}} \right) + \log_b n \\ &= \frac{1}{2} \log_b n \ln n \left(\frac{1 - \frac{pq^{\frac{1}{2}}}{2} - q^{\frac{1}{2}}}{1 - \frac{pq^{\frac{1}{2}}}{2}} \right) + \log_b n. \end{split}$$

Using the inequality $\frac{x}{2} \le 1 - (1-x)^{\frac{1}{2}}$ we obtain

$$A \ge \frac{p}{4} \log_b n \ln n \left(\frac{1 - (1 - p)^{\frac{1}{2}}}{1 - \frac{pq^{\frac{1}{2}}}{2}} \right) + \log_b n \ge \frac{p^2}{8} \log_b n \ln n + \log_b n.$$

Define C as:

(4)
$$C = \frac{p^2 \log_b n \ln n}{8} + \log_b n.$$

We will now find p such that for n sufficiently large C/12 is larger than all terms in B. Hence,

(5)
$$(1 - o(1)) \exp \{A - B\} \ge (1 - o(1)) \exp \{C - B\}$$

$$\ge (1 - o(1)) \exp \{C/2\} \to \infty.$$

It is obvious that the last four terms of B are dominated by the first or second so we will only compare the first and second terms to C/12. Comparing the first term,

$$\frac{C}{12} \ge \log_b n \ln \left(\frac{1}{p}\right)$$

if for sufficiently large n

$$\frac{p^2}{96} \ge \frac{\ln\left(\frac{1}{p}\right)}{\ln n}.$$

Comparing the second term,

$$\frac{C}{12} \ge \frac{1}{2} \log_b (\log_b n \ln n) \ln (\log_b n \ln n)$$

if for sufficiently large n

(7)
$$\frac{p^2}{96} \ge \frac{\ln^2\left(\frac{\ln^2 n}{p}\right)}{2\ln^2 n}.$$

Clearly (6) implies (7) and the assumption $p \gg \frac{\ln n}{n^{\frac{1}{2}}}$ and the lemma is proved.

Lemma 2.3. Let p be constant or going to 0 such that $\frac{p^2}{96} \ge \frac{\ln(\frac{1}{p})}{\ln n}$. If $s = \lfloor \log_b n - \log_b (\log_b n (\ln n + c)) + \log_b 2 \rfloor + 2$, then

$$\frac{\operatorname{Var}(X_s)}{\operatorname{E}^2(X_s)} \to 0$$

where $c = 2 \ln \left(\frac{pe}{a^{\frac{3}{2}}}\right)$ if $p > \frac{(1-p)^{\frac{3}{2}}}{e}$ and c = 0 otherwise.

Proof. Recall
$$Var(X_s) = E(X_s^2) - E^2(X_s)$$
 and

$$\mathrm{E}(X_s^2) = \mathrm{E}\left(\left(\sum_{S\subseteq[n],|S|=s} X_S\right)^2\right)$$

where for all $S \subseteq [n]$ and $G = G_{n,p}$

$$X_s(G) = \begin{cases} 1 & S \text{ is a tree dominating set of } G \\ 0 & \text{otherwise.} \end{cases}$$

Expanding the square and using linearity of expectation we have

$$\mathbf{E}(X_s^2) = \mathbf{E}(X_s) + \sum_{\substack{S,T \subseteq [n], |T| = |S| = s \\ S,T \text{ distinct}}} \mathbf{E}(X_S X_T).$$

Note

$$\mathrm{E}(X_SX_T)$$

- = Pr(S is a tree dominating set and T is a tree dominating set)
- = Pr(S and T are induced trees and S and T are dominating sets)
- $\leq \Pr(S \text{ and } T \text{ are induced trees and } S \text{ and } T \text{ both dominate } (S \cup T)^C)$
- = $Pr(S \text{ and } T \text{ are induced trees}) Pr(S \text{ and } T \text{ both dominate } (S \cup T)^C).$

Let $m = |S \cap T|$ then

$$\Pr(S \text{ and } T \text{ both dominate } (S \cup T)^C) = (1 - 2q^s + q^{2s-m})^{n-2s+m}.$$

Take two trees T_1 and T_2 of order s labeled with the vertices of S and T such that $V(T_1) \cap V(T_2) = S \cap T$, then

$$\Pr(S = T_1 \text{ and } T = T_2) = p^{2(s-1)-|E(T_1)\cap E(T_2)|} q^{2(\binom{s}{2}-s+1)-\binom{m}{2}+|E(T_1)\cap E(T_2)|}.$$

By Cayley's formula there are s^{s-2} ways to choose T_1 and at most s^{s-2} ways to choose T_2 . Hence,

$$\Pr(S \text{ and } T \text{ are induced trees}) \leq s^{2(s-2)} \left(\frac{p}{q}\right)^{2(s-1) - \mathrm{e}(S \cap T)} q^{2\binom{s}{2} - \binom{m}{2}}$$

where $e(S \cap T)$ is the number of edges in $S \cap T$. Since S and T must be trees, $0 \le e(S \cap T) \le m-1$ and $e(S \cap T) = 0$ when m = 0. If $p \ge \frac{1}{2}$ then

$$\Pr(S \text{ and } T \text{ are induced trees}) \leq s^{2(s-2)} \left(\frac{p}{q}\right)^{2(s-1)} q^{2\binom{s}{2} - \binom{m}{2}}.$$

If $p \leq \frac{1}{2}$,

$$\Pr(S \text{ and } T \text{ are induced trees}) \leq s^{2(s-2)} \left(\frac{p}{q}\right)^{2(s-1)} \left(\frac{p}{q}\right)^{-m+1} q^{2\binom{s}{2}-\binom{m}{2}}.$$

If $p \geq \frac{1}{2}$,

$$\operatorname{Var}(X_{s}) \leq {n \choose s} {n-s \choose s-0} {s \choose s} s^{2(s-2)} \left(\frac{p}{q}\right)^{2(s-1)} q^{2{s \choose 2}} (1 - 2q^{s} + q^{2s})^{n-2s} + {n \choose s} s^{2(s-2)} \left(\frac{p}{q}\right)^{2(s-1)} \sum_{m=1}^{s-1} f_{1}(m) + \operatorname{E}(X_{s}) - \operatorname{E}^{2}(X_{s})$$

where

$$f_1(m) = \binom{s}{m} \binom{n-s}{s-m} \left(1 - 2q^s + q^{2s-m}\right)^{n-2s+m} q^{2\binom{s}{2} - \binom{m}{2}}.$$

If $p \leq \frac{1}{2}$,

$$\operatorname{Var}(X_{s}) \leq {n \choose s} {n-s \choose s-0} {s \choose s-2} \left(\frac{p}{q}\right)^{2(s-1)} q^{2{s \choose 2}} (1 - 2q^{s} + q^{2s})^{n-2s} + {n \choose s} s^{2(s-2)} \left(\frac{p}{q}\right)^{2(s-1)} \sum_{s=1}^{s-1} f_{2}(m) + \operatorname{E}(X_{s}) - \operatorname{E}^{2}(X_{s})$$

where

$$f_2(m) = \binom{s}{m} \binom{n-s}{s-m} \left(1 - 2q^s + q^{2s-m}\right)^{n-2s+m} q^{2\binom{s}{2} - \binom{m}{2}} \left(\frac{p}{q}\right)^{-m+1}.$$

We write $s = \log_b n - \log_b(\log_b n (\ln n + c)) + \log_b 2 + \epsilon$ where $\epsilon = \epsilon(n) = \lfloor \log_b n - \log_b (\log_b n (\ln n + c)) + \log_b 2 \rfloor + 2 - \log_b n + \log_b (\log_b n (\ln n + c)) + \log_b 2$ and observe that $1 < \epsilon \le 2$.

It is immediately obvious for any s such that $E(X_s) \to \infty$,

$$E(X_s) = o(E^2(X_s)).$$

Further

$$\binom{n}{s} \binom{n-s}{s-0} \binom{s}{0} s^{2(s-2)} \left(\frac{p}{q}\right)^{2(s-1)} q^{2\binom{s}{2}} (1 - 2q^s + q^{2s})^{n-2s} - E^2(X_s)$$

$$\leq E^2(X_s) \left((1 - q^s)^{-4s} - 1 \right) \leq E^2(X_s) \left(\exp\left\{\frac{4sq^s}{1 - q^s}\right\} - 1 \right) (\text{by } (2))$$

and

$$\left(\exp\left\{\frac{4sq^s}{1-q^s}\right\}-1\right)\to 0$$

as $n \to \infty$ provided $p \gg \frac{\ln^{\frac{3}{2}} n}{n^{\frac{1}{2}}}$.

To show

$$\binom{n}{s} s^{2(s-2)} \left(\frac{p}{q}\right)^{2(s-1)} \sum_{m=1}^{s-1} f_1(m) = o(\mathbb{E}^2(X_s))$$

and

$$\binom{n}{s} s^{2(s-2)} \left(\frac{p}{q}\right)^{2(s-1)} \sum_{m=1}^{s-1} f_2(m) = o(\mathbf{E}^2(X_s)),$$

we first note that for sufficiently large n,

$$f_{1}(m) \leq {s \choose m} \frac{n^{s-m}}{(s-m)!} \left(1 - 2q^{s} + q^{2s-m}\right)^{n-2s+m} q^{2{s \choose 2} - {m \choose 2}}$$

$$\leq 2 {s \choose m} \frac{n^{s-m}}{(s-m)!} \left(1 - 2q^{s} + q^{2s-m}\right)^{n} q^{2{s \choose 2} - {m \choose 2}}$$

$$\leq 2 {s \choose m} \frac{n^{s-m}}{(s-m)!} \exp\left(n(-2q^{s} + q^{2s-m})\right) q^{2{s \choose 2} - {m \choose 2}} \text{ (by (1))},$$

where the second inequality holds for $p \gg \frac{\ln^{\frac{3}{2}} n}{n^{\frac{1}{2}}}$. Similarly

$$f_2(m) \le 2 \binom{s}{m} \frac{n^{s-m}}{(s-m)!} \exp\left(n(-2q^s + q^{2s-m})\right) q^{2\binom{s}{2} - \binom{m}{2}} \left(\frac{p}{q}\right)^{-m+1}.$$

Define

$$\begin{split} g_1(m) &:= 2 \binom{s}{m} \frac{n^{s-m}}{(s-m)!} \exp\left(n(-2q^s + q^{2s-m})\right) q^{2\binom{s}{2} - \binom{m}{2}} \\ g_2(m) &:= 2 \binom{s}{m} \frac{n^{s-m}}{(s-m)!} \exp\left(n(-2q^s + q^{2s-m})\right) q^{2\binom{s}{2} - \binom{m}{2}} \left(\frac{p}{q}\right)^{-m+1} \end{split}$$

Now consider the ratio of consecutive terms of $g_1(m)$ and $g_2(m)$. Let

$$h_1(m) := \frac{g_1(m+1)}{g_1(m)} = \frac{q^{-m}(s-m)^2}{n(m+1)} \exp\left\{npq^{2s-m-1}\right\}$$

$$h_2(m) := \frac{g_2(m+1)}{g_2(m)} = \frac{q^{-m}(s-m)^2}{n(m+1)} \left(\frac{p}{q}\right)^{-1} \exp\left\{npq^{2s-m-1}\right\}.$$

We will show for i=1 or i=2, $h_i(m) \ge 1$ iff $m \ge m_0$ for some $m_0(n) \to \infty$, hence g_i is first decreasing and then increasing. Further we will show $g_i(1) \ge g_i(s-1)$, which implies $\sum_{m=1}^{s-1} f_i(m) \le sg_i(1)$. Observe

$$h_1(1) = \frac{(s-1)^2}{2qn} \exp\left\{npq^{2s-2}\right\} \le \frac{\log_b^2 n}{2qn} \exp\left\{\frac{p \log_b^2 n \, \left(\ln n + c\right)^2}{4nq^{-1+2\epsilon}}\right\} \to 0$$

if $p \gg \ln n/n^{\frac{1}{2}}$, and for sufficiently large n,

$$h_1(s-1) = \frac{q^{-s+1}}{ns} \exp\left\{npq^s\right\} \ge \frac{2q^{1-\epsilon}}{\log_b^2 n \, (\ln n + c)} \exp\left\{\frac{pq^\epsilon \log_b n \, (\ln n + c)}{2}\right\}$$
> 1

provided $p \neq 1 - o(1)$. By identical calculations for n sufficiently large, $h_2(1) \leq 1$ and $h_2(s-1) \geq 1$.

Further, $h_1(m) \geq 1$ iff

$$m \ge \log_{\mathbf{b}}\left(\frac{4n}{p}\right) - 2\log_{\mathbf{b}}\left(\log_{\mathbf{b}}n\left(\ln n + c\right)\right) + \log_{\mathbf{b}}\left(\ln\left(\frac{n(m+1)q^m}{(s-m)^2}\right)\right) + 2\epsilon - 1$$

and $h_2(m) \geq 1$ iff

$$\begin{split} m &\geq \log_{\mathbf{b}}\left(\frac{4n}{p}\right) - 2\log_{\mathbf{b}}\left(\log_{\mathbf{b}}n\left(\ln n + c\right)\right) \\ &+ \log_{\mathbf{b}}\left(\ln\left(\frac{np(m+1)q^{m-1}}{(s-m)^2}\right)\right) + 2\epsilon - 1. \end{split}$$

Define

$$\begin{split} x_1(m) &= \log_b\left(\frac{4n}{p}\right) + \log_b\left(\ln\left(\frac{n(m+1)q^m}{(s-m)^2}\right)\right) \\ &- 2\log_b\left(\log_bn\left(\ln n + c\right)\right) + 2\epsilon - 1 \\ x_2(m) &= \log_b\left(\frac{4n}{p}\right) + \log_b\left(\ln\left(\frac{np(m+1)q^{m-1}}{(s-m)^2}\right)\right) \\ &- 2\log_b\left(\log_bn\left(\ln n + c\right)\right) + 2\epsilon - 1. \end{split}$$

Now

$$\frac{d}{dm}x_1(m) = \frac{\left(m^2 - \left(s - 1 - \frac{1}{\ln\left(\frac{1}{q}\right)}\right)m - \left(1 - \frac{1}{\ln\left(\frac{1}{q}\right)}\right)s + \frac{2}{\ln\left(\frac{1}{q}\right)}\right)}{(m+1)(s-m)\left(\ln\left(\frac{n(m+1)q^m}{(s-m)^2}\right)\right)}$$

and the zeros of the numerator are:

$$\frac{s - 1 - \frac{1}{\ln(\frac{1}{q})} \pm \sqrt{\left(s - 1 - \frac{1}{\ln(\frac{1}{q})}\right)^2 + 4s\left(1 - \frac{1}{\ln(\frac{1}{q})}\right) - \frac{8}{\ln(\frac{1}{q})}}}{2}$$

$$= \frac{s - 1 - \frac{1}{\ln(\frac{1}{q})} \pm (s + 1)\sqrt{\left(1 - \frac{3}{(s + 1)\ln(\frac{1}{q})}\right)^2 - \frac{8}{(s + 1)^2\ln^2(\frac{1}{q})}}}{2}.$$

Using Taylor Series with remainder about 0 it follows that if $0 \le z \le 3 - 2\sqrt{2}$, then for any y such that $|y| \le z$

$$1 - 3y - \frac{8z^2}{(1 - 6z + z^2)^{\frac{3}{2}}} \le \sqrt{(1 - 3y)^2 - 8y^2} \le 1 - 3y + \frac{8z^2}{(1 - 6z + z^2)^{\frac{3}{2}}}.$$

Letting $y = z = \frac{1}{(s-1)\ln(\frac{1}{a})}$, we then have

$$\frac{d}{dm}x_1(m) = \frac{\left(m+1-\frac{1}{\ln\left(\frac{1}{q}\right)}-\delta\right)\left(m-s+\frac{2}{\ln\left(\frac{1}{q}\right)}+\delta\right)}{(m+1)(s-m)\left(\ln\left(\frac{n(m+1)q^m}{(s-m)^2}\right)\right)}$$

where
$$|\delta| \le \frac{8}{(s+1)\ln^2\left(\frac{1}{q}\right)\left(1 - \frac{6}{(s+1)\ln\left(\frac{1}{q}\right)} + \frac{1}{(s+1)^2\ln^2\left(\frac{1}{q}\right)}\right)^{\frac{3}{2}}}$$
.

Thus $\delta = \Theta\left(\frac{1}{p \ln n}\right) \to 0$ as $n \to \infty$.

Hence on $(-\infty, -1)$ and $(\ln^{-1}(\frac{1}{q}) - 1 + \delta, s - 2\ln^{-1}(\frac{1}{q}) - \delta)$, $x_1(m)$ is decreasing, and on $(-1, \ln^{-1}(\frac{1}{q}) - 1 + \delta)$ and $(s - 2\ln^{-1}(\frac{1}{q}) - \delta, s)$, x(m) is increasing. Thus $m_1 = \ln^{-1}(\frac{1}{q}) - 1 + \delta$ is a relative maximum and $m_2 = s - 2\ln^{-1}(\frac{1}{q}) - \delta$ is a relative minimum of $x_1(m)$.

Note $m_1 \in [1, s-1]$ iff $p \le 1 - e^{-\frac{1}{2-\delta}}$ and $m_2 \in [1, s-1]$ iff $p \le 1 - e^{-\frac{2}{1-\delta}}$. Also for n sufficiently large, $x_1(m)$ is continuous on [1, s-1], for every $m \in [1, s-1]$ we have $x_1(m) \in [1, s-1]$, and $s-1 > x_1(1) > x_1(s-1) > 1$.

If $p>1-e^{-\frac{2}{1-\delta}}$, then $x_1(m)$ has an absolute maximum at 1 and an absolute minimum at s-1 on [1,s-1]. The above information and the intermediate value theorem imply there exists a unique $m_0 \in [1,s-1]$ such that $m_0=x_1(m_0)$ and $x_1(m_0)>x_1(s-1)$.

If $1-e^{-\frac{1}{2-\delta}} , then <math>x_1(m)$ has an absolute maximum at 1 and an absolute minimum at m_2 on [1,s-1]. The above information and the intermediate value theorem imply there exists a unique $m_0 \in [1,s-1]$ such that $m_0 = x_1(m_0)$. Further, one can show by iteration that $x_1(m_0) \ge x_1(s-1)$.

If $p \leq 1 - e^{-\frac{1}{2-\delta}}$, then $x_1(m)$ has an absolute maximum at m_1 and an absolute minimum at m_2 on [1, s-1]. The above information and the intermediate value theorem imply there exists a unique $m_0 \in [1, s-1]$ such that $m_0 = x_1(m_0)$. Further, one can show by iteration that $x_1(m_0) \geq x_1(s-1)$.

Thus, in any of the three cases, there exists a unique $m_0 \in [1, s-1]$ such that for each $m \ge m_0 = x_1(m_0)$ we have $m \ge x_1(m)$.

Also

$$\frac{d}{dm}x_2(m) = \frac{\left(m^2 - \left(s-1-\frac{1}{\ln\left(\frac{1}{q}\right)}\right)m - \left(1-\frac{1}{\ln\left(\frac{1}{q}\right)}\right)s + \frac{2}{\ln\left(\frac{1}{q}\right)}\right)}{(m+1)(s-m)\left(\ln\left(\frac{np(m+1)q^{m-1}}{(s-m)^2}\right)\right)},$$

and by identical calculations we see $x_2(m)$ is decreasing and increasing on the same intervals as $x_1(m)$. Thus the absolute extrema of $x_2(m)$ in [1, s-1] are located at the same locations as the relative extrema of $x_1(m)$. Further, $x_2(1) > x_2(s-1)$. Hence there exists $m_0 \in [1, s-1]$ such that for all $m \ge m_0$ we have $m \ge x_2(m)$.

Now, for n sufficiently large

$$\ln\left(\frac{n(m_0+1)q^{m_0}}{(s-m_0)^2}\right) \ge \ln\left(nsq^{s-1}\right) \ge \ln\left(\frac{\log_b n \left(\ln n + c\right)s}{4q^{1-\epsilon}}\right)$$

which goes to infinity as n goes to infinity. Also, $\log_b\left(\frac{4n}{p}\right) \gg 2\log_b(\log_b n)$ $(\ln n + c)$ and $2\epsilon - 1$ is bounded, thus $m_0 \to \infty$. Therefore, if i = 1 or $2h_i(m) \ge 1$ iff $m \ge m_0 \to \infty$ as $n \to \infty$. So $m \ge m_0$ iff $h_i(m) \ge 1$.

It remains to show $g_i(1) \ge g_i(s-1)$ for i=1 and 2. First note $g_1(1)=g_2(1)$ and $g_1(s-1) \le g_2(s-1)$, so we only need show that $g_2(1) \ge g_2(s-1)$.

This last inequality is true iff

$$\frac{n^{s-1}}{(s-1)!} \exp\left\{nq^{2s-1}\right\} \ge n \exp\left\{nq^{s+1}\right\} q^{-\binom{s-1}{2}} \left(\frac{p}{q}\right)^{-s+2}$$

iff

$$\frac{n^{s-2}}{(s-1)!}p^{s-2}q^{\binom{s-1}{2}-s+2}\exp\left\{nq^{2s-1}-nq^{s+1}\right\} \ge 1$$

and for n sufficiently large

$$\begin{split} &\frac{n^{s-2}}{(s-1)!}p^{s-2}q^{\binom{s-1}{2}-s+2}\exp\left\{nq^{2s-1}-nq^{s+1}\right\} \\ &\geq \frac{n^{s-2}}{s!}p^{s}q^{\frac{s^{2}}{2}}\exp\{-nq^{s+1}\} \\ &\geq \frac{n^{s-2}}{s^{s}}p^{s}q^{\frac{s^{2}}{2}}\exp\{-nq^{s+1}\} \\ &\geq \exp\left\{(s-2)\ln n - s\ln(s) - s\ln\left(\frac{1}{p}\right) - \frac{s^{2}}{2}\ln\left(\frac{1}{q}\right) - nq^{s+1}\right\} \\ &\geq \exp\left\{\frac{(1-q^{\epsilon+1})}{2}\log_{b}n\,\ln n - \left(2+\frac{\epsilon}{2}\right)\ln n - \frac{1}{2}\log_{b}^{2}\left(\log_{b}n(\ln n + c)\right)\ln\left(\frac{1}{q}\right) \\ &-\left(\ln s + \ln\left(\frac{1}{p}\right) + \frac{cq^{\epsilon+1}}{2}\right)\log_{b}n\right\} \\ &\geq \exp\left\{\frac{p}{2}\log_{b}n\,\ln n - 3\ln n - \frac{1}{2}\log_{b}^{2}\left(\log_{b}n\,(\ln n + c)\right)\ln\left(\frac{1}{q}\right) \\ &-\left(\ln s + \ln\left(\frac{1}{p}\right) + \frac{cq^{\epsilon+1}}{2}\right)\log_{b}n\right\}, \end{split}$$

which goes to infinity as $n \to \infty$ so long as $p \gg \frac{\ln s}{\ln n}$ and $p \gg \frac{\ln^2 \left(\frac{\ln^2 n}{p}\right)}{\ln^2 n}$. These conditions are clearly satisfied by the hypothesis.

We have thus shown for, i = 1 or i = 2,

$$\sum_{m=1}^{s-1} f_i(m) \leq sg_1(1).$$

Finally, we show $\binom{n}{s} \left(\frac{p}{q}\right)^{2(s-1)} s^{2(s-1)+1} g_i(1) = o(\mathbf{E}^2(X_s))$. Since $g_1(1) = g_2(1)$ we need only perform the estimate once. Now

$$\frac{\binom{n}{s}\binom{p}{q}^{2(s-1)}s^{2(s-1)+1}g(1)}{\mathrm{E}^{2}(X_{s})}$$

$$=\frac{2s^{2}n^{s-1}\exp\{n(-2q^{s}+q^{2s-1})\}}{\binom{n}{s}(1-q^{s})^{2(n-s)}(s-1)!}$$

$$\leq \frac{2s^{3}\exp\{n(-2q^{s}+q^{2s-1})\}}{(1-o(1))n(1-q^{s})^{2n}}(s^{2}=o(n))$$

$$\leq \frac{2s^{3}\exp\{n(-2q^{s}+q^{2s-1})\}}{(1-o(1))n\exp\left\{\frac{-2nq^{s}}{1-q^{s}}\right\}}(\mathrm{by}(2))$$

$$\leq \frac{2s^{3}}{(1-o(1))n}\exp\left\{n\left(-2q^{s}+\frac{2q^{s}}{1-q^{s}}+q^{2s-1}\right)\right\}$$

$$\leq \frac{2s^{3}}{(1-o(1))n}\exp\left\{\frac{n\left(-2q^{s}+\frac{2q^{s}}{1-q^{s}}+q^{2s-1}\right)}{1-q^{s}}\right\}$$

$$\leq \frac{2\log_{\mathrm{b}}^{3}n}{(1-o(1))n}\exp\left\{\frac{3\log_{\mathrm{b}}^{2}n(\ln n+c)^{2}q^{2\epsilon-1}}{4n(1-q^{s})}\right\}$$

$$\to 0$$

if $p \gg \frac{\ln n}{n^{\frac{1}{3}}}$. We have thus shown if $s = \log_b n - \log_b (\log_b n (\ln n + c)) + \log_b 2 + \epsilon = \lfloor \log_b n - \log_b (\log_b n (\ln n + c)) + \log_b 2 \rfloor + 2$ then $\operatorname{Var}(X_s) = o(\mathbb{E}^2(X_s))$ and the lemma is proved.

We now can state our main result.

Theorem 2.4. If p is constant or going to 0 such that $\frac{p^2}{96} \geq \frac{\ln(\frac{1}{p})}{\ln n}$, then a.a.s. $\gamma_T(G_{n,p})$ is equal to $\lfloor \log_b n - \log_b(\log_b n (\ln n + c)) + \log_b 2 \rfloor + 1$ or $\lfloor \log_b n - \log_b(\log_b n (\ln n + c)) + \log_b 2 \rfloor + 2$, where $c = 2\ln\left(\frac{pe}{q^{\frac{n}{2}}}\right)$ if $p > \frac{(1-p)^{\frac{n}{2}}}{e}$ and c = 0 otherwise.

Proof. Let $s = \lfloor \log_b n - \log_b (\log_b n (\ln n + c) + \log_b 2 \rfloor$. By Markov's Inequality and Lemma 2.1

$$\Pr(Y_s \geq 1) \leq \mathrm{E}(Y_s) \to 0.$$

Thus a.a.s. $\gamma_T(G) \geq s+1$ or $\gamma_T(G)=0$. By Chebyshev's Inequality, Lemma 2.2, and Lemma 2.3

$$\Pr(X_{s+2}=0) \leq \Pr(|X_{s+2} - \mathrm{E}(X_{s+2})| \geq \mathrm{E}(X_{s+2})) \leq \frac{\mathrm{Var}(X_{s+2})}{\mathrm{E}^2(X_{s+2})} \to 0.$$

Thus a.a.s. there exists a tree dominating set of cardinality s+2, hence $\gamma_T(G) \leq s+2$ and $\gamma_T(G) \neq 0$. Thus $\gamma_T(G)$ is either s+1 or s+2.

3. Relationship to Other Domination Parameters

Let G be a graph with vertex set [n] and let $\phi \neq S \subseteq [n]$. S is a connected dominating set of G iff S is a dominating set of G and the induced subgraph G[S] is connected. S is a total dominating set of G iff for every vertex $u \in [n]$ there is a vertex $v \in S$ such that $uv \in E(G)$. The connected domination number $\gamma_c(G)$ is the smallest integer s such that there exists a connected dominating set of G of cardinality s. The total domination number $\gamma_t(G)$ is the smallest integer s such that there exists a total dominating set of G of cardinality s.

The tree domination number is closely related to both the connected and total domination numbers. In fact a non-trivial tree dominating set of a graph G is both a connected dominating set and a total dominating set of G. Thus by determining the (non-trivial) tree domination number of a random graph we have also bounded its connected and total domination numbers above. Godbole's result [8] on the domination number of a random graph provides a lower bound.

Let $a(n, p) = \lfloor \log_b n - \log_b (\log_b n \ln n) \rfloor + 1$ and $b(n, p, c) = \lfloor \log_b n - \log_b (\log_b n (\ln n + c)) + \log_b 2 \rfloor + 2$ where $b = \frac{1}{1-p}$. Hence, we have shown:

Theorem 3.1. If p is constant, then a.a.s.

$$a(n,p) \leq \gamma_c(G_{n,p}), \gamma_t(G_{n,p}) \leq b(n,p,c).$$

where
$$c = 2 \ln \left(\frac{pe}{a^{\frac{3}{2}}}\right)$$
 if $p > \frac{(1-p)^{\frac{3}{2}}}{e}$ and $c = 0$ otherwise.

It should be noted Bonato and Wang [3] proved $\gamma_t(G_{n,p}) \leq \lfloor \log_b n - \log_b(\log_b n \ln n) \rfloor + 2$. We conjecture a similar two-point concentration for $\gamma_c(G_{n,p})$.

REFERENCES

- [1] N. ALON, M. KRIVELEVICH, The concentration of the chromatic number of random graphs, Combinatorica, 17 (1997), 303-313.
- [2] B. Bollobás, Random Graphs, Second Edition, Cambridge University Press, New York, 2001.
- [3] A. BONATO, C. WANG, A note on domination parameters in random graphs, Discussiones Mathematicae Graph Theory, 28(2) (2008), 307-322.
- [4] X. CHEN, L. SUN, A. MCRAE, Tree domination in graphs, Ars Combinatoria, 73 (2004), 193-203.
- [5] Z. CHENGYE, Y. YUANSHENG, S. LEI, S. LINLIN, The Connected and Tree Domination Number of P(n,k) for k = 4,6,8, Ars Combinatoria, 92 (2009).
- [6] L. CLARK, The strong matching number of a random graph, Australasian Journal of Combinatorics, 24 (2001), 47-57.
- [7] L. CLARK, D. JOHNSON, On the independent domination number of a random graph, Congessus Numerantium, 192 (2008), 179-191.
- [8] A. GODBOLE, B. WIELAND, On the domination number of a random graph, Electronic Journal of Combinatorics, 8 (2001), 1-13.
- [9] S. JANSON, T. LUCZAK, A. RUCINŚKI, Random Graphs, John Wiley & Sons, Inc., New York, 2000.
- [10] D. RAUTENBACH, Dominating and large induced trees in regular graphs, Discrete Mathematics, 307 (2007), 3177-3186.
- [11] K. Weber, Domination number for almost every graph, Rostocker Matematisches Kolloquium, 16 (1981), 31-43.

LANE CLARK: DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY CAR-BONDALE, CARBONDALE, IL 62901-4408

E-mail address: lclark@math.siu.edu

DARIN JOHNSON: DEPARTMENT OF MATHEMATICAL SCIENCES, DELAWARE STATE UNIVERSITY, DOVER, DE 19901

E-mail address: dbjohnson@desu.edu