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Abstract

For a graph G, let Z(G) be the total number of matchings in
G. For a nontrivial graph G of order n with vertex set V(G) =
{v1, ..., vn}, Cvetkovié et al. [2] defined the triangle graph of G,
denoted by R(G), to be the graph obtained by introducing a new
vertex v;; and connecting vi; both to v; and to v; for each edge v;v;
in G. In this short paper, we prove that for a connected graph G,
if Z(R(G)) = (-;-n -1+ %) , then G is traceable. Moreover, for
a connected graph G, we give sharp upper bounds for Z(R(G)) in
terms of clique number, vertex connectivity and spectral radius of G,
respectively.
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1 Introduction

The total number of matchings of a graph is a graphic invariant which is

important in structural chemistry. In the chemistry literature this graphic
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invariant is called the Hosoya indez of a molecular graph [8]. It was applied
to correlations with boiling points, entropies, calculated bond orders, as well
as for coding of chemical structures.
Let G be a graph with n vertices. The Hosoya index of G, denoted by
Z(G), is defined to be the total number of matchings in G, namely,
L%)
Z(G) = _m(G;s),

s=0

where m(G;s) is the number of s-matchings of G. An s-matchings of a
graph G is a subset M of its edge set with the property that |M| = s and
M contains no two edges sharing a common vertex. For convenience, set
m(G;0) = 1.

During the past decades, numerous results on Hosoya index have been
put forward. All these existing results dealt with the extremal problem on
Hosoya index. For example, Gutman [6] proved that the linear hexagonal
chain is the unique chain with minimal Hosoya index among all hexagonal
chains. Zhang [24] showed that zig-zag hexagonal chain is the unique chain
with maximal Hosoya index among all hexagonal chains. Hou [11] charac-
terized the trees having minimal and second-minimal Hosoya index among
all trees with a given size of matching. Yu and Lv [23] investigated the
trees having minimal Hosoya index among all trees with k-pendent vertices.
Ou [18] determined the unicyclic graphs with the first and second largest
Hosoya index among unicyclic graphs with n vertices. In [16], Li et al. inves-
tigated extremal problem for Hosoya index of quasi-tree graphs. For other
related results on Hosoya index, see [3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17]
and [21] for a survey.

Cvetkovié¢ et al. [2] constructed a composite graph by the following
procedure. Suppose that G is connected graph of order n and size m and let
V(G) = {1, -- -, vn}. Introducing a new vertex v;; and connecting v;; both
to v; and to v; for each edge v;v;. The resulting graph is denoted by R(G),
which we call the triangle graph of G. The graph R(G) has remarkable
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properties. For example, Yan and Yeh [22] obtained a remarkable result
concerning the Hosoya index of R(G), see Lemma 2.2 in the next section.

A connected graph is said to be traceable if it possesses a Hamiltonian
path, i.e., a path passing through all vertices of the underlying graph. In
this short paper, we prove that for a connected graph G, if Z(R(G)) >
(%n - % + %)n, then G is traceable. Moreover, for a connected graph G,
we give sharp upper bounds for Z(R(G)) in terms of clique number, vertex
connectivity and spectral radius of G, respectively.

We first introduce some basic notation and terminology. Let G be a
graph with vertex set V(G) = {v1, v2, ..., vn} and edge set E(G). The
degree of each vertex v;, denoted by dg(v;) (or simply d;), is the number of
neighbors of v; in G. The maximum and minimum vertex degree in G are
denoted by A and 4, respectively. If A = § holds in G, then G is said to
be a regular graph. The number of vertices of the largest clique in a graph
is called its cligue number and denoted by w. The verter connectivity of a
connected graph G, denoted by v, is the smallest number of vertices whose
removal disconnects G or reduces it to a single vertex. The indez or spectral
radius Ay of G is the largest eigenvalue of its adjacency matrix. A k-partite
graph is said to be complete if any two vertices are adjacent if and only
if they belong to different partition classes. Our terminology and notation

not defined here will conform to those in [1].

2 A sufficient condition in terms of Z(R(G))
for a connected graph to be traceable

In this section, we use Hosoya index of the triangle graph of a connected
graph to give a sufficient condition for a connected graph to be traceable.
We first introduce here a result, which gives a sufficient condition for a

connected graph to be traceable.

Lemma 2.1 ([1]). Let G be a nontrivial graph of order n with degree se-
quence (d1, da, ..., d,), whered; < dz <...<d, and n > 4. Suppose that
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there is no integer k < %ﬂ such thatdy <k —1anddp_py1 Sn—k—1.
Then G is traceable. '

Yan and Yeh [22] obtained a remarkable result concerning the Hosoya

index of graph R(G) as follows.

Lemma 2.2 ([22]). Let G be a nontrivial graph of order n with degree
sequence (dy, dg, .., dn). Suppose that R(G) is the triangle graph of G.
Then

Z(R(G)) = (d1 + 1)(d2 +1)...(dn + 1).

Now, we use Lemmas 2.1 and 2.2 to prove the following result.

Theorem 2.3. Let G be a connected graph of order n > 4 and let R(G) be
its triangle graph. If

Z(RG) 2 (5n— 5+ 5
then G is traceable.

Proof. Suppose to the contrary that G is a non-traceable connected graph
with degree sequence (dy, d, ..., d,)suchthatd; <d; <...<dpandn 2
4. By Lemma 2.1, there exists a positive integer k < 1‘{—1 such that
dy <k—1andd,_r41 < n—k—1. Because G is connected and dy < k-1,
we have k > 2. By Lemma 2.2, we have

Z(R(G)) (di +1)(dz +1)...(dn +1)

[(d1 +1)+(da+1)+...(dn+ 1)]n
n

Eany)

i=1

IA

(1)

]
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Note that

dodi < k(k—1)+(n-2k+1)(n-k—1)+

i=1
(k-1)(n-1) (2)
(because dy < k—land dp—py1 Sn—k—1) 3)
_ n(n4— 1) T14 (n—-2)4(n—3) _ (k—-2)(27:1—3k—5)
< 2(2_41;94.14.(_71;2%1__3)_ (4)
_ 1, 3 5
= 3" T3ty
So,

Z(R(G)) < (%”—2_—7;%—75—% +1)"= (%n - -;- + %)"

By our assumption that Z(R(G)) > (-;-n -3+ -2—5,-1-)", we thus have

Z(R(G@)) = (%n - % + %)n Therefore, all equalities in (1), (3) and (4)

should be attained at the same time. We thus have the following conclu-

sions.
(a). If the equality in (1) is attained, then d; = ... = d,.
(b). If the equality in (3) is attained, then d; = ... =d, =k — 1, dey1 =

coo=lngyr=n—k—-landdp_k4y2=...=dp, =n-—1.

By our assumption that k¥ < 2!, from (b), we know that d; = ... =
d < n—1 =d,. Itis a contradiction to (a). So, G is traceable, as
desired. O

3  Sharp upper bounds for Z(R(G))

In this section, we give sharp upper bounds for R(G) in terms of clique
number, vertex connectivity and spectral radius, respectively. First, we

recall the well-known Turén’s theorem, which is stated as follows.
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Theorem 3.1 ([20]). Let G be a connected Ko ,-free graph of order n and

sizem. Then

R

with equality if and only if G is a complete g-partite graph in which all

classes are of equal cardinality.

Now, for a connected graph G, we give a sharp upper bound for Z(R(G))

in terms of the clique number of G.

Theorem 3.2. Let G be a connected graph of order n and cliqgue number

w, and let R(G) be its triangle graph. Then
1 n
Z(R(G)) < [n(l - ;) + 1] (5)

with equality if and only if G is a complete w-partite graph in which all

classes are of equal cardinality.

Proof. Suppose that G has degree sequence (d, ds, ..., dn). Since G has
clique number w, then G is a K, +1-free graph. Let m(G) denote the number
of edges in G.

By Theorem 3.1, we have

m(G) < (1 - %) : "2—2 (6)

According to (6) and Lemma 2.2, we have

Z(R(G)) = (di+1)(da+1)...(dn+1)

(d1+1)+(d2+1)+...(d,,+1)]n @

IA
—
3w
~~
[

|
| =
~—
I:
[

+
—
—
2

~~
0
N’

248



Now, we check the equality condition in (5). Suppose that Z(R(G)) =
[n(l - -1-) + 1] . Then both equalities in (7) and (8) must be attained

w
simultaneously. When the equality in (7) is attained, G must be a regular

graph. When the equality in (8) is attained, G is a complete w-partite
graph in which all classes are of equal cardinality. So, if Z(R(G)) = [n( 1-

;)1-) + 1] n, then G is a complete w-partite graph in which all classes are of
equal cardinality. Conversely, if G is a complete w-partite graph in which
all classes are of equal cardinality, then both equalities in (7) and (8) are
attained. So, Z(R(G)) = [n(1- &) + 1]".

This completes the proof. a

Lemma 3.3 ([19]). Let G be a connected graph on n > 3 vertices, with

cliqgue number w and verter connectivity v. Then
w—rvr<n-2
with equality if and only if G is the short kite KT, n_1 or K3.

Lemma 3.4 ([19]). Let G be a connected graph on n > 3 vertices, with

cligue number w and indez \,. Then
w — /\1 S 1
with equality if and only if G is the complete graph K,,.

By Theorem 3.2, Lemmas 3.3 and 3.4, we immediately have the fol-

lowing

Corollary 3.5. Let G be a connected graph on n > 3 vertices with cligue

number w, verter connectivity v. Then

2@ < o1 i) 41

with equality if and only if G = K3.
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Corollary 3.6. Let G be a connected graph on n > 3 vertices with clique

number w, index \y. Then

200 o35 +1]

with equality if and only if G = K,,.
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