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Abstract

Ruskey and Savage asked the following question: For n > 2, does
every matching in Qn extend to a Hamiltonian cycle in Q.7 Fink
showed that the answer is yes for every perfect matching, thereby
proving Kreweras’ conjecture. In this paper, we prove for n > 3 that
every matching in @, not covering exactly two vertices at distance 3
extends to a Hamiltonian cycle in Q.. An edge in Q. is an i-edge if
its endpoints differ in the ith position. We show for n > 2 that every
matching in Q. consisting of edges in at most four types extends to
a Hamiltonian cycle in Q..
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1 Introduction

The n-dimensional hypercube is one of the most popular and efficient in-
terconnection networks. There is a large amount of literature on graph-
theoretic properties of hypercubes as well as on their applications in parallel
computing; see (7, 9].

The n-dimensional hypercube, denoted by Q.,, is a graph whose vertex
set consists of all binary strings of length n, i.e.,, V(Qn) = {u:u=1u'-..u"
and u' € {0,1} for every i € {1,...,n}}, with two vertices being adjacent
whenever the corresponding strings differ in just one position; see Figure
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1 for example. An edge in Q, is an i-edge if its endpoints differ in the ith
position. So all the edges of @, can be divided into n types, i.e., 1-edges,
..., n-edges.

100! 1010 1011 001
1 N 10
111 11t
011 0111
100 AN 0101
000! 0010 0011 001

(b)
Figure 1. (a) 3-dimensional hypercube; (b) 4-dimensional hypercube.

It is well known that Q,, is Hamiltonian for every n > 2. This result
dates back to 1872 [6]. Since then, the research on Hamiltonian cycles in
hypercubes satisfying certain additional properties has received consider-
able attention.

A set of edges in a graph G is called a matching if no two edges have an
end-vertex in common. A matching of G is perfect if it covers all vertices
of G and a matching is mazimal if no matching with larger size contains it.

Ruskey and Savage [10] asked the following question: For n > 2, does
every matching in Q, extend to a Hamiltonian cycle in Q,? Kreweras
[8] conjectured for n > 2 that every perfect matching in Q, extends to
a Hamiltonian cycle in @,. Fink [3, 5] solved Kreweras’ conjecture by
proving the following stronger result. Let Kq, be the complete graph on
the vertices of Q. Note that @, is a spanning subgraph of Ko, .

Theorem 1.1. [3, 5] For every perfect matching M in Kq,, n > 2, there
exists a perfect matching F in Q, such that M UF forms a Hamiltonian
cycle in Kg ..

Also, Fink [3] pointed out that the following result is true, and the
present authors [11] provided a complete proof.

Lemma 1.2. [8, 11] Every matching in Q. extends to a Hamiltonian cycle
in Qn forn € {2,3,4}.

A complementary problem of Hamiltonian cycles in @, avoiding given
matchings has been already settled for arbitrary matchings by Dimitrov et
al. [1]. In particular, the authors in (1] proved that Q» has a Hamiltonian
cycle faulting a perfect matching M if and only if @, — M is connected.

The matching graph M(G) of a graph G with an even number of ver-
tices has the vertex set consisting of all perfect matchings in G, with two
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vertices being adjacent whenever the union of the corresponding perfect
matchings forms a Hamiltonian cycle in G. Fink [4, 5] proved for n > 4
that the matching graph M(Q,) is bipartite and connected. This also
proved Kreweras' conjecture.

Dvoték [2] showed for n > 2 that every set of at most 2n — 3 edges
in @, forming vertex-disjoint paths is contained in a Hamiltonian cycle in
Qn. This result implied that every matching of at most 2n — 3 edges in Q,,
extends to a Hamiltonian cycle in Q..

The present authors [12] improved Dvofdk’s result and proved for n > 2
that every matching of at most 3n—10 edges in Q,, extends to a Hamiltonian
cycle in Q.

In this paper, we prove for n > 3 that every matching in Q,, not covering
exactly two vertices at distance 3 extends to a Hamiltonian cycle in Q,,.
For the result, however, we now cannot drop the condition “at distance 3”.
Also, we prove for n > 2 that every matching in Q,, consisting of edges in
at most four types extends to a Hamiltonian cycle in Q,. The two main
results will be proved in the next two sections.

2 A class of maximal matchings in Q,

The vertex set and edge set of a graph G are denoted by V(G) and E(G),
respectively. For an edge e € E(G), we use V(e) to denote the set of the
two endpoints of e. For an edge set E' C E(G), let V(E') = |J,c5 V(e).

For a vertex v € V(G), let G — v denote the resulting graph by deleting
from G the vertex v together with all the edges incident with v. For a
set £/ C E(G), let G —~ E’ denote the graph with the vertex set V(G)
and edge set E(G) \ E’. Let H and H’ be two subgraphs of G. We use
H + H' to denote the graph with the vertex set V(H) U V(H’) and edge
set E(H)U E(H').

For a vertex v € V(G), we call a vertex u a neighbor of v if uv € E(G).
The distance between two vertices v and v is the number of edges in a
shortest path joining u and v in G, denoted by dg(u, v), with the subscripts
being omitted when the context is clear.

An automorphism of a simple graph G is a permutation 7 of V(&)
which has the property that uv € E(G) if and only if n(u)m(v) € E(G).
We say that G is vertez-transitive if there is an automorphisn  of G
such that w(u) = v for any two vertices u and v in G. Note that Q,, is
vertex-transitive.

Graphs which contain no cycles are usually called forests. A forest is
linear if each component of it is a path.

Lemma 2.1. Let u,v be two vertices at distance 8 in Q3 and x be a neighbor
ofuin Q3. Let M be a perfect matching in Kq, —u~—v. Then there exists
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Figure 2. Illustration for the proof of Lemma 2.1 with the edges of M
dotted and the edges of F' bold.

a linear forest F in Qz such that M U E(F') forms a Hamiltonian path in
Kq, joining u and x.

Proof. By the vertex-transitivity, we may assume u = 000. Then v = 111.
For any two neighbors = and y of u in Q3, there exists an automorphisin
7 of Q3 fixing u and v such that m(y) = z. Then we may assume z = 100.
Since M is a perfect matching in Ko, — u — v, there are 5 x 3 x 1 = 15
possibilities of M. By examining all possibilities of M, one can verify that
the lemma holds (see Figure 2). O

The set of all i-edges of Q, is denoted by E;. Then E(Q,) = E; U

UEn Let [n] denote the set {1,...,n}. For j € (n] and § € {0,1},
let Qn 1» With the superscripts j being omitted when the context is clear,
be the (n — 1)-dimensional subcube of @ induced by the vertex set {u €
V(Q,) : v = 6}. Then Q, — E; = Qo_l + Q) _,. We say that Q, splits
into two (n — 1)-dimensional subcubes Q%_, and QL_, by E;; see Figure
3 for example.

The parity p(u) of a vertex u in Q is defined by p(u) = Y, u'(inod
2). Then there are 2*~! vertices with parity 0 and 27—1 vertices with parity
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Figure 3. Q4 splits into two 3-dimensional subcubes Q3 and Q} by E;.

1 in @Q,. Vertices with parity 0 and 1 are called black vertices and white
vertices, respectively; see Figure 3 for example. We observe that if vertex u
is adjacent to vertex v in @y, then p(u) # p(v). Consequently, p(u) # p(v)
if and only if d(u,v) is odd. Hence Qj is bipartite and vertices of each
parity form bipartite sets of Q,,.
For u,v € V(Qn), let A(u,v) = {i € [n] : u* # v'}. Then dg, (u,v) =

|A(u,v)|. Usually, we use the notations “u;,up,us,...” to denote a series
of vertices, which are distinguish with the encoding sequence u = u! - - - u™.

Theorem 2.2. Forn > 3, let u,v be two vertices at distance 3 in Q, and
let M be a perfect matching in Ko, —u — v. Then there exists a linear
forest F in Q, such that M U E(F) forms a Hamiltonian cycle in Ko, .

Proof. We proceed by induction on n. The theorem holds for n = 3 by
Lemma 2.1. Suppose n > 4 and the theorem holds for n — 1. Since
dg. (u,v) = 3, we may assume A(u,v) = {1,2,3}.

Case 1. There exists an edge wt € M such that A(w,t) € {1,2,3}.

Let j € A(w,t)\ {1,2,3}. Split Q, into two (n ~ 1)-dimensional sub-
cubes Q) _; and QL _, by E;. Then vertices u and v lie in the same subcube,
and vertices w and ¢ lie in different subcubes. By symmetry, we may assurne
{v,v} CV(QA_)).

Note that E(Kq,) = E(Kg_JUE(Kq_)U{zy: z € V(Q3_,
and y € V(QL_))}. Let My = M n E(Kqx_ ) for every k € {0,1}. Let
M* = M\ (M, U M,); see Figure 4 for example. Then wt € M*. Since M
is a perfect matching in Kg, —u — v, |M*| is even.

Choose an arbitrary perfect matching Sp on V(Q2_, )NV (M*) in K, Q_,-
Then MyUS; is a perfect matching in Ko _,—u—v. Sincedgo_ (u,v) =3,
by the induction hypothesis there exists a linear forest Fp in Q9 _ 1 such that
My U So U E(Fp) forms a Hamiltonian cycle in Kqo_; see Figure 5 for ex-
ample. Note that Mo U E(Fy) U M* forms a linear forest, denoted by F*.
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Figure 4. M is divided into Mo, M; and M*, where the edges of M bold.

KQ:.’- 1 KQ,'. 1

Figure 5. Illustration for the construction with the edges of M bold, the
edges of F' double, and the edges of Sp U S; dotted.

Let $1 = {zy € E(Kq1_ ) :z,y € V(QL_{)NV(M*) and there exists a
path joining z and y in F*}. Note that such a path joining z and y in F™ is
a component of F*. Since S; covers all the vertices in V(Q},_;) N V(M*),
M; U 8, is a perfect matching in Kqt o By Theorem 1.1 there exists a
perfect matching Fy in Q! _; such that M; U S; U F; forms a Hamiltonian
cycle, denoted by Cj, in KQE‘ o By the definition of S, one can observe
that there is a natural one-to-one correspondence hetween the edges of S
and the components of F*. In the cycle Ci, replacing every edge zy € Si
by the corresponding path joining = and y in F*, we obtain a Harmniltonian
cycle formed by edges of M U E(Fp)U F} in Kq,,; see Figure 5 for example.
Hence the desired linear forest F in @, is formed by edges of E(Fp) U F).

Case 2. A(w,t) C {1,2,3} for all wt € M.

Let Qn—3 be a (n—3)-dimensional hypercube. When n = 4, Qn—3 = K>.
Now let V(Qn-3) = {z0,z1}. When n > 5, since Qn—3 is Hamiltonian, we
may choose a Hamiltonian cycle C = x9,Z1,...,Z2:-3_1,Z0 in Qn-3. Note
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that for every k € {0 1,...,2"3—1}, 2 is a binary string of length (n—3),
ie, zx =xp - P73

For every k € {0,1,...,2"73 -1}, let Q3* be the 3-dimensional subcube
of Qn induced by the vertex set {y € V(@) : ¢¥* = xk —3 for every i €
{4,...,n}}. In other words, Q3* is the subcube of Qn with the positions
in [n] \ {1,2,3} fixed by zx. Then Q» — E4—---— E, = Q3° + Q' +

-4+ Q3"7°"; see Figure 6 for example. Recall that zj is adjacent to
:rk.,,l m Qn_a Then for every vertex y € V(Q3*), there is a unique vertex
V', - $k+1 in Q3**' such that the two vertices are adjacent in Qs

with subscripts taken modulo 273,
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Figure 6. Qs splits into four 3-dimensional subcubes QJ°, Q3', Q1° and
Q3! by E4 and E;5.

Since A(u,v) = {1,2,3}, we have {u,v} C V(Q3*) for some k €
{0,1,...,2"73 — 1}. Without loss of generality we may assume {u, v} C
V(an) Since A(w,t) C {1,2,3)} for all wt € M, we have M c U, -
E(Kgze). Let My = M N E(Kgs) for every k € {0,1,. n3 1}.
Then M = LJ,c ; -1 M. Since M is a perfect matching in KQ - U — v,

My is a perfect matching in KQ=o —u —v and M is a perfect matching
in Ksz for every k > 1. By Theorem 1.1 there exists a linear forest Fj

in Q3* such that My U F; forms a Hamiltonian cycle in KQ”'k for every
ke{1,...,27"3 -1},
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Figure 7. Illustration for the construction with the edges of M double,
the edges of F bold.

Let up = u and v; be the vertex in Q' such that uovy € E(Qr). Then
p(uo) # p(v1). From k = 1 to 2*~3 — 1, let ux be the neighbor of v in
Fi and w4, be the vertex in Q3**' such that urvry1 € E(Qn), where
the subscripts modulo 2"~3. Then p(ux) # p(vx) and p(uk) # p(vk41) for
every k € {1,...,2"3 — 1}. Hence p(uo) # p(vo). Since dgzo(uo,v) =3,
we have ero (uo,vo) 1 or vg = v. Since Mp is a perfect matching in
Kan — up — v, by Lemma 2.1 in case ero (uo,v0) = 1 and Theorem 1.1
in case vy = v, there exists a linear forest Fo in Q3° such that Mo U E(Fp)
forms a Hamlltoman path in Kg=o joining uo and vo. Hence E(Fp) U

(Uk " THE(F) \ {urvi ) U{ uk—19k})) U {tign-3_1 %0} forms a linear forest
Fin Qn such that M U E(F) formns a Hamiltonian cycle in K¢, ; see Figure
7 for example. O

Note that @, is a spanning subgraph of Kg,. Then Q. —u —visa
spanning subgraph of Kg, —u — v. In Theorem 2.2, when M is a perfect
matching in @, — v — v, M U E(F) forms a Hamiltonian cycle in Q..

Corollary 2.3. Forn > 3, let u,v be two vertices at distance 3 in Qn and
M be a perfect matching in Q, — u — v. Then there ezxists a linear forest
F in Q, such that M U E(F) forms a Hamiltonian cycle in Q,.
3 Matchings in at most four positions

A u,v-path is a path with endpoints u and v, denoted by P, ., when we
specify a particular such path. We say that a spanning subgraph of G whose
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components are k disjoint paths is a spanning k-path of G. A spanning 1-
path thus is simply a spanning or Hamiltonian path. For a set B/ C E(G),
a subgraph H of G passes through E' if E' C E(H).
We say that two matchings M and P of a graph G are isomorphic if
there exists an automorphism 7 of G such that #(u)7(v) € P & uv € M.
In the following Lemmas 3.1, 3.2 and 3.3, by the vertex-transitivity of
Q3, we may assume u = 000. Then u is a black vertex.

4 Y
Yy
X
L
u X
v y
X vV _INI
] u X
v Yy >
Y
X v

u u X u v
Figure 9. Illustration for the proof of Lemma 3.1 with the edges of M
curved and the edges of P, ; + P, bold.

Lemma 3.1. For u,v € V(Q3) with p(u) # p(v), let M be a matching in
Q3 —u with v € V(M). Then there erists a spanning 2-path P, ; + P, , of
Q3 passing through M, where z,y are two vertices at distance 3 in Q5.
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Proof. Without loss of generality we may assume that M is a maximnal
matching in Q3 — u. There are three non-isomorphic maximal matchings
in Q3 — u (see Figure 8). Since p(u) # p(v), v is a white vertex. Note that
v € V(M). By examining all possibilities of M and v, one can verify that
the lemma holds (see Figure 9). O

Figure 10. Three non-isomorphic maximal matchings in Q3 —u —v.

Lemma 3.2. Let u,v be two vertices at distance 2 in Q3 and let z,y be two
distinct vertices in Qs such that d(u,z) = d(v,y) = 1. If M is a matching
in Q3 —u—v, then there exists a spanning 2-path P, » + P,y of Q3 passing
through M.

Proof. It suffices to consider the case that M is a maximal matching in Q3—
u —v. For any two vertices v; and v in Q3 satisfying d(u,v1) = d(u,v2) =
2, there exists an automorphism 7 of Q3 fixing u such that m(v;) = ve.
Then we may assume v = 101. There are three non-isomorphic maximal
matchings in Q3 — u — v (see Figure 10). By examining all possibilities of
{M,z,y} up to isomorphic, one can verify that the conclusion holds (see
Figure 11). O

Lemma 3.3. Let u,v be vertices in Q3 with p(v) = p(v). If M is a
matching in Qs — u, then there exists a spanning 2-path P, + Pry of Q3
passing through M, where z,y are two distinct vertices in Q3 satisfying

p(z) = p(y) # p(u).

Proof. It suffices to consider the case that M is a maximal matching in
Q3 — u. There are three non-isomorphic maximal matchings in Q3 — u
(see Figure 8). Since p(u) = p(v), v is a black vertex. By examining all
possibilities of M and v up to isomorphic, one can verify that the lemma
holds (see Figure 12). O

Lemma 3.4. [11] Let u,v be two vertices in Q3 with p(u) # p(v). If M is
a matching in Q3 — u, then there ezists a Hamiltonian path in Q3 joining
u and v passing through M.
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Figure 11. Illustration for the proof of Lemma 3.2 with the edges of M
curved and the edges of P, ; + P, , bold.

Lemma 3.5. Let u,v be two vertices in Qq with p(u) # p(v). If M is a
matching in Q4 — u, then there exists a Hamiltonian path in Q4 joining u
and v passing through M.

Proof. 1t suffices to consider the case that M is a maximal matching in
Q4 — u. Since |M| < 7, there exists j € [4] such that |[M N E;| < 1.
Split Q4 into subcubes Q3 and Q3 by E;. By syminetry we mnay assume
u € V(Q?). Let Ms = M N E(Q3) for every 6 € {0,1}. Note that every
vertex x5 € V(Q$) has in Q3% a unique neighbor, denoted by z;_s, where
6 € {0,1}.

Casel. MNE; =0.

If v € V(Q1}), then by Lemma 1.2 there is a Hamiltonian cycle C,
in Q} passing through M;. Let s; be a neighbor of v on C; such that
vs) ¢ M. Then p(v) # p(s;). Since p(u) # p(v) and p(s;) # p(so), we have
p(u) # p(so). Since u ¢ V(Mp), by Lemma 3.4 there exists a Hamniltonian
path P, ,, in QY passing through My. Then the desired Hamiltonian path
in Q4 is formed by edges of E(P, 4, + C1) U {sps1} \ {vs1}.

It remains to consider the case v € V(Q3). Since M is a maximal
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Figure 12. Illustration for the proof of Lemma 3.3 with the edges of M
curved and the edges of P, + Pr,y bold.

AVAAAANA,

(P') (P") (P"l)

Figure 13. Three non-isomorphic maximal matchings in Q3.

matching in Q4 — v and M N E; = 0, Mo is a maximal matching in Q3 —u
and M, is a maximal matching in Q3. Thus, |Mo| =3 and 3 < |M)| < 4.
There are three non-isomorphic maximal matchings, denoted by P’, P” and
P, in Qs (see Figure 13). Then M, is isomorphic to one of P’, P” and

Slm Sl Sl Sl

) L) hTE) (4)

Figure 14. Illustration (up to isomorphic) for the proof of Case 1 in
Lemma 3.5 with the edges of M curved and the edges of P;,;, bold.

Since u ¢ V(Mo) and p(u) # p(v), by Lemma 3.4 there is a Harniltonian
path P, , in QY passing through Mp. If M is isomorphic to P’, then since
|E(Py)\ Mo|—| M| = 1, there exists an edge soto € E(Py,)\Mo such that
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5181 € M,. One can verify that there exists a Hamiltonian path P ¢, inQl
passing through M; (see Figure 14(1)-(2)). Then the desired Hamniltonian
path in Q4 is formed by edges of E(P,,, + Py, t,) U {sos1,tot1} \ {Soto}.

If v € V(Mp) and M, is isomorphic to P”, there exist two edges soto
and torp in E(P, )\ Mo. Since M, is a matching, we have s,¢, ¢ M, or
tiry € My, say sit; € M). One can verify that there exists a Hamiltonian
path P, , in Q) passing through M; (see Figure 14(3)). Then the desired
Hainiltonian path in Qy is formed by edges of E(Py v+ Ps, ¢, )U{s0s1,t0t1 }\
{Soto}.

If v € V(Mp) and M, is isomorphic to P, by Lemma 3.1 there exists
a spanning 2-path P4, + Py, of QY passing through My, where s, ¢
are two vertices at distance 3 in Q3. Since d(s;,t,) = 3, one can verify
that there exists a Hamiltonian path P;, , in Q} passing through M, (see
Figure 14(4)). Then the desired Hamiltonian path in Q, is formed by edges
of E(Pu,,,o + Py + Psl.h) U {SOSl,totl}.

If v ¢ V(Mo) and M, is isomorphic to P” or P, M is a perfect
matching in Q4 —u —v. By Theorem 1.1 there exists a perfect matching F
in Q4 such that M U {uv} U F forms a Hamiltonian cycle in Kq,. Hence,
M U F forms a Hamiltonian path in Q4 joining u and v passing through
M.

Case2. IMNE;|=1.

Let M N E; = {wow,}, where wo € V(Q3). If v € V(Q3), then by
Lemma 3.4 there is a Hamiltonian path P, , in Q3 passing through M.
Let 7o be a neighbor of wg on P, ,. Since M is a matching and wow, € M,
we have woro ¢ M. Since w; ¢ V(M) and p(wl) # p(r1), by Lemma 3.4
there exists a Hamiltonian path P,, ,, in Q} passing through M,. Then
the desired Hamiltonian path in Q4 is formed by edges of E(P, , + Py, r,)U
{wowr,ror1 } \ {woro}.

So let v € V(QJ). If p(u) # p(wo), then since p(u) # p(v) and p(wo) #
p(w1), we have p(w;) # p(v). Since u ¢ V(M) and w; ¢ V(M;), by
Lemma 3.4 there exist Hamiltonian paths P, ., in Q% and P,, , in Q}
passing through My and M), respectively. Then the desired Hamiltonian
path in Qq is formed by edges of E(P, w, + Py, ) U {wow, }.

If p(u) = p(wo), then d(u,wp) = 2 and p(w,) = p(v). Since M, is a
matching in Q} —w,, by Lemma 3.3 there exists a spanning 2-path P, ,+
Psx,h of @} passing through M, where s;,t; are two distinct vertices in
Q} such that p(s1) = p(t1) # p(w1). Then p(u) = p(wo) # p(s0) = p(to).
In QY, since d(u,wo) = 2 and sp # tp, We have d(u,s0) = d(wo,tg) = 1
or d(u,to) = d(wp, sp) = 1. Without loss of generality, we may assume
d(u,s0) = d(wo,to) = 1. Since Mp is a matching in Qf — u — wp, by
Lemma 3.2 there exists a spanning 2-path P, ,, + P, of QS passing
through Mp. Then the desired Hamiltonian path in Q4 is formed by edges
of E(Pu,so + Puyo to + Py o, + Pwl,v) U {3031: tot1, wow) } O
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Theorem 3.6. Forn > 2, let M be a matching in Qn such that |{i € [n]:
M N E; # 0} < 4. Then there exists a Hamiltonian cycle in Qn passing
through M.

Proof. If n € {2,3,4} or M is a perfect matching in Qy, then by Theorem
1.1 or Lemma 1.2 the theorem holds. So in what follows we may assume
that n > 5 and M is a matching in Q, which is not perfect. Since |{i €
[n] : M N E; # 0}| < 4, without loss of generality we may assume {i € [n] :
MnNE; #@} - {1,2,3,4}. Then M C E,UE;UE;U E;,.

Let Qn_4 be a (n — 4)-dimensional hypercube. When n = 5, let
V(Qn-4) = {zo,z1}. When n > 6, choose a Hamiltonian cycle C =
Lo, T1, - - - s Tgn—s_1, To in Qn_g. Note that for every k € {0,1,...,2""4-1},
zpisa binary string of length (n — 4).

For every k € {0,1,...,2"~%—1}, let Q3* be the 4-dimensional subcube
of Qn induced by the vertex set {y € V(Qn) : ¥' = :z:};"1 for every i €
{5,...,n}}. Then Qu —Es—---—En = Q5 + Q5 + +Q’2"" nd

2""-’ E(Q%*) = E; UE, U E3 U E,. Hence M C Uz" =1 B(QZ*). Let

Mk = M n E(Q3*) for every k > 0. Then M = Uk=0 =1 M,.

Since M is a matching in @Q, which is not perfect, without loss of
generality we may assume My is not perfect in Q3°. First apply Lemma
1.2 to obtain a Hamiltonian cycle Ci in Q3* passing through M for every
ke{1,...,2n"*-1}.

For every k € {0,1,...,2" 4~ } since x is adjacent to Ti41 in Q,._4,
every vertex y € V(Q:") has in Q3**! a unique neighbor y'y?y3y*z}

¥ +1’ with subscripts taken modulo 2"~%. Let uo € V(Q3°) \ V(Mo)
and v; be the neighbor of up in Q%'. Then p(uo) # p(v1). From k =1 to
27=4 _ 1, let ux be a neighbor of vx on Ci such that uxvx ¢ M and let
U4+ be the neighbor of ui in Qi"“, where the subscripts modulo 274,
Then p(ux) # p(vk) and p(ux) # p(vk41) for every k € {1,...,2"4 — 1},
Hence p(ug) # p(vo)- Since Mp is a matching in Q3° — uo, by Lemma 3.5
there exists a Hamiltonian path P, ., in Qf° passing through Mp. Then
the desired Hamiltonian cycle in @, is formed by edges of E(Pygv,) U

(Ui;-l4_l(E(Ck) U {uk—1vk} \ {ukve})) U {ugn-a_1v0}. O
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