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Abstract

The current article focus on the generalized k-Pell (p, 7)-numbers
for k =1,2,... and 0 < i < p. It introduces the generalized k-Pell
(p,i)-numbers and their generating matrices and generating func-
tions. Some interesting identities are established.
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1 Introduction

The uses of Fibonacci and Fibonacci-like numbers in many areas of science
and engineering are quite remarkable: number theory, combinatorics, spe-
cial functions, numerical analysis, linear algebra, statistics, etc. The basic
properties of Fibonacci and Fibonacci-like numbers are well known and are

outlined, for example in [23].
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The Fibonacci numbers F, are the terms of the sequence {0, 1, 1, 2, 3,
5, ...} wherein each term is the sum of the two preceeding terms, beginning
with the values Fo =0 and F; = 1.

In literature, one can find many interesting generalizations of the classic
Fibonacci sequence. For example, Horadam’s sequence {wn(a,b;p,q)}, or
briefly {w,} is defined by the recurrence relation wp = a, wy = b, wp, =
PWn_1 — qWn—_z (n > 2) (see [12]). This sequence is generalized Fibonacci
sequence. In [12], Horadam studied the generating function of powers of
{wn}. Another interesting generalization given by Falcén and Plaza [6] is

defined by the follwing equation for any given integer number & > 1
Fint1 =kFin+ Fepo forn 21

with initial conditions
Feo=0;, Fra=1,

and called k-Fibonacci numbers. This sequence that generalizes, between
others, both the classic Fibonacci sequence and the Pell sequence. It is
obvious that when k = 1, then nth k-Fibonacci number is the nth classic
Fibonacci number. In [6], Falc6n and Plaza showed the relation between the
4-triangle longest-edge (4TLE) partition and the k-Fibonacci numbers, as
another example of the relation between geometry and numbers, and many
properties of these numbers are deduced directly from elementary matrix
algebra. In [7], many properties of these numbers are deduced and related
with the so-called Pascal 2-triangle. In [8], the 3-dimensional k-Fibonacci
spirals are studied from a geometric point of view. These curves appear
naturally from studying the k-th Fibonacci numbers {Fi n}n. o and the re-
lated hyperbolic k-Fibonacci functions. In [9], the author introduces some
sequences obtained from the k-Fibonacci sequences and then some proper-

ties of the k-Lucas numbers are proved. In [10], the authors introduce gen-
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eralized Fibonacci sequences and related identities consisting even and odd
terms. Also, in that paper, they present connection formulas for generalized
Fibonacci sequences, Jacobsthal sequence and Jacobsthal-Lucas sequence.
In [17], the authors introduce the k-Generalized Fibonacci sequence, and
then establish some of the interesting properties of k-Generalized Fibonacci
numbers. Also, in that paper, they present properties of k-Generalized Fi-
bonacci numbers like Catalan’s identity, Cassini’s identity and d’ocagnes’s
identity. In [4], the author consider the k-Fibonacci sequence and many
identities are proved for the k-Fibonacci number.

However, another generalization of the classic Fibonacci sequence is
given by Stakhov (see [21] and [22]). This generalization is called Fi-
bonacci p-numbers, and defined by the following equation for any given

p(p=12,...)andn>p+1
Fo(n)=F(n-1)+F(n-p-1),

with initial conditions F,(1) = ... = F,(p) = F,(p+1) = 1. When
p = 1, then the sequence of Fibonacci p-numbers, {F, (n)}, is reduced
to the classic Fibonacci sequence. Also generalizations of Pell numbers can
be found in the literature. In [1}, P. Catarino consider a generalization of
Pell numbers, which the author calls the k-Pell numbers. In [2], the authors
give other generalizations which involve other type of Pell numbers, namely
the k-Pell-Lucas sequence, in this paper also many properties are proved
for the k-Pell-Lucas numbers. In [5],using a diagonal matrix the author
get the Binet’s formula for k-Pell sequence. Also, in that paper, the n'!
power of the generating matrix for k-Pell-Lucas sequence is established and
basic properties involving the determinant allowed us to obtain its Cassini’s
identity are given. In (3], the authors consider the k-Pell numbers sequence
and present some properties involving the k-Pell numbers. Also, in that

paper, using generating matrices the explicit formula for the term of order
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n of the k-Pell numbers sequence are given and also using linear algebra the
well-known Cassini’s identity is obtained. Also in [13], the author consider
the fair generalization of the Pell numbers, which he calls the generalized
Pell (p,i)-numbers. In that paper, the generalized Pell (p,i)-numbers is
defined by the following equation for any givenp (p = 1,2,...) and n > p+1
and0<i<p

PO (n)=2P (n—-1)+ P (n—p-1),

with initial conditions

PO1)=PO @) =..=FP (p+1)=1,
PO (1) =P (2)=..= PP (i) =0,
PO +1)=PP(i+2)=..=PP (p+1)=1,

and it is given relationship between the generalized Pell (p, i)-numbers and
the generating matrices given for these numbers.

In this paper, we introduce the generalized k-Pell (p,i)-sequence that
generalizes the k-Fibonacci sequence given in [6] by Falcén and Plaza, and
the Pell (p,4)-sequence given by Kilic in [13]. We present the generating
matrices and generating functions for the generalized k-Pell (p,)-numbers.
We show that the characteristic equation of the generalized k-Pell (p,%)-
numbers does not have multiple roots for 1 < k€ Z and 1 < p€ Z.

2 Main Results

We now introduce a new generalization of Fibonacci numbers called as the
generalized k-Pell (p, i)-sequence, and then give relationships between these

numbers and generating matrices.
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Definition 1 The generalized k-Pell (p,i)-sequence, say {U,gp ) (n)}, is
defined as shown, for any given p, k (p,k=1,2,..) andn > p+1 and
0<i<p

U (n) = kUPD (n = 1) + UP) (n-p—1),

with initial conditions

U,SP’O) (1) = Uli"’o) @2)=..= U,f”'o) (p+1)=1,
U’gp'i) 1) = U,gp’i) 2)=..= U,sp'i) (4) =0,
U +1) =0 i +2)=.. =UP) (p+1) = 1.

Particular cases are:

If « = p = 1, then the nth generalized k-Pell (1,1)-sequence is the

(n + 1)th generalized k-Fibonacci sequence considered in [6],

Ifi=p=1and k = 2, then the nth generalized 2-Pell (1, 1)-sequence is
the (n + 1)th usual Pell sequence considered in [16],

If k =1, then the nth generalized 1-Pell (p, i)-sequence is the nth gener-

alized Fibonacci-(p, ) sequence considered in [15],

If k = 2, then the nth generalized 2-Pell (p,i)-sequence is the nth gener-

alized Pell-(p, ) sequence considered in [13].

Generating matrices are very important tools for obtaining results in
number theory. Generating matrices of Fibonacci and Fibonacci-like num-
bers have been studied in many papers; see for example 11, 13, 14, 19]. We

now introduce generating matrix for the generalized k-Pell (p,1)-numbers.
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Theorem 2 For n,p > 0 and k = 1,2,..., define the (p+1) x (p+1)

matriz H,, as follows:

H,=

Then

UF (n+p)

UlP? (n 4+ 3)
UP? (n+2)

H,=A"E,

uP? (ntp+1)

F Ulgpvo) (,n +p+ 2) U’Ep'p_l) (n +p+ 1)
UIEP-P‘—I) (n +p) - UIEP,O) (n +p)
U,ﬁ"""” (n+p-1)

uPr 42y o UV (n+2)
vPr ) e UV ()

UPO (n+p+1) |

v (n+p-1)

where the matrices A and E are (p+ 1) X (p + 1) matrices such that

E 0
0
A=[0 1
| O
and
[ k+1 1
1 1
1 0
E =
1 0
| 1 0
respectively.

0
0

(=

L
0
0

e s

- i e
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Proof. If n =1, then we write

[ UPOp+3) UPP D p+2) o UV (p42) ]
U w+2) UPTVp+1) o UPO 1)
g | DU 00
UISP.O) (4) Ulgp,p—l) 3) . Ulgp,ﬂ) (3)
v¥@ Ve o U |

By the definiton of the generalized k-Pell (p, i)-numbers, we have the matrix

H]Z

[ K2+k+1 &k k& k k+1
k+1 1 1 1 11

1 1 1 1 1 1

Hy = 1 0 1 1 11
1 0 0 1 11

! 0 0 - 0 1 1 |

Also by a simple calculation, we get
H, = AE,

which completes the proof for n = 1. Continuing the proof with induction
on n, we suppose that the statement is true for n — 1 and we prove it for

n. Since the matrix A is a companion matrix, we can write
H, = A"E = AA™'E = AH,_,,
from where the proof is completed. =

Theorem 3 For n,p > 0 and k = 1,2,..., define the (p+1) x (p+1)

259



matriz G, as follows:

UéP,P) (n + p)
U(P.P) (n+p-1)
Go=| "
U (n+2)
| UPP (n+1)
Then
G, = A",

where A is matriz in (1).

U (n+p+1)

U)gpm) (n+1)
Uﬁp'p) (n)
U, ,gp,p) (n-1)

UP? (n—p+2)
U,?"P’ (n—p+1)

U (n+p)
UFP (n+p-1)
U,g”"’) (n+p-2)

U,spm) (n)

Proof. If we consider the definiton of the generalized k-Pell (p, 7)-numbers,

we can write immediately following matrix-vector relation:

[ UPP (n+p+1) |
Ulgl’m) (n +p)

PP (n+p-1)
U (n+2)
U’(cp.p) (n+1)

[k 0 0

1 0 0
01 0

0 0

(0 0 ... ©

U (n+p)
U (n+p-1)
UPP (n+p-2)

UIEP,P) (n +1)
U (n)

4 L

Generalizing the above matrix-vector relation to the (p + 1) columns, then

we have

Gn = AG‘n—l-

(2)

From the definiton of the generalized k-Pell (p, i)-numbers we obtain G =

A. Thus, by the inductive argument, from (2) we reach the following result

Gn = An.
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This completes the proof. m

When p = 2, then we obtain

UP? (n+3) UPD (n+1) UPP (n+2)
Go = | UPY(n+2) UPP(m) UPP(n+1)
| U () U (-1 U ()

r n

k01
= |1

and thus as a consequence of Theorem 3, we can give the Simpson formula

of the generalized k-Pell (2, 2)-numbers as shown:
1 = U (n+3) (U () L UPD (o) (U#? (n+2) ’
+(Uf? (n+ 1))3 - 202D () UP? (n+ 1) UP? (n+2)
~UP? (n-1)UP? (n+ 1) UPD (n 4 3).
Corollary 4 Forn,p>0and k=1,2,...,

p—1
PO (n+p+1)=(k+1)UP? (n+p)+ ¥ UPP (n+3).
i=0

Proof. Since H, = A"E, A™ = G, and the terms ay; of the matrices H,
and G, FE are aqual, the formula is obtained. =
We now show that the characteristic equation of the generalized &-Pell

(p,%)-numbers does not have multiple roots for 1 <k€Z and1 < p€ Z.

P
Lemma 5 Let ap, = z% (p—kﬁ) . Then, for 1 < k,p € Z , we have that

ap < Qp4t1-

Proof. Since p* > p? — 1 for 1 < p € Z, Kilig [13] gave for L < p € Z

1/p+1 2( p?
2\ p p?—-1
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From where, we can easily write that for 1 < k,p€ Z

1(p+1 2< P
k\ p p?—1

Since also 1 < p € Z, thus we can write for all p

1({p+1 2< 2\
E\ p p? -1 )

Then we may write from where, we get

2 p—-1
1(p+1\" _ P kp)
k P k(p—-1) p+1

Therefore we have

L (He ) ok () ()
-— —_——— < ,
P P p+1\p+1 p+1

and so

()™ b ()
p P p+1\p+1/

From where, we get for 1 < k,p€ Z

k(k(p—l))"“ k ( kp )P
- —— <K—0|—) .
P P p+1\p+1

Thus, the result is obtained. =

Lemma 6 The equation zPt! — kxzP — 1 = 0, which is the characteristic
equation of the generalized k-Pell (p,i)-numbers, does not have multiple

roots for 1 < k,p € Z.

Proof. Suppose that a is a multiple root of f(z) = 0 with f(z)

I

zP*t! — kzP — 1. Since a is a multiple root of f(xz), we obtain f (@)
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P~ 1 ((p+1)a —kp) = 0. Since & # 0, and & # 1, we find @ = p—’f%, and

hence

0 = —f(a)=-a? +ka? +1

Il

Q
-]
=

1
X
+
[y

Since, by Lemma §, as = 42—’2,3 and ap < apy for 1 < k,p € Z, a, # -1
, which is a contradiction. Thus, we reach the result which is that the
characteristic equation of the generalized k-Pell (p,i)-numbers does not
have multiple roots for 1 < k,p€ Z. =

Generating functions are one of the most useful and clever tools in
mathematics, computer science and statistics, see for example [18, 24] .
By using generating functions, we can transform problems about sequences
which they generate into problems about real valued functions.We now

consider the generating function of the generalized -Pell (p, p)-numbers.

Lemma 7 Let U,ﬁp’p) (n), n > p+1 andp > 1, be the nth generalized k-Pell
(p,p) number. Then,

p—1

2" =UPP (n+1)2P + 3 UP? (- j) 2.

3=0
Proof. Sincen > p+1 and p > 1, we first suppose that p = 2 and
son = 4. Since UP? (5) = k2, UP?P (3) = 1 and UP? (4) = k, and
the characteristic equation of the generalized k-Pell (p, 2)-numbers is z° —

kz? — 1, we obtain

zt = z.x3=x(kz2+1) =ka:3+:L'=k(k:z:2+l)+:c=k2:z:2+z+k

UP? (5)22 + UP?P (3)2 + UPD (4).
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Thus the proof is complete for the first case. Continuing the proof with in-
duction on n, we suppose that the statement is true for n and we prove it for
n + 1. From where and since the characteristic equation of the generalized

k-Pell (p, p)-numbers is zP*! = kxzP + 1, we have

J=0

p-1
™ = zhz= (U,E”’p) (n+1)z? + Z UlPP) (n - j) :vj) T

p—-1
= Uép,p) (n+1)zP*! + Z Uép,p) (n — §) 2t
j=0

p—1
= UPP (n+1)(ka? + 1)+ 3 UF? (n - 5) 27!
=0

= kU,ip’p)(n-F1):z”+U,£p’p)(n—p+l)m"
+UPP (n—p+2) 2P 4+ .. + UPP ()2 + UPP (n+1)

= (kU,Ep'p) (n+1)+ U,f,p'p) (n-p+ 1)) zP + U,gp’p) (n—p+2)zP!
o U,Ep,p) (n)z + U,f,p'p) (n+1)

= U,i“”"’)(n+2):::"+U,£””’)('n.—p+2):z:“"1

+... 4+ Ulspup) (n) T+ Uk(:Pap) (n + 1)

p—-1
= U}ipvp) (n + 2) zP + z Ulgp’p) ('I'l +1- j) mj’
=0

which completes the proof. m
We now derive the generating function of the generalized k-Pell (p, p)-

numbers, and then give exponential representation for these numbers. Let

6@ = UPPE+1)+ U0 e+ 2o +US (p+3)a?

Fo+ UPP (a4 p+1)a” + ...

So we obtain

gp (z) — kzgp (z) — aPtlgy (z) = (1 — kz — zP*1) g, (2).
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By the definition of the generalized k-Pell (p, p)-numbers, it can be written
(1 - kz — 2P*1) g, (z) = UPP (p+1) = 1. Thus,

_ 1
9(®) = T fg —aerT

for 0 < kz + zP+! < 1.
Therefore, we get
Ing,(z) = Inf[l-kz- :1:"’““1]—l

= (kz+z”*) + % (kz + .7:”“)2 + ot % (kz +2zPt)" 4 ..

z 2 zn-1 n
= x[(k+:rp)+§(k+:c”) +.o 4t ~ (k + zP) +J
©  n-1
= 235 I — (k+2°)".
n=1

From where, we have

e -1
gp (z) = exp [xZ n (k+zp>"] :
n=1
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