On the generalized k-Pell (p, i)-numbers

Kamil Arı*

Karamanoğlu Mehmetbey University,
Faculty of Kamil Özdağ Science,
Department of Mathematics, 70100 Karaman, Turkey

Abstract

The current article focus on the generalized k-Pell (p, i)-numbers for k = 1, 2, ... and $0 \le i \le p$. It introduces the generalized k-Pell (p, i)-numbers and their generating matrices and generating functions. Some interesting identities are established.

Keywords and phrases: Fibonacci numbers; Pell numbers; Binet's formula; Generating matrix; Generating function.

AMS Mathematics Subject Classification (2010): 11B39; 65Q30; 05A15.

1 Introduction

The uses of Fibonacci and Fibonacci-like numbers in many areas of science and engineering are quite remarkable: number theory, combinatorics, special functions, numerical analysis, linear algebra, statistics, etc. The basic properties of Fibonacci and Fibonacci-like numbers are well known and are outlined, for example in [23].

^{*}E-mail address: kamilari@kmu.cdu.tr

The Fibonacci numbers F_n are the terms of the sequence $\{0, 1, 1, 2, 3, 5, ...\}$ wherein each term is the sum of the two preceding terms, beginning with the values $F_0 = 0$ and $F_1 = 1$.

In literature, one can find many interesting generalizations of the classic Fibonacci sequence. For example, Horadam's sequence $\{w_n(a,b;p,q)\}$, or briefly $\{w_n\}$ is defined by the recurrence relation $w_0=a$, $w_1=b$, $w_n=pw_{n-1}-qw_{n-2}$ $(n\geq 2)$ (see [12]). This sequence is generalized Fibonacci sequence. In [12], Horadam studied the generating function of powers of $\{w_n\}$. Another interesting generalization given by Falcón and Plaza [6] is defined by the following equation for any given integer number $k\geq 1$

$$F_{k,n+1} = kF_{k,n} + F_{k,n-1}$$
 for $n \ge 1$

with initial conditions

$$F_{k,0}=0; \quad F_{k,1}=1,$$

and called k-Fibonacci numbers. This sequence that generalizes, between others, both the classic Fibonacci sequence and the Pell sequence. It is obvious that when k=1, then nth k-Fibonacci number is the nth classic Fibonacci number. In [6], Falcón and Plaza showed the relation between the 4-triangle longest-edge (4TLE) partition and the k-Fibonacci numbers, as another example of the relation between geometry and numbers, and many properties of these numbers are deduced directly from elementary matrix algebra. In [7], many properties of these numbers are deduced and related with the so-called Pascal 2-triangle. In [8], the 3-dimensional k-Fibonacci spirals are studied from a geometric point of view. These curves appear naturally from studying the k-th Fibonacci numbers $\{F_{k,n}\}_{n=0}^{\infty}$ and the related hyperbolic k-Fibonacci functions. In [9], the author introduces some sequences obtained from the k-Fibonacci sequences and then some properties of the k-Lucas numbers are proved. In [10], the authors introduce gen-

eralized Fibonacci sequences and related identities consisting even and odd terms. Also, in that paper, they present connection formulas for generalized Fibonacci sequences, Jacobsthal sequence and Jacobsthal-Lucas sequence. In [17], the authors introduce the k-Generalized Fibonacci sequence, and then establish some of the interesting properties of k-Generalized Fibonacci numbers. Also, in that paper, they present properties of k-Generalized Fibonacci numbers like Catalan's identity, Cassini's identity and d'ocagnes's identity. In [4], the author consider the k-Fibonacci sequence and many identities are proved for the k-Fibonacci number.

However, another generalization of the classic Fibonacci sequence is given by Stakhov (see [21] and [22]). This generalization is called Fibonacci p-numbers, and defined by the following equation for any given p (p = 1, 2, ...) and n > p + 1

$$F_{p}(n) = F_{p}(n-1) + F_{p}(n-p-1),$$

with initial conditions $F_p(1) = \dots = F_p(p) = F_p(p+1) = 1$. When p=1, then the sequence of Fibonacci p-numbers, $\{F_p(n)\}$, is reduced to the classic Fibonacci sequence. Also generalizations of Pell numbers can be found in the literature. In [1], P. Catarino consider a generalization of Pell numbers, which the author calls the k-Pell numbers. In [2], the authors give other generalizations which involve other type of Pell numbers, namely the k-Pell-Lucas sequence, in this paper also many properties are proved for the k-Pell-Lucas numbers. In [5], using a diagonal matrix the author get the Binet's formula for k-Pell sequence. Also, in that paper, the $n^{\rm th}$ power of the generating matrix for k-Pell-Lucas sequence is established and basic properties involving the determinant allowed us to obtain its Cassini's identity are given. In [3], the authors consider the k-Pell numbers sequence and present some properties involving the k-Pell numbers. Also, in that paper, using generating matrices the explicit formula for the term of order

n of the k-Pell numbers sequence are given and also using linear algebra the well-known Cassini's identity is obtained. Also in [13], the author consider the fair generalization of the Pell numbers, which he calls the generalized Pell (p,i)-numbers. In that paper, the generalized Pell (p,i)-numbers is defined by the following equation for any given p (p=1,2,...) and n>p+1 and $0 \le i \le p$

$$P_p^{(i)}(n) = 2P_p^{(i)}(n-1) + P_p^{(i)}(n-p-1),$$

with initial conditions

$$\begin{split} P_p^{(0)}\left(1\right) &= P_p^{(0)}\left(2\right) = \dots = P_p^{(0)}\left(p+1\right) = 1, \\ \\ P_p^{(i)}\left(1\right) &= P_p^{(i)}\left(2\right) = \dots = P_p^{(i)}\left(i\right) = 0, \\ \\ P_p^{(i)}\left(i+1\right) &= P_p^{(i)}\left(i+2\right) = \dots = P_p^{(i)}\left(p+1\right) = 1, \end{split}$$

and it is given relationship between the generalized Pell (p, i)-numbers and the generating matrices given for these numbers.

In this paper, we introduce the generalized k-Pell (p,i)-sequence that generalizes the k-Fibonacci sequence given in [6] by Falcón and Plaza, and the Pell (p,i)-sequence given by Kilic in [13]. We present the generating matrices and generating functions for the generalized k-Pell (p,i)-numbers. We show that the characteristic equation of the generalized k-Pell (p,i)-numbers does not have multiple roots for $1 \le k \in \mathbb{Z}$ and 1 .

2 Main Results

We now introduce a new generalization of Fibonacci numbers called as the generalized k-Pell (p, i)-sequence, and then give relationships between these numbers and generating matrices.

Definition 1 The generalized k-Pell (p,i)-sequence, say $\left\{U_k^{(p,i)}(n)\right\}$, is defined as shown, for any given $p, k \ (p,k=1,2,...)$ and n>p+1 and $0\leq i\leq p$

$$U_k^{(p,i)}(n) = kU_k^{(p,i)}(n-1) + U_k^{(p,i)}(n-p-1),$$

with initial conditions

$$\begin{split} &U_k^{(p,0)}\left(1\right) = U_k^{(p,0)}\left(2\right) = \ldots = U_k^{(p,0)}\left(p+1\right) = 1,\\ &U_k^{(p,i)}\left(1\right) = U_k^{(p,i)}\left(2\right) = \ldots = U_k^{(p,i)}\left(i\right) = 0,\\ &U_k^{(p,i)}\left(i+1\right) = U_k^{(p,i)}\left(i+2\right) = \ldots = U_k^{(p,i)}\left(p+1\right) = 1. \end{split}$$

Particular cases are:

- If i = p = 1, then the *n*th generalized k-Pell (1,1)-sequence is the (n+1)th generalized k-Fibonacci sequence considered in [6],
- If i = p = 1 and k = 2, then the *n*th generalized 2-Pell (1, 1)-sequence is the (n + 1)th usual Pell sequence considered in [16],
- If k = 1, then the *n*th generalized 1-Pell (p, i)-sequence is the *n*th generalized Fibonacci-(p, i) sequence considered in [15],
- If k = 2, then the nth generalized 2-Pell (p, i)-sequence is the nth generalized Pell-(p, i) sequence considered in [13].

Generating matrices are very important tools for obtaining results in number theory. Generating matrices of Fibonacci and Fibonacci-like numbers have been studied in many papers; see for example [11, 13, 14, 19]. We now introduce generating matrix for the generalized k-Pell (p, i)-numbers.

Theorem 2 For n, p > 0 and k = 1, 2, ..., define the $(p+1) \times (p+1)$ matrix H_n as follows:

$$H_{n} = \begin{bmatrix} U_{k}^{(p,0)} (n+p+2) & U_{k}^{(p,p-1)} (n+p+1) & \cdots & U_{k}^{(p,0)} (n+p+1) \\ U_{k}^{(p,0)} (n+p+1) & U_{k}^{(p,p-1)} (n+p) & \cdots & U_{k}^{(p,0)} (n+p) \\ U_{k}^{(p,0)} (n+p) & U_{k}^{(p,p-1)} (n+p-1) & \cdots & U_{k}^{(p,0)} (n+p-1) \\ \vdots & \vdots & \ddots & \vdots \\ U_{k}^{(p,0)} (n+3) & U_{k}^{(p,p-1)} (n+2) & \cdots & U_{k}^{(p,0)} (n+2) \\ U_{k}^{(p,0)} (n+2) & U_{k}^{(p,p-1)} (n+1) & \cdots & U_{k}^{(p,0)} (n+1) \end{bmatrix}.$$

Then

$$H_n = A^n E$$

where the matrices A and E are $(p+1) \times (p+1)$ matrices such that

$$A = \begin{bmatrix} k & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \ddots & \vdots & 0 \\ \vdots & & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{bmatrix}, \tag{1}$$

and

$$E = \begin{bmatrix} k+1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 0 & 1 & \cdots & 1 \\ \vdots & \cdots & \ddots & \ddots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 & 0 & 1 \end{bmatrix},$$

respectively.

Proof. If n = 1, then we write

$$H_{1} = \begin{bmatrix} U_{k}^{(p,0)}(p+3) & U_{k}^{(p,p-1)}(p+2) & \cdots & U_{k}^{(p,0)}(p+2) \\ U_{k}^{(p,0)}(p+2) & U_{k}^{(p,p-1)}(p+1) & \cdots & U_{k}^{(p,0)}(p+1) \\ U_{k}^{(p,0)}(p+1) & U_{k}^{(p,p-1)}(p) & \cdots & U_{k}^{(p,0)}(p) \\ \vdots & & \vdots & & \vdots \\ U_{k}^{(p,0)}(4) & U_{k}^{(p,p-1)}(3) & \cdots & U_{k}^{(p,0)}(3) \\ U_{k}^{(p,0)}(3) & U_{k}^{(p,p-1)}(2) & \cdots & U_{k}^{(p,0)}(2) \end{bmatrix}.$$

By the definiton of the generalized k-Pell (p, i)-numbers, we have the matrix H_1 :

Also by a simple calculation, we get

$$H_1 = AE$$
.

which completes the proof for n = 1. Continuing the proof with induction on n, we suppose that the statement is true for n - 1 and we prove it for n. Since the matrix A is a companion matrix, we can write

$$H_n = A^n E = AA^{n-1}E = AH_{n-1},$$

from where the proof is completed.

Theorem 3 For n, p > 0 and k = 1, 2, ..., define the $(p+1) \times (p+1)$

matrix G_n as follows:

$$G_{n} = \begin{bmatrix} U_{k}^{(p,p)} (n+p+1) & U_{k}^{(p,p)} (n+1) & \cdots & U_{k}^{(p,p)} (n+p) \\ U_{k}^{(p,p)} (n+p) & U_{k}^{(p,p)} (n) & \cdots & U_{k}^{(p,p)} (n+p-1) \\ U_{k}^{(p,p)} (n+p-1) & U_{k}^{(p,p)} (n-1) & \cdots & U_{k}^{(p,p)} (n+p-2) \\ \vdots & \vdots & & \vdots \\ U_{k}^{(p,p)} (n+2) & U_{k}^{(p,p)} (n-p+2) & \cdots & U_{k}^{(p,p)} (n+1) \\ U_{k}^{(p,p)} (n+1) & U_{k}^{(p,p)} (n-p+1) & \cdots & U_{k}^{(p,p)} (n) \end{bmatrix}.$$

Then

$$G_n=A^n$$

where A is matrix in (1).

Proof. If we consider the definition of the generalized k-Pell (p, i)-numbers, we can write immediately following matrix-vector relation:

$$\begin{bmatrix} U_k^{(p,p)} (n+p+1) \\ U_k^{(p,p)} (n+p) \\ U_k^{(p,p)} (n+p-1) \\ \vdots \\ U_k^{(p,p)} (n+2) \\ U_k^{(p,p)} (n+1) \end{bmatrix} = \begin{bmatrix} k & 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \ddots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} U_k^{(p,p)} (n+p) \\ U_k^{(p,p)} (n+p-1) \\ U_k^{(p,p)} (n+p-2) \\ \vdots \\ U_k^{(p,p)} (n+1) \\ U_k^{(p,p)} (n) \end{bmatrix}.$$

Generalizing the above matrix-vector relation to the (p+1) columns, then we have

$$G_n = AG_{n-1}. (2)$$

From the definition of the generalized k-Pell (p, i)-numbers we obtain $G_1 = A$. Thus, by the inductive argument, from (2) we reach the following result

$$G_n = A^n$$
.

This completes the proof.

When p = 2, then we obtain

$$G_{n} = \begin{bmatrix} U_{k}^{(p,2)}(n+3) & U_{k}^{(p,2)}(n+1) & U_{k}^{(p,2)}(n+2) \\ U_{k}^{(p,2)}(n+2) & U_{k}^{(p,2)}(n) & U_{k}^{(p,2)}(n+1) \\ U_{k}^{(p,2)}(n+1) & U_{k}^{(p,2)}(n-1) & U_{k}^{(p,2)}(n) \end{bmatrix}$$

$$= \begin{bmatrix} k & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^{n}$$

and thus as a consequence of Theorem 3, we can give the Simpson formula of the generalized k-Pell (2,2)-numbers as shown:

$$1 = U_k^{(p,2)} (n+3) \left(U_k^{(p,2)} (n) \right)^2 + U_k^{(p,2)} (n-1) \left(U_k^{(p,2)} (n+2) \right)^2$$

$$+ \left(U_k^{(p,2)} (n+1) \right)^3 - 2U_k^{(p,2)} (n) U_k^{(p,2)} (n+1) U_k^{(p,2)} (n+2)$$

$$- U_k^{(p,2)} (n-1) U_k^{(p,2)} (n+1) U_k^{(p,2)} (n+3) .$$

Corollary 4 For n, p > 0 and k = 1, 2, ...,

$$U_k^{(p,0)}(n+p+1) = (k+1)U_k^{(p,p)}(n+p) + \sum_{j=0}^{p-1}U_k^{(p,p)}(n+j).$$

Proof. Since $H_n = A^n E$, $A^n = G_n$, and the terms a_{21} of the matrices H_n and $G_n E$ are aqual, the formula is obtained.

We now show that the characteristic equation of the generalized k-Pell (p, i)-numbers does not have multiple roots for $1 \le k \in \mathbb{Z}$ and 1 .

Lemma 5 Let $a_p = \frac{k}{p+1} \left(\frac{kp}{p+1}\right)^p$. Then, for $1 < k, p \in \mathbb{Z}$, we have that $a_p < a_{p+1}$.

Proof. Since $p^2 > p^2 - 1$ for 1 , Kiliç [13] gave for <math>1

$$\frac{1}{2}\left(\frac{p+1}{p}\right)^2<\frac{p^2}{p^2-1}.$$

From where, we can easily write that for $1 < k, p \in \mathbb{Z}$

$$\frac{1}{k} \left(\frac{p+1}{p} \right)^2 < \frac{p^2}{p^2 - 1}.$$

Since also 1 , thus we can write for all <math>p

$$\frac{1}{k} \left(\frac{p+1}{p} \right)^2 < \left(\frac{p^2}{p^2 - 1} \right)^{p-1}.$$

Then we may write from where, we get

$$\frac{1}{k} \left(\frac{p+1}{p} \right)^2 < \left(\frac{p}{k(p-1)} \times \frac{kp}{p+1} \right)^{p-1}$$

$$= \left(\frac{p}{k(p-1)} \right)^{p-1} \times \left(\frac{kp}{p+1} \right)^{p-1}.$$

Therefore we have

$$\frac{1}{p}\left(\frac{k(p-1)}{p}\right)^{p-1} < \frac{1}{p+1}\left(\frac{kp}{p+1}\right)\left(\frac{kp}{p+1}\right)^{p-1},$$

and so

$$\frac{1}{p}\left(\frac{k(p-1)}{p}\right)^{p-1} < \frac{1}{p+1}\left(\frac{kp}{p+1}\right)^{p}.$$

From where, we get for $1 < k, p \in \mathbb{Z}$

$$\frac{k}{p}\left(\frac{k\left(p-1\right)}{p}\right)^{p-1} < \frac{k}{p+1}\left(\frac{kp}{p+1}\right)^{p}.$$

Thus, the result is obtained.

Lemma 6 The equation $x^{p+1} - kx^p - 1 = 0$, which is the characteristic equation of the generalized k-Pell (p,i)-numbers, does not have multiple roots for $1 < k, p \in \mathbb{Z}$.

Proof. Suppose that α is a multiple root of f(x) = 0 with $f(x) = x^{p+1} - kx^p - 1$. Since α is a multiple root of f(x), we obtain $f'(\alpha) = x^{p+1} - kx^p - 1$.

 $\alpha^{p-1}\left((p+1)\,\alpha-kp\right)=0$. Since $\alpha\neq 0$, and $\alpha\neq 1$, we find $\alpha=\frac{kp}{p+1}$, and hence

$$0 = -f(\alpha) = -\alpha^{p+1} + k\alpha^{p} + 1$$
$$= \alpha^{p} (k - \alpha) + 1$$
$$= \left(\frac{kp}{p+1}\right)^{p} \left[k - \frac{kp}{p+1}\right] + 1$$
$$= a_{p} + 1.$$

Since, by Lemma 5, $a_2 = \frac{4k^3}{27}$ and $a_p < a_{p+1}$ for $1 < k, p \in \mathbb{Z}$, $a_p \neq -1$, which is a contradiction. Thus, we reach the result which is that the characteristic equation of the generalized k-Pell (p,i)-numbers does not have multiple roots for $1 < k, p \in \mathbb{Z}$.

Generating functions are one of the most useful and clever tools in mathematics, computer science and statistics, see for example [18, 24]. By using generating functions, we can transform problems about sequences which they generate into problems about real valued functions. We now consider the generating function of the generalized k-Pell (p,p)-numbers.

Lemma 7 Let $U_k^{(p,p)}(n)$, n > p+1 and p > 1, be the nth generalized k-Pell (p,p) number. Then,

$$x^{n} = U_{k}^{(p,p)}(n+1)x^{p} + \sum_{j=0}^{p-1} U_{k}^{(p,p)}(n-j)x^{j}.$$

Proof. Since n > p + 1 and p > 1, we first suppose that p = 2 and so n = 4. Since $U_k^{(p,2)}(5) = k^2$, $U_k^{(p,2)}(3) = 1$ and $U_k^{(p,2)}(4) = k$, and the characteristic equation of the generalized k-Pell (p,2)-numbers is $x^3 - kx^2 - 1$, we obtain

$$x^{4} = x \cdot x^{3} = x \left(kx^{2} + 1 \right) = kx^{3} + x = k \left(kx^{2} + 1 \right) + x = k^{2}x^{2} + x + k$$
$$= U_{k}^{(p,2)}(5) x^{2} + U_{k}^{(p,2)}(3) x + U_{k}^{(p,2)}(4) .$$

Thus the proof is complete for the first case. Continuing the proof with induction on n, we suppose that the statement is true for n and we prove it for n+1. From where and since the characteristic equation of the generalized k-Pell (p,p)-numbers is $x^{p+1}=kx^p+1$, we have

$$\begin{split} x^{n+1} &= x^n.x = \left(U_k^{(p,p)} \left(n+1 \right) x^p + \sum_{j=0}^{p-1} U_k^{(p,p)} \left(n-j \right) x^j \right) x \\ &= U_k^{(p,p)} \left(n+1 \right) x^{p+1} + \sum_{j=0}^{p-1} U_k^{(p,p)} \left(n-j \right) x^{j+1} \\ &= U_k^{(p,p)} \left(n+1 \right) \left(kx^p +1 \right) + \sum_{j=0}^{p-1} U_k^{(p,p)} \left(n-j \right) x^{j+1} \\ &= k U_k^{(p,p)} \left(n+1 \right) x^p + U_k^{(p,p)} \left(n-p+1 \right) x^p \\ &+ U_k^{(p,p)} \left(n-p+2 \right) x^{p-1} + \dots + U_k^{(p,p)} \left(n \right) x + U_k^{(p,p)} \left(n+1 \right) \\ &= \left(k U_k^{(p,p)} \left(n+1 \right) + U_k^{(p,p)} \left(n-p+1 \right) \right) x^p + U_k^{(p,p)} \left(n-p+2 \right) x^{p-1} \\ &+ \dots + U_k^{(p,p)} \left(n \right) x + U_k^{(p,p)} \left(n-p+2 \right) x^{p-1} \\ &+ \dots + U_k^{(p,p)} \left(n \right) x + U_k^{(p,p)} \left(n-p+2 \right) x^{p-1} \\ &+ \dots + U_k^{(p,p)} \left(n \right) x + U_k^{(p,p)} \left(n-1 \right) \\ &= U_k^{(p,p)} \left(n+2 \right) x^p + \sum_{j=0}^{p-1} U_k^{(p,p)} \left(n+1-j \right) x^j, \end{split}$$

which completes the proof.

We now derive the generating function of the generalized k-Pell (p, p)numbers, and then give exponential representation for these numbers. Let

$$g_{p}(x) = U_{k}^{(p,p)}(p+1) + U_{k}^{(p,p)}(p+2)x + U_{k}^{(p,p)}(p+3)x^{2} + \dots + U_{k}^{(p,p)}(n+p+1)x^{n} + \dots$$

So we obtain

$$g_{p}(x) - kxg_{p}(x) - x^{p+1}g_{p}(x) = (1 - kx - x^{p+1})g_{p}(x).$$

By the definition of the generalized k-Pell (p, p)-numbers, it can be written $(1 - kx - x^{p+1}) g_p(x) = U_k^{(p,p)}(p+1) = 1$. Thus,

$$g_p\left(x\right) = \frac{1}{1 - kx - x^{p+1}},$$

for $0 \le kx + x^{p+1} < 1$.

Therefore, we get

$$\begin{aligned} \ln g_p\left(x\right) &=& \ln\left[1 - kx - x^{p+1}\right]^{-1} \\ &=& \left(kx + x^{p+1}\right) + \frac{1}{2}\left(kx + x^{p+1}\right)^2 + \dots + \frac{1}{n}\left(kx + x^{p+1}\right)^n + \dots \\ &=& x\left[\left(k + x^p\right) + \frac{x}{2}\left(k + x^p\right)^2 + \dots + \frac{x^{n-1}}{n}\left(k + x^p\right)^n + \dots\right] \\ &=& x\sum_{n=1}^{\infty} \frac{x^{n-1}}{n}\left(k + x^p\right)^n. \end{aligned}$$

From where, we have

$$g_p(x) = \exp\left[x\sum_{n=1}^{\infty} \frac{x^{n-1}}{n} (k+x^p)^n\right].$$

References

- Catarino P., On some identities and generating functions for k-Pell numbers, International Journal of Mathematical Analysis, 7(38) (2013), 1877-1884.
- [2] Catarino P., Vasco P., On some Identities and Generating Functions for k- Pell-Lucas sequence, Applied Mathematical Sciences, 7(98) (2013), 4867-4873.
- [3] Catarino P., Vasco P., Some Basic Properties and a Two-by-Two Matrix involving the k-Pell numbers, International Journal of Mathematical Analysis, 7(45) (2013), 2209-2215.

- [4] Catarino P., On some identities for k-Fibonacci sequence, Int. J. Contemp. Math. Sciences, 9(1) (2014), 37-42.
- [5] Catarino P., A Note involving Two-by-Two Matrices of the k-Pell and k-Pell-Lucas sequences, *International Mathematical Forum*, 8(32) (2013), 1561-1568.
- [6] Falcón S., Plaza A., On the Fibonacci k-numbers. Chaos, Solitons & Fractals, 32(5) (2007), 1615-24.
- [7] Falcón S., Plaza A., The k-Fibonacci sequence and the Pascal 2-triangle. Chaos, Solitons & Fractals, 33(1) (2007), 38-49.
- [8] Falcón S., Plaza A., On the 3-dimensional k-Fibonacci spirals. Chaos, Solitons & Fractals, 38 (2008), 993-1003.
- [9] Falcón S., On the k-Lucas Numbers, Int. J. Contemp. Math. Sciences, 6(21) (2011), 1039-1050.
- [10] Gupta V. K., Panwar Y. K., Sikhwal O., Generalized Fibonacci sequences, Theoretical Mathematics & Applications, 2(2) (2012), 115-124.
- [11] Hoggatt V.E., Fibonacci and Lucas Numbers, Houghton-Mifflin, 1969.
- [12] Horadam A. F., Generating functions for powers of a certain generalized sequences of numbers, *Duke Math. J.*, **32** (1965), 437-446.
- [13] Kılıç E., The generalized Pell (p, i)-numbers and their Binet formulas, combinatorial representations, sums. Chaos, Solitons & Fractals, 40(4) (2009), 2047-2063.
- [14] Kılıç E., The generalized order-k-Fibonacci-Pell sequence by matrix methods, Journal of Computational and Applied Mathematics, 209 (2007), 133-145.

- [15] Kılıç E., Stakhov A. P., On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices, Chaos, Solitons & Fractals, 40(5) (2009), 2210-2221.
- [16] Koshy T., Pell and Pell-Lucas Numbers with Applications, Springer, 2014.
- [17] Panwar Y. K., Singh M., k-Generalized Fibonacci Numbers, Applied Mathematics and Physics, 2(1) (2014), 10-12.
- [18] Rosen K.H., Handbook of discrete and combinatorial mathematics, CRC Press, Boca Raton, FL, 2000
- [19] Stakhov AP., A generalization of the Fibonacci Q-matrix. Rep Natl Acad Sci Ukraine, 9 (1999), 46-9.
- [20] Stakhov AP, Sluchenkova AA, Massingua V. Introduction into Fibonacci coding and cryptography, Kharkov, Osnova, 1999.
- [21] Stakhov A., Rozin B. Theory of Binet formulas for Fibonacci and Lucas p-numbers. Chaos, Solitons & Fractals, 27(5) (2005), 1163-77.
- [22] Stakhov A., Rozin B. The continuous functions for the Fibonacci and Lucas p-numbers. Chaos, Solitons & Fractals, 28(4) (2006), 1014-25.
- [23] Vajda S., Fibonacci and Lucas Numbers, and the Golden Section, Theory and applications, John Wiley and Sons, New York, 1989.
- [24] Wilf H.S., Generatingfunctionology, A K Peters 1994, second/ third ed., Second edition available from http://www.math.upenn.edu/wilf/DownldGF.html.