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Abstract

A proper coloring of a graph G is an assignment of colors to the
vertices of G such that adjacent vertices are assigned distinct
colors. The minimum number of colors in a proper coloring
of G is the chromatic number x(G) of G. For a graph G and
a proper coloring ¢ : V(G) — {1,2,...,k} of the vertices of
G for some positive integer k, the color code of a vertex v of
G (with respect to c) is the ordered pair code(v) = (c(v), S, ),
where S, = {c(u) : u € N(v)}. The coloring ¢ is singular
if distinct vertices have distinct color codes and the singular
chromatic number x,;(G) of G is the minimum positive integer k
for which G has a singular &-coloring. Thus x(G) < xsi(G) < n
for every graph G of order n. A characterization is established
for all triples (a,b,n) of positive integers for which there exists
a graph G of order n with x(G) = a and x,(G) = b. It is
shown for every vertex v and every edge e in a graph G that
Xsi(G) = 1 < X5i(G = v) < X5i(G) + degv and x,i(G) — 1 <
Xsi(G — €) < x5i(G) + 2 and that all these four bounds are
sharp. We also determine the singular chromatic numbers of
cycles and paths.
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1 Introduction

Graph coloring is one of the most popular areas in graph theory. Among
the most studied colorings are proper colorings, in which the two vertices in
every pair of adjacent vertices are assigned distinct colors. The minimum
number of colors in a proper coloring of G is the chromatic number x(G)
of G. A coloring that provides a method of distinguishing every two adja-
cent vertices is said to be neighbor-distinguishing. A number of neighbor-
distinguishing colorings other than proper colorings have been introduced.
(See [10, 11, 12, 13}, for example.)

It is sometimes desired that not only every two adjacent vertices but
every two vertices in a graph can be distinguished from one another in
some manner, which is a problem that has received increased attention
during the past few decades. Earlier methods used open neighborhoods
of vertices in graphs [14, 24], automorphism groups of graphs (3, 15, 16],
and distances in graphs [17, 23]. Of course, this goal can be also achieved
by assigning colors to the vertices or edges of a graph. For example, we
can assign distinct colors to distinct vertices. A coloring by which the
vertices in a graph can be distinguished from one another in some way is
called vertez-distinguishing. Therefore, a vertex-distinguishing coloring is
neighbor-distinguishing but the converse is not true in general.

In [18] Harary and Plantholt introduced a way to distinguish the vertices
of a graph G by assigning colors to the edges of G in such a way that
for every two vertices of G, one of the vertices is incident with an edge
assigned one of these colors that the other vertex is not. They referred
to the minimum number of colors needed to accomplish this as the point-
distinguishing chromatic indez of G.

There is another edge coloring by which differences among the vertices
of a connected graph G can be detected. Let G be a connected graph of
order n > 3 and ¢ : E(G) — {1,2,...,k} a coloring of the edges of G
for some positive integer k. The (detection) color code of a vertex v of
G with respect to a k-coloring c of the edges of G is the ordered k-tuple
(a1,a2,- - ,ax) where a; is the number of edges incident with v that are
colored i for 1 < 7 < k. The edge coloring c is detectable if distinct vertices
have distinct color codes. The minimum positive integer k for which G
has a detectable k-coloring is the detection number of G. The concept of
detectable colorings was studied in (1, 2, 5, 6, 7).

In [9] a vertex coloring was introduced to recognize the vertices of a
graph. Let G be a graph and ¢ : V(G) — {1,2,...,k} a coloring of the
vertices of G for some positive integer k. The (recognition) color code of a
vertex v of G (with respect to c) is the ordered (k+1)-tuple (ao, a1, ,ax)
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where ay is the color assigned to v and, for 1 < i < k, g; is the number of
vertices adjacent to v that are colored i. The coloring c is called recognizable
if distinct vertices have distinct color codes and the recognition number of G
is the minimum positive integer k for which G has a recognizable k-coloring.

Another vertex-distinguishing vertex coloring, introduced in [21], is the
irregular coloring. For a graph G and a proper coloring ¢ : V(G) —

{1,2,...,k} of the vertices of G for some positive integer k, the (trregular)
color code of a vertex v of G (with respect to c) is the ordered (k + 1)-tuple
(@0, a1, ,ax) where ag is the color assigned to v and a; is the number of

vertices adjacent to v that are colored i for 1 < i < k. The coloring ¢ is
then irregular if distinct vertices have distinct color codes and the irregular
chromatic number x;-(G) of G is the minimum positive integer k for which
G has an irregular k-coloring.

In this work, we introduce yet another vertex coloring of graphs that
enables us to distinguish every two vertices in a graph G by focusing on
the color of each vertex v € V(G) and the set of colors of the neighbors
of v in G. This combines a number of features of the vertex-distinguishing
colorings previously considered. We refer to the book [8] for graph theory
notation and terminology not described in this paper.

2 Basic Definitions and Preliminary Results

For a graph G, let ¢ : V(G) — N be a proper vertex coloring of G. For
each vertex v of G, let S, be the set of colors of the neighbors of v, that
is, Sy = {c(u) : v € N(v)} where N(v) is the neighborhood of v. The
color code code(v) of v is then defined as the ordered pair (c(v),S,). If
code(u) # code(v) for every two distinct vertices u and v of G, then c is
called a singular coloring of G. Therefore, a singular coloring of a graph
G is a coloring that uses the color of each vertex together with the set of
colors of its neighbors to distinguish all vertices in G. If a singular coloring
c uses k colors, then c is a singular k-coloring. For each positive integer k,
let Np = {1,2,...,k}. Thus, we assume that every singular k-coloring uses
the colors in Ni. A graph G is singularly k-colorable if G has a singular
k-coloring. Figure 1 illustrates a singular 4-coloring of the Petersen graph,
where each vertex is labeled by its color code and the first coordinate of
each color code is the color of that vertex.

The minimum & for which G has a singular k-coloring is called the sin-
gular chromatic number of G and is denoted by Xsi(G). Since a coloring
assigning distinct colors to distinct vertices of a graph G is a singular color-
ing of G, the singular chromatic number exists for every graph. Since every
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Figure 1: A singular 4-coloring of the Petersen graph
singular coloring is proper, we have the following observation.
Observation 2.1 For every graph G of order n, x(G) < x.i(G) < n.

We also present some elementary observations.

Observation 2.2 Let G be a graph.

(a) xsi(G) =1 if and only if G = K;.

() xsi(G) = 2 if and only if G € {K3, K2 U K1, K2 U2K, }.
Observation 2.3 If x.i(G) = k, then each of the following holds.

(a) G contains at most k isolated vertices.
(b) G contains at most one clique of order k.

(c) Each vertez in G is adjacent to at most k — 1 end-vertices.

Proposition 2.4 If G is a singularly k-colorable graph of order n, then
n<k-2k1 (1)

Furthermore, if G is connected, then n < k(2¥~1 —1).
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Proof. Let ¢ be a singular -coloring of G with color classes V4, Vs, . .. , Vie.
Let v; € V; for 1 <4 < k. Since c is a proper coloring, S,, C N — {3}
and so there are at most 2¥~! possible codes for v;. Hence, [Vi] < 25-1 for

1<i<kandson= Eﬁ;l Vil <k-2%1 IfGis connected, then S, # @
for each v € V(G). Thus |V;] < 2%¥-1 — 1 for 1 < i < k and the result now
follows. n

An immediate consequence of Proposition 2.4 is that if k(2¥~1—1)+1 <
n < k-2%¥"1 then G contains exactly n — k(251 — 1) isolated vertices.

To illustrate Proposition 2.4, we consider the Petersen graph P. Since
P is a connected graph of order 10 and 3(23-! — 1) = 9, it follows by
Proposition 2.4 that x,;(P) > 4. Therefore, x,;(P) = 4 as the singular
4-coloring of P in Figure 1 shows.

3 Connected Graphs with Prescribed Order
and Singular Chromatic Number

Two vertices u and v in a connected graph G are twins if u and v have the
same neighbors in V(G) — {u,v}. If u and v are adjacent, then they are
referred to as true twins; while if v and v are nonadjacent, then they are
false twins. Thus if » and v are true twins, then N[u] = N[v]; while if u and
v are false twins, then N(u) = N(v). The following is a useful observation.

Observation 3.1 Ifu and v are twins in o graph G, then c(u) # c(v) for
every singular coloring c of G.

We now characterize graphs whose order and singular chromatic number
are equal.

Theorem 3.2 Let G be a graph of order n. Then Xsi(G) =n if and only
if G is a complete multipartite graph or an empty graph.

Proof. Since the result is trivial for 1 < n < 3, let us assume that n > 4.
First suppose that G is a complete multipartite graph. Then every two
nonadjacent vertices of G are false twins. Hence, every singular coloring of
G must assign distinct colors to distinct vertices by Observation 3.1 and so
Xsi(G) = n. Also, it is straightforward to see that x,;(K,) = n.

For the converse, suppose that G is neither a complete multipartite
graph nor an empty graph. It then follows that there exist three vertices u,
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v, and w in G such that uv € E(G) while uw,vw ¢ E(G). Then an (n—1)-

coloring assigning the color 1 to u and w and the colors 2,3,...,n -1
to the remaining n — 2 vertices is a singular coloring of G. Therefore,
xsi(G) <n—1 n

Corollary 3.3 For every pair a,b of integers with 2 < a < b, there is a
connected graph G with x(G) = a and xi(G) = b.

Proof. While the complete a-partite graph G = K1,1,...,1,6—a+1 Of order b
has chromatic number a, it follows by Proposition 3.2 that x.(G) =b. =

By Observation 2.1 and Proposition 2.4, if G is a nontrivial connected
graph of order n with x(G) = a and x.i(G) = b, then

2<a<b<n<b2b!-1). (2)

A triple (a,b,n) of positive integers is said to be a realizable triple if there
is a nontrivial connected graph G of order n such that x(G) = a and
Xsi(G) = b. Thus every realizable triple must satisfy (2). We next show
that every triple (a, b,n) satisfying (2) is realizable.

Theorem 3.4 Every triple (a,b,n) of integers with 2 < a < b < n <
b(2%=1! — 1) is realizable.

Proof. We first assume that b = a. If n = a, then the complete graph of
order a has the desired property. Otherwise, we may assume that a > 3.
Let Go = K, whose vertex set is {v1,v2,...,Va} and obtain another graph
G of order a(22~! —1) from Gy by adding a(2%~!—2) new vertices in the set
U8, {zi R, : BRi €N, — {3}, 1 < |Ri| < a—2} and joining z; g, to v; if and
only if j € R;. Since a+1 < n < a(2%~!—1), there exists a connected graph
G of order n that is an induced subgraph of G such that Go C G C G;.
Observe that the coloring ¢* of G; given by ¢*(v;) = ¢*(zi,p;) = 4 for
1 < i < ais a singular a-coloring of G;. Furthermore, the coloring ¢*
restricted to V(G) is a singular coloring of G. Hence, a = x(Go) < x(G) <
xsi(G) < a, that is, every triple (a,a,n) with2 < a <n < a(2°7! -1)is
realizable.

Next we assume that b > a + 1. We consider the following two cases.

Case 1. a = 2. First suppose that b < n < b2. Let Hy & Kop_2
whose partite sets are {v1,v2} and {vs,vs,...,vp}. We construct the graphs
Hy,Ho,..., Hy as follows. For 1 < i < b, suppose that the graph H;_, has
been defined. Then we obtain H; from H;_; by adding b — 1 new vertices
in the set U; = {u;;:1 < j <b, j# i} and joining v; to every vertex in
U,. Hence, H, is a connected graph of order 2.
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Since [V (Ho)| < n < [V(H,)|, there exists a connected graph G of order
n that is an induced subgraph of H, such that Hy C H;_, C G C H; C H,
for some i with 1 < ¢ < b. Since both Hy and H,, are bipartite, it follows
that x(G) = 2. If H; C G C H,, then x,;(G) > b by Observation 2.3(c).
If Hp € G C H,, then x,;(G) > b as well since each of the b vertices
v1,V2,...,Vs must be assigned a distinct color by a singular coloring of G.
On the other hand, the coloring c¢* of Hj, defined by c* (v;)=ifor1<i<b
and c*(u;;) = j for 1 < j < b is a singular b-coloring. Furthermore, the
coloring c* restricted to V(G) is a singular coloring of G. Hence, x5;(G) = b.

Next we assume that b > 4 and b + 1 < n < b(20~1 — 1). First obtain
the bipartite graph Go of order b+ (b —1)? from K 4., whose partite sets
are {vy,va,...,v-1} and {v,} by adding (b — 1)? new vertices in the set
Uf;llUi, where U; = {u;; : 1 £ j < b—1}, and joining u; ; to every vertex
in [U; — {ui:}]U {vs}. Now for 1 < i < b— 1, suppose that the graph G;_;
has been defined. We then construct G; from G;_; by adding 26-1 —b—1
new vertices in the set X; UY;, where

Xi={zip, R CNy_1 —{i},2<|R;| < b-2}
Y ={yir : RiCNp_1 — {i},1 < |R| < 5-3}

and joining
(a) T; R € X; to Uj; € U; if and only if j € R; and
(b) yi,r; €Yi to (i) vy and (ii) u;; € U; if and only if j € R;.

Finally, let G, be the graph obtained from G, by adding 2°~1 — 2 vertices
intheset Z={2p: RCNy_),1 < |R| < b— 2} and joining 2g to v; if and
only if i € R. Observe that G, is a connected graph of order b(20-! — 1) and
furthermore, the coloring c¢** such that (i) c**(v) =i if v € {y;} U X; U Y;
for 1 <i<b-1, (ii) ¢**(uy;) =j for 1 < j < b—1, and (iii) c*(v) =bif
v € {vp} U Z is a singular b-coloring of G,

Since |V(Go)| = b+ (b—1)% < b?, it follows that |V (Go)| < n < |V(G,)|
and there exists a connected graph G of order n that is an induced subgraph
of Gy such that Gy C Gi—; € G C G; C G, for some i with 1 <i<b
Since both Gp and G, are bipartite, x(G) = 2. If Go C G C Gy_1, then
Xsi(G) > b by Observation 2.3(c); while if G,_; C G C Gy, then xsi(G) > b
by Proposition 2.4 since |V(G)| > |[V(Gp-1)| = b(2"~1 —1) — (201 -2) >
(b—1)(2°-2~1). On the other hand, in each case, the coloring c** restricted
to V(G) is a singular b-coloring of G. Hence, we obtain the desired result
for a = 2.

Case 2. a > 3. First suppose that b < n < b(b—a+ 1) + (e — 1)2
Let Hy = Kb—a+l + K,_1 with V(Kb—a+1) = {’Ul,'l)g,...,‘vb_a+1} and
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V(Kaz1) = {Vb—a+2,Vb—a+3, - - -, Ub}. Obtain Hy of order b+ (a—1)(b—1)
from Hy by adding (a — 1)(b— 1) new vertices in the set Uy +2Ui, where
Ui = {uj; : 1 < j < bj # i}, and joining v; to every vertex in U; for
b—a+2<i<b Also, obtain Hy of order b(b —a + 1) + (a — 1)? from
H, by adding (b — a + 1)(b — a) new vertices in the set ub=et1W;, where
W; = {w;;:1<j<b-a+1,j# i}, and joining v; to every vertex in w;
forl1<i<b—a+1.

Since |V(Ho)| < n < |V(H,)l, there exists a connected graph G of
order n that is an induced subgraph of H; such that either Ho € G C H;
or H, C G C H,. Since Hy is proper a-colorable and x(Hp) = a, it follows
that x(G) = a.

If Hy C G C H), then x,i(G) > bsince each of the b vertices vy, v2,..., v
must be assigned a distinct color by a singular coloring of G. IfHL CGC
H,, then x,i(G) > b by Observation 2.3(c). To see that xi(G) < b, let ¢*
be the coloring of Hy defined by (i) ¢*(v;) =i for 1 <4 < b, (ii) ¢*(uji) =J
for 1 < j <band j # 4, and (iii) c*(w;;) =jfor 1< j<b-—a+1and
j # 4. Then c¢* is a singular b-coloring of Hz. Furthermore, the coloring
¢* restricted to V(G) is a singular b-coloring of G. Therefore, xsi(G) = b,
that is, every triple (a,b,n) witha <b<n <blb—a+1)+(a— 1)% is
realizable.

Next we assume that b(b—a+1)+(a—1)2+1 < n < b(2°~! —1). Let
Go = H, and we construct Gy, Ga, ..., G as follows. Let A = Ny —Np_g41.
For 1 <4 < b—a+1, suppose that the graph G;_; has been defined. Then
we obtain G; from G;_; by adding 2°~! — b — 1 new vertices in the set
X;uY, =X;U [Yl,i uYs; U Y3’,’], where

X: = {xg,RiIRf(_:Nb_a.;.]—{i},2S|R§|Sb—a} ifb>a+2
T ® ifb=a+1

Yii = {%irogi) : Ri © No—ayr — {8}, Ri#0, b—a+2<j < b}
Y2 = {vi.rRua : Ri C Ny_ay1 — {i}, |Ri| < b—a -1}

Y3~—{ {virwn: Ri C No_as1 — {i}, RCA 2<|R|Sa—2} ifa>4
L 0

ifa=23,

and joining
(a) z; g, to wj; if and only if j € R; and

(b) yir,ur € Yi, where R; C Ny—g41 — {i} and R C A, to (i) wj, if and
only if j € R; and (ii) v; if and only if j € R.
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Finally, for b — a + 2 < i < b, suppose again that the graph G;_1 has been
defined. We obtain G; from G;_; by adding 2°=! — @ new vertices in the
set Zi = Zl,i U Zg'i, where

Zl,i={2i,{j}:].$j$b"a+l}
Zoi={zip, R SNy — {i}, 2<|R;| < b -2},

and joining z; r € Z; to u;; € U; if and only if j € R.

Since [V(Go)| < n < |V(Gy)|, there exists a connected graph G of order
n that is an induced subgraph of G}, such that Gy C G;_ 1CGCG;CGy
for some i with 1 < ¢ < b. Since G} is proper a-colorable and x(Go) =
x(Hz) = a, it follows that x(G) = a. If Gy C G C Gy_, then xsi(G) = b
by Observation 2.3(c). If Gy_; € G C Gp, then observe that IV(G)] =
V(Go-1)l = b(27 = 1) = (25" —a) > (b—-1)(25"1 = 1) > (b—1)(2°-2 1)
and so x4 (G) = b by Proposition 2.4.

To verify that x(G) < b, let ¢** be the coloring of G} such that ¢**
restricted to V(Go) = V(H2) equals ¢* and ¢**(v) =4 if (i) 1 <i < b—a+1
and v € X;UY;or (ii) b—a+2 < i< band v € Z; and observe that c**
is a singular b-coloring of G,. Furthermore, the coloring ¢** restricted to
V(G) is a singular b-coloring of G. Hence, x,;(G) = b. =

For example, the graphs Fy and F, in Figure 2 show the construction
of the graph G described in the proof of Theorem 3.4, verifying that the
triples (2,4, 24) and (3, 5, 24) are realizable, respectively. (Each of the solid
vertices belongs to Gy in each graph.)

4 Vertex or Edge Deletions and the Singular
Chromatic Number

It is well known that if v is a vertex in a nontrivial graph G, then either
X(G ~v) = x(G) or x(G —v) = x(G) — 1. This is also the case when an
edge is deleting from a nonempty graph, that is, either x(G —e) = x(G) or
x(G —€) = x(G) — 1 for every e € E(G). Therefore, deleting a vertex or
an edge from a graph, the chromatic number of the resulting graph never
exceeds that of the original graph. For the singular chromatic number, a
much different situation can occur.

Theorem 4.1 For a nontrivial graph G and a verter v in G,

Xsi(G) — 1 £ x5i(G — v) < x5i(G) + degv.
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Figure 2: The graphs F; and F,

Proof. We first verify that x4:(G) < xs:(G—v)+1. Suppose that x4:(G—
v) = k and let ¢ be a singular k-coloring of G — v. Define a coloring ¢’ of
G by ¢/(z) = c(z) if z # v and ¢/(v) = k+ 1. Then ¢’ is clearly a singular
coloring of G using k + 1 colors and so xi(G) < k+1 = xsi(G —v) + 1.

To show that x.i(G — v) < Xsi(G) + degv, suppose that xsi(G) = k
and let ¢ be a singular k-coloring of G. If v is an isolated vertex, then
the coloring ¢ restricted to V(G — v) is a singular coloring using at most
k colors. Hence, xsi(G —v) € k+ 0 = x.i(G) + degu. Otherwise, let
N(v) = {v1,va,...,va}, where d = degv, and define a coloring dof G—w
by ¢/(z) = ¢(z) if z ¢ N(v) and ¢/(v;) = k+ifor 1 <i < d We now
verify that ¢’ is a singular coloring of G — v. Let z; and z; be two distinct
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vertices in V(G — v). Also, let codec(x;) = (c(z;),Sz;) and codey (z;) =
(¢'(x:), Sz,) be the codes of z; with respect to ¢ and ¢/, respectively, for
i = 1,2 If c(z1) # ¢/(x2), then certainly codey(z;) # code(zz). If
c(z1) = ¢(z2), then z1,z2 ¢ N(v) and so Ng_u(z;) = Ng(z;) fori =1,2.
Furthermore, c(z1) = ¢/(z1) = ¢/(z2) = c(z2). Let A; = N(z;) N N(v)
and B; = N(z;) — A; for i = 1,2. If A; # A,, say v; € A; — Ay, then
k+1¢€ S; —8;, and so codes(z,) # codeu(xs). If A; = A; = A,
then S;;, = {c(u) : u € A} U {c(u) : v € B;} for ¢+ = 1,2, implying that
{c(u) : v € Bi} # {c(u) : u € By} since code.(z1) # codec(zs) and
¢(z1) = c(z2). This in turn implies that S} # S , since S, ={c(u):ue
A}U{c(u):uv € B;} and {c'(u):u € A}N{c(u) :u€ B} =0 fori =1,2.
Hence, ¢ is a singular coloring of G — v using at most k + d colors, that is,
Xsi(G—v) <k+d=k+deguv. [

Theorem 4.2 For a nonempty graph G and an edge e in G,
Xsi(G) -1 < xsi(G - e) < Xsi(G) + 2.

Proof. Let e = vjvy. We first show that x,;(G) < Xsi(G—e)+1. Assume
that x,i(G — e) = k and let ¢ be a singular k-coloring of G — e. Define a
coloring ¢’ of G by ¢/(z) = ¢(z) if z # vo and ¢/(v2) = k + 1. To verify that
¢’ is a singular coloring of G, let z; and x5 be two distinct vertices in V(G).
Also, let codec(z;) = (c(x:), Sz,;) and codey (z;) = (¢'(z:), S,.) be the codes
of z; with respect to c and ¢, respectively, for i = 1,2. If ¢(z,) # ¢ (z2),
then codey(21) # codec (z2). If ¢'(x1) = ¢/(z3), then vy ¢ {z1,z2} and so
c(z1) = c'(x1) = ¢(z2) = c(z2). If only one of z; and z, is adjacent to v, in
G, say 21v; € E(G), thenk+1 € S;, —S;, and so codey () # codey (x2).
If v2 ¢ Ng(z1) U Ng(z2), then codes(z1) = code.(z;) # codes(zg) =
codey (z2). Finally, if v, € Ng(z1) N Ng(z2), then let N; = Ng(z;) — {v2}
for i = 1,2. Then since S;, = {c(u) : u € N;} U {e(ve)} for i = 1,2 and
Sz) # Sz,, it follows that {c(u) : u € N1} # {c(u) : u € Na}. This implies
that

Soy={d(w):ueN}ulk+1} #{d(w):u e No}U{k+1} = S.,,

that is, codex (1) # codec (z2). Since ¢’ uses at most k-+1 colors, xsi(G) <
k+1=Xsi(G_e)+1'

We next show that x,i(G — €) < x4i(G) + 2. Assume that x(G) = k
and let ¢ be a singular k-coloring of G. We then obtain a coloring ¢’ of
G — e defined by ¢/(z) = c(z) if z # v1,v2 and ¢/(v;) = k+i for i = 1,2.
Then an argument similar to the one used above will show that ¢’ is a
singular coloring of G — e. Since ¢’ uses at most & + 2 colors, it follows that
xsi(G =€) Sk +2 = Xai(G) + 2. .

All upper and lower bounds described in Theorems 4.1 and 4.2 are
sharp. For vertex deletion, let d be a nonnegative integer and i an integer
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with =1 < 7 < d. Then there exists a graph G containing a vertex v
whose degree is d and such that x,:(G — v) = x.i(G) +i. If d = 0, then
observe that x,i((n — 1)Ki) = xsi(nK1) — 1 and xsi(Kn) = Xsi(Kn U K1)
forn>2 Ifd> 1, then let G- = Kg41. For 0 < i < d, let G; be the
graph of order i + d + 3 obtained from a complete bipartite graph with
partite sets {v1,v2} and {vs,vs,...,vas2} by adding ¢ + 1 pendant edges
at v1. Then x4i(G—1 —v) = xsi(G-1) — 1; while for 0 < i < d, observe that
xsi(Gi — v2) = Xsi{K1,ivdt+1) = (d+2) +i = x5i(G;) +1i. For edge deletion,
observe for each positive integer n that Xsi(Ki,n U K1) = Xsi(K1,n41) — 1,
Xst(KQ n) = Xsi(K2 + nK1), xsi(K1,a U (n+ 3)K1) = xsi(K1ns1 U (n +
2)Kl) + 1 and st(Kl n+3) Xs:(Kl n+3 + e) +2.

5 The Singular Chromatic Numbers of Cy-
cles and Paths

Recall that, for a graph G and a proper coloring ¢ : V(G) — {1,2,...,k}
of the vertices of G for some positive integer k, the irregular color code of
a vertex v of G (with respect to c) is the ordered (k + 1)-tuple code;(v) =
(ap,ai,...,ax) where ag is the color assigned to v and a; is the number
of vertices adjacent to v that are colored ¢ for 1 < ¢ < k. The coloring
¢ is then irregular if distinct vertices have distinct irregular color codes
and the irregular chromatic number x;-(G) of G is the minimum positive
integer k for which G has an irregular k-coloring. This concept was first
introduced by Radcliffe and Zhang [21, 22] and further studied by Okamoto,
Radcliffe, and Zhang [20] and Anderson, Barrientos, Bringham, Carrington,
Kronman, Vitray, and Yellen [4]. In particular, the irregular chromatic
numbers of cycles and paths have been determined. We state the result on
cycles as follows.

Theorem 5.1 [4] For each integer n > 3, let k be the unique positive

integer such that (k — 1)(k N+1gn< k( ) Then

. B ko ifn#k(f)-1
Xir(Cn) = { k+1 zfn:k(;) - 1.

For each vertex v of G, let M, be the multiset of colors of the neighbors
of v. Then code;,(u) # code;.(v) if and only if (c(u), My) # (c(v), My). If
c is a singular coloring of a graph G, then for every two distinct vertices
u and v, either (i) c(u) # c(v) or (ii) Sy # Sy. If Sy # Sy, then certainly
M, # M,. Hence, every singular coloring of a graph G is an irregular
coloring of G. The following is an immediate consequence of this.
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Observation 5.2 For every graph G, x(G) < xir(G) < x4i(G).

Observe also that an irregular coloring of a graph G is not necessarily a
singular coloring of G. For example, the proper 2-coloring of P; is irregular
but not singular and, in fact, x;»(P3) = 2 while Xsi(Py) = 3. For cycles,
however, the two concepts are actually interchangeable, that is, xir(G) =
Xsi(G) if G is a cycle. The following is therefore an immediate consequence
of Theorem 5.1.

Corollary 5.3 For each integer n > 3, let k be the unique positive integer
such that (k — 1)(*;") +1 < n < k(%). Then

ko ifn#k(t) -1

Now let us consider paths in more detail. As we saw earlier, there
are paths P for which x;(P) < xsi(P). We first present some useful
lemmas and observations. If ¢ is a coloring of the vertices of an n-cycle
C : v1,v2,...,Vn,v1, then the color sequence of C (with respect to ¢) is

c(v1), e(va), - - ., c(vn), c(vy).

Lemma 5.4 If ¢ is a singular k-coloring of an n-cycle such that there
are two vertices u and v with code(u) = (c(u), {c(v)}) and code(v) =
(c(v), {c(u)}), then there exists a singular k-coloring of an n-cycle C with
respect to which the color sequence of C contains a subsequence of the form

c(u), ¢(v), c(w), e(v) (or c(v), c(u), e(v), c(w)).

Proof. Suppose that c is a singular k-coloring of an n-cycle C : vy, v, .. .,
Un,v1. Without loss of generality, assume that code(vs) = (2, {1}) and
code(ve) = (1,{2}), where ¢ is an integer with 1 < ¢ < n and £ # 2. If
¢ € {1,3}, then the result immediately follows. Otherwise, 6 < ¢ < n — 2.
Letc, ¢’ be the coloring of C such that the color sequence of C (with respect
to ') is

s c(v1), c(v2), e(ve), e(ve-1), . .., c(v3), c(ves1), e(ves2), . . ., c(vn), e(vr).

Then ¢ is a singular k-coloring of C. Furthermore, the first four terms of
sarel,2,1,2. ]

Suppose that ¢ is a singular k-coloring of P,. Since the number of
possible codes is k(*;') + k(k — 1) = k(%), it follows that n < k(%). We
state this fact as follows.
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Observation 5.5 If xsi(P,) = k, then n < k(£).

If c is a coloring of the vertices of a path P : vy, 2, ..., Vn, then the color
sequence of P (with respect to ¢) is c¢(v1),c(va2),...,c(vn). For4 <n <9,
let s,, be the sequence given by

sg: 1,2,1,3 ss¢: 1,2,1,3,2,3 sg: 1,
s5: 1,2,1,3,2 s7: 1,2,3,2,3,1,3 1

and observe that the coloring of P, whose color sequence is s, is a singular
3-coloring of P,. Hence, xsi(P1) = 1, xsi(P2) = 2, and xsi(Pr) = 3 for
3 < n < 9. We next consider paths of order n > 10.

Lemma 5.6 Ifn > 10 and k is a positive integer such that (k— 1)(';) +1<

n < k(g), then xsi(Pr) =k

Proof. Note that k > 4. Sincen > (k—-l)(kgl), it follows that xs:(Pr) >

k by Observation 5.5. First, assume that n # k(';) — 1 and let C :
¥1,V2,...,Un,v; be an n-cycle. By Corollary 5.3',c there exists a singular k-
coloring ¢ of C. Furthermore, since n > (k — 1)(3), there exist two vertices
u and v such that code(u) = (c(u), {c(v)}) and code(v) = (c(v), {c(u)}),
say code(u) = (1,{2}) and code(v) = (2,{1}). By Lemma 5.4, we may
assume that c(v;) = ¢(v3) = 1 and c(v2) = ¢(vs) = 2. Then the coloring of
a path of order n whose color sequence is c(v3), ¢(va), . - ., €(vn), c(v1), c(v2)
is a singular k-coloring.

Ifn= k(';) — 1, then let ¢ be a singular k-coloring of C = Cj-, where

n* = Ic( ). Furthermore, we may assume that the color sequence s of C
contains 1,2,1,2 as a subsequence. Let C : vy, vs,...,Vn=,v; and suppose
that ¢(v;) = c(v3) = 1 and c(v2) = c(vq) = 2. Furthermore, suppose that
c(vs) = 3. Since c is a singular k-coloring of a cycle of order k(; ) every
possible code must be used. Hence, we may also assume that s contains
either (i) 2,3,2,3 or (ii) 3,2, 3,2 as a subsequence as well.

If (i) occurs, then we may assume that C(‘Uz) = c(ves2) = 2and c(veH) =
¢(ve+3) = 3 for some integer £ with 4 << n* -3 and £#5.

51 c(ves1), e(ve), - . ., e(vs), c(ver2), c(veta), - - - E(ne )»C(vl),c(vz),c(va)

If (ii) occurs, then assume that c(vg) = ¢(ves2) = 3 and c(veq1) = c(Veq3) =
2 for some integer £ with 7 < ¢ < n* —4 and let

s c(ver2), c(vesr), c(we), . - -, c(vs), c(vess), c(vesa), - . -, (vne),

(1), e(v2), c(va).

26



In each case, the coloring of a path of order n* — 1 having s as the color
sequence is a singular k-coloring. [

Now we are prepared to present the complete result on paths.

Theorem 5.7 For every integern > 2, Xsi(Pn) = k, where k is the unique
positive integer such that (k — 1)(k;1) +1<n< k(';)

Proof. Since the result has been verified for 2 < n < 9, assume that
n > 10. Hence, ¥ > 4. By Observation 5.5, it suffices to show that
Xsi(Prn) < k by providing a singular k-coloring of P,.

For k = 4, we may assume that 10 < n < 18 by Lemma 5.6. Let A; :
v1,v2,...,v9 be a path of order 9 and let ¢; be a 4-coloring of A; such that
the color sequence of A; is 4,1,2,4,2,3,4,3,4. Let Ay : uy,us,...,u,_g be
a path of order n—9. Since 1 < n—9 < 9, there exists a singular 3-coloring
¢z of Ay and we may assume that cp(u;) = 1 and cp(ug) = 3 (if n > 11).
Let A be a path of order n obtained from A4; and A; by adding the edge
vguy and consider the coloring ¢ such that c(v) = ¢;(v) if v € V(4;) for
i = 1,2. Then c is a singular 4-coloring of A. Hence, xsi(P,) = 4 for
10 < n < 18. Consequently, xs:i(P,) = 4 for 10 < n < 24.

For k = 5, assume that 25 < n < 40 by Lemma 5.6. Let A, :
V1,%2,...,v16 be a path of order 16 and let ¢; be a 5-coloring of A; such
that the color sequence of A, is 5,1,2,5,2,3,5,3, 4,5,4,5,1,5,2,5. Let
A2 :uy,up,...,us_ 16 be a path of order n—16. Since 9 < n—16 < 24, there
exists a singular 4-coloring ¢, of A2 and we may assume that co(uy) =3
and cp(uz) = 1. Let A be a path of order n obtained from A; and Az by
adding the edge vigu; and consider the coloring ¢ such that c(v) = ci(v)
if v € V(A;) for i = 1,2. Then c is a singular 5-coloring of A. Hence,
Xsi(Pn) = 5 for 25 < n < 50.

Now suppose that x,;(P,) = k for every n with (k — 1)(k;1) +1<
n < k(g) for some k > 5. We show that x,;(P,) = k + 1 for every n with

kB +1<n< (k+ 1)(*31). By Lemma 5.6, we may further assume that

k) +1<n < k(1.

First suppose that & is odd, say kK = 2¢ + 1 for some integer ¢ > 2.
Consider a complete graph H of order 2¢ + 1 whose vertex set is Nogy1.
Then H can be factored into ¢ Hamiltonian cycles Hy,Hs,...,Hs. Let
H;:ayi,00;,...,09041 0,01 for1 <i <4, Consider ¢ copies By, By, ..., B,
of a path of order 6¢+3, where B; : v ;, V2,iy .-, Use+3,4- Let ¢) be a (20+42)-
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coloring of the graph U!_, B; such that the color sequence s; of B; is

si: 204 2,a1,4,02,i,28 + 2,036,044, . . ., 28 + 2,820—1,i, @2e,i, 28 + 2, @2¢41,i, 01,44
20+ 2,a2,;:,03,i,2¢ + 2,04,5,05,iy. . ., 20 + 2,a2¢,i,G2841,i-

Let A; be the graph obtained from the paths By, By, ..., Be by (i) adding
the edge vge43,iv1,i+1 for 1 < i < € — 1 and (ii) deleting the two vertices
vee+2,e and veets,e. Hence A is a path of order n; = ¢(6¢ + 3) — 2, where

K2 =(20+1)2<n <2+ +1=k() +1.

Let A : u3,us,...,un, be a path of order ng =n - n;. Since k(;) +1<

n < k(*31), it follows that 0 < np < k(%). Hence, there exists a singular
k-coloring of Ay using the colors in Ni. In particular, let ¢y be a singular
k-coloring of A such that ca(u1) = ag¢,¢ and ca(u2) = aze+1,e- Then obtain
A = P, from A; and A; by adding the edge vges+1,eu1 and observe that
the coloring ¢ such that c(v) = ¢;(v) if v € V(A;) for i = 1,2 is a singular
(2¢ + 2)-coloring of A.

If k is even, then write k = 2¢, where £ is an integer with £ > 3.
Consider a complete graph H of order 2¢ whose vertex set is No;. Then
H can be factored into £ — 1 Hamiltonian cycles Hy, Ha,...,H¢—; and a
1-factor Ho. Let H; : a1 4,02, - . ., a2¢,i, 01, for 1 < i < £—1. Consider £—1
copies By, Ba, ..., Bg_1 of a path of order 6¢, where B;:v1:,v2,4, .- Vse,i-
Furthermore, let By : v1,0,v2,0 be a path of order 2. Let ¢; be a (2¢ +1)-

coloring of the graph Uf;é B; such that the color sequence s; of B; is

sit 20+ 1,a14,02,4,20+1,0a3,6,Q4.i,--.,20 + 1,820-1,4,02¢,1,
204 1,a1,i,02¢,i,2 + 1, 02614, 020-2,is- - -, 2£ + 1, 03,4, 02,

for 1 < i < €—1, while s : 2¢+1,a, where a € Ny, and a;,1a € E(Hp). Let
A; be the graph obtained from the paths By, B1,...,Be—1 by (i) adding
the edge vo ov1,1, (ii) adding the edge vee,iv1,i41 for 1 <1< €-2, and (iii)
deleting the two vertices vge—1,¢—1 and vee,¢~1. Hence A; isa path of order
ny = (£ — 1)(6¢), where

K2=0202<n <)) +1=k() +1.
Let Ay : uy,ug,...,un, be a path of order ng =n —n,. Since k(’;) +1<

n < k(k;"), it follows that 0 < ngy < k(’;) Hence, there exists a singular
k-coloring of A, using the colors in N. Let ¢ be a singular k-coloring of A2
such that cz(u1) = aae—1 and cz(ug) = aze—1. Then obtain A = P, from

A; and A, by adding the edge vge,¢—111 and observe that the coloring ¢
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defined by ¢(v) = ¢;(v) if v € V(4;) for i = 1,2 is a singular (2¢+41)-coloring
of A. This completes the proof. =

For example, consider a path of order 60. Since 5(3) +1 < 60 < 6(3),

we first consider the graph H = K5 with V(H) = Ns. Observe that H can
be factored into two Hamiltonian cycles H; and H,, say Hy:1,2,3,4,5,1
and H> :1,3,5,2,4,1. Then let A; = Pyg and consider a 6-coloring of A,
whose color sequence is

sa, : 6,1,2,6,3,4,6,5,1,6,2,3,6,4,5,6,1,3,6,5,2,6,4,1,6, 3,5, 6.

Let Ay & Pss. Since 4(;) +1<32< 5(2), there exists a singular 5-coloring
of Ay the first two terms of whose color sequence s 4, are 2,4. Then the
coloring of Pgo whose color sequence is sa, followed by s4, is a singular
6-coloring.

We summarize the results on cycles and paths as follows.
Theorem 5.8 For each n > 3, let k be the unique positive integer such
that (k —1)(*;') +1 < n < k(%). Then
Xsi(P n) =k

ko oifntk(d) -1

Xsi(Cn)= { k+1 Zfﬂ:k(g)—]_
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