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Abstract

The clique-chromatic number of a graph is the least number of colors on the
vertices of the graph without a monocolored maximal clique of size at least two.
In 2004, Bacsé et al. proved that the family of line graphs has no bounded clique-
chromatic number. In particular, the Ramsey numbers provide a sequence of the
line graphs of complete graphs with no bounded clique-chromatic number. We
complete this result by giving the exact values of the clique-chromatic numbers
of the line graphs of complete graphs in terms of Ramsey numbers. Further-
more, the clique-chromatic numbers of the line graphs of triangle-free graphs
are characterized.
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1 Introduction

All graphs considered in this paper are simple. We use terminologies from
West’s textbook [7]. A triangle is the complete graph with 3 vertices. A triangle-
free graph is a graph which contains no triangle as a subgraph. A hole in a graph
is an induced cycle with at least four vertices. An odd hole is a hole with an odd
number of vertices. The neighborhood of a vertex z in a graph G is the set of
vertices adjacent to z, and is denoted by Ng(z). Let M C E(G) and e € E(G).
We write G— M, and G —e, for the subgraph of G obtained by deleting all edges
of M, and an edge e, respectively. Let A C V(G) and v € V(G). We write G—A,
and G - v, for the subgraph of G obtained by deleting all vertices of A, and a
vertex v, respectively. The union of graphs G1,Gs,..., Gy is the graph with
vertex set Uf=l V(G;) and edge set |, E(G;), denoted by G; UG, U. ..U Gx.
A union of graphs G,Ga,. .., Gk is called disjoint union if Gy, Ga, ..., Gy have
pairwise disjoint vertex sets, and is denoted by Gy + Ga + - -- + Gi. For k € N,
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kG is the disjoint union of k pairwise disjoint copies of a graph G. The join of
graphs G and H, written G Vv H, is the graph obtained from the disjoint union
of G and H by adding the edges {zy | z € V(G) , y € V(H)}. For the case
V(H) = {v}, we write GV v for GV {v}.

A subset Q of V(G) is a clique of G if any two vertices of Q are adjacent. A
clique is mazimal if it is not properly contained in another clique. A k-coloring
of a graph G is a function f : V(G) = X, where |X| = k. A proper k-coloring of
a graph G is a k-coloring of G such that adjacent vertices have different colors.
The chromatic number of a graph G is the smallest positive integer k such that
G has a proper k-coloring, denoted by x(G). Given a k-coloring of a graph G,
a clique Q of G is said to be monocolored if all vertices of Q are labeled by the
same color. A proper k-clique-coloring of a graph G is a k-coloring of G without
a monocolored maximal clique of G of size at least two. A graph G is k-clique-
colorable if G has a proper k-clique-coloring. The cligue-chromatic number of
G is the smallest k such that G has a proper k-clique-coloring, denoted by
xe(G). Note that x.(G) = 1 if and only if G is an edgeless graph. Since any
proper k-coloring of G is a proper k-clique-coloring of G, x.(G) £ x(G). If G
is a triangle-free graph, then all maximal cliques of G, which is not an isolated
vertex, have size two; s0 x.(G) = x(G).

Many families of graphs are 3-clique-colorable, for example, comparability
graphs, cocomparahility graphs, circular-arc graphs, and the k-power of cycles
[2, 3, 4, 5]. In [1], Bacsé et al. proved that almost all perfect graphs are 3-
clique-colorable and conjectured that all perfect graphs are 3-clique-colorable.
On the other hand, some families of graphs have no bounded clique-chromatic
number, for example, triangle-free graphs, and line graphs (1, 6].

The line graph of a graph G, written L(G), is the graph whose vertices are
the edges of G; and for any edges e and f in G, ef is an edge in L(G) if and
only if e and f share a common vertex in G. A graph G is a line graph if there
is a simple graph H such that L(H) =G.

A star is a tree consisting of one vertex adjacent to all the others. A star in
a graph G is called mazimal if it is not properly contained in another star or a
triangle in a graph G.

Proposition 1. Let G be a graph. Then a mazimal clique in L(G) corresponds
to a triangle or a mazimal star in G.

Proof. A clique in L(G) corresponds to a triangle or a star in G (7, pp.275]. A
triangle in G induces a maximal clique of size three in L(G) because no edge of
G is incident to all three edges of a triangle in G. Furthermore, a maximal star
in G induces a maximal clique in L(G). ]

To study a vertex-coloring of L(G), we could study an edge-coloring of G
instead. Recall that a k-edge-coloring of a graph G is a function f : E(G) — X,
where | X| = k. Given an edge-coloring of a graph G, a subgraph H of G is said
to be monocolored if all edges of H are labeled by the same color. Since edges
of G correspond to vertices of L(G), by Proposition 1, a k-edge-coloring of G
without a monocolored triangle and a monocolored maximal star corresponds

286



to a k-coloring of L(G) without a monocolored maximal clique, which is in fact
a proper k-clique-coloring of L{G).

2 Line graphs of the complete graphs

In [1}, Bacsé et al. proved that the family of line graphs has no bounded
clique-chromatic number. In particular, the family of the line graphs of complete
graphs on Ramsey numbers of vertices has no bounded clique-chromatic number.
Recall that the Ramsey number R(ky, ke, ..., km) is the smallest positive integer
such that every m-edge-coloring of K p(x, k,,.. ,km) gives a monocolored complete
subgraph on k; vertices for some ¢ € {1,2,...,m}. We denote the Ramsey
number R(3,3,...,3) by R(m).

\-w—-’

m
Bacsé et al. showed that x.(L(Kg(m))) > m where m € N. In this section,
we sharpen this bound by showing that xo(L(Kg(m))) = m + 1. Furthermore,
we extend the result to the exact values of the clique-chromatic numbers of the
line graphs of all complete graphs.

Lemma 2. Let m € N. If a graph G has an m-edge-coloring without a mono-
colored triangle, then the line graph L(GVv) has a proper (m+1)-clique-coloring,
where v is a vertex that is not in G.

Proof. For casem = 1, let z € V(G) be fixed. By assumption, G has no triangle.
Note that all triangles and maximal stars in G V v contain v. Then we define
f: E(Gvv)— {1,2} by
flab) = {2, if (a;é.a:and b=v)or (a=z and b#v)
1, otherwise.

This function f is a 2-edge-coloring of G V v without a monocolored triangle
and a monocolored maximal star. Thus f corresponds to a proper 2-clique-
coloring of L(G V v).

Now, assume m > 2. Let ¢ be an m-edge-coloring of G without a mono-
colored triangle. Choose a vertex w in G such that |[Ng(w)| # 0. Let i be a

color of an edge incident to w in G. Extend ¢ : E(G) — {0,1,...,m — 1} to @
: E(Gvwv) = {0,1,...,m} by

(i+1)(mod m), if e=wv
¢(e) = < m, if e = uv for some u € V(G) \ {w}
o(e), otherwise.

We have that ¢ is an (m + 1)-edge-coloring of G v v without a monocolored
triangle and a monocolored maximal star, and hence ¢ corresponds to a proper
(m + 1)-clique-coloring of L(G V v). O
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Proposition 3. [1] Let G be a graph and m € N. If G contains Kp(m) as a
subgraph, then x.(L(G)) 2 m+ 1.

Proof. Suppose that L(G) has a proper m-clique-coloring. Then G has an m-
edge-coloring without a monocolored triangle, say f. Thus flkpmy is an m-
edge-coloring without a monocolored triangle. This contradicts the definition
of the Ramsey number R(m). Hence x.(L(G)) > m. a

Now we are ready to prove our main result in Theorem 4. Note that L(K1)
is the null graph and xc(L(K2)) = xc(K1) = 1. Now, let n > 3. We have that
there always exists a positive integer m such that R(m) < n < R(m + 1) be-
cause the Ramsey numbers always exist and {R(m)}%.; is a strictly increasing
sequence. The main theorem shows the value of the clique-chromatic number
of L(K,) where n > 3.

Theorem 4. For n > 3, xc(L(K»)) = m + 1, where the integer m is such that
R(m)<n< R(m+1).

Proof. Since n > R(m), K, contains Kpg(m) as a subgraph. By Proposition 3,
Xe(L(Kp)) 2 m + 1.

Case 1. n = R(m). The definition of R(m) implies that Kp(m)-1 has an
m-edge-coloring without a monocolored triangle. By Lemma 2, L(Kg(m)) has
a proper (m + 1)-clique-coloring. Hence xc(L(Kgp(m))) < m + 1.

Case 2. R(m) < n < R(m+1). The definition of R(m + 1) implies that K,
has an (m + 1)-edge-coloring without a monocolored triangle, say ¢. Suppose
that ¢ gives a monocolored maximal star S, say labeled all edges in S by color 1.
If there is an edge in K, outside S colored by 1, then K, contains a monocolored
triangle, a contradiction. Thus E(K,}\ E(S) uses m colors, moreover they form
a complete graph K, _;. Since n—1 > R(m), for every m-edge-coloring of K1
gives a monocolored triangle, a contradiction. Thus ¢ is an (m+1)-edge-coloring
of G without a monocolored maximal star. Therefore ¢ corresponds to a proper
(m + 1)-clique-coloring of L(K,), and hence xc(L(K,)) <m+1. (]

Given a positive integer m, Theorem 4 provides R(m+ 1) — R(m) line graphs
with clique-chromatic number m + 1. In fact, there are infinitely many line
graphs with the same clique-chromatic number as shown below.

Example 5. Let n € N and let m € N such that R(m) < n < R(m +1). Let
G=kKn_VpK, wherek,peNand1 <t <n-—1. Then x(L(G)) =m + 1.

Proof. Since K, is a subgraph of G and n > R(m), G contains Kp(m) as a
subgraph. By Proposition 3, xc(L(G)) = m + 1. Let kKn_, = K2, + K&, +

st K,(,k), and pK, = Kt(l) + K,(2) 4+ 4 K,(P)where K,(,i_),, and K,(i)are copies

of K,._; and K., respectively.
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Figure 1: The graph kK,_, vV pK,

Note that for ¢ = 1,2,...,k and j = 1,2,...,p, K,(:l, VK,(j) = K,. Since
R(m) €< n < R(m + 1), we have xc(L(K,(,l_)t v Kt(l))) = m + 1 by Theorem 4.
Thus there is an (m + 1)-edge-coloring ¢ of K,(ﬂ, v K,(I) without a monocolored
triangle and a monocolored maximal star. Now, replicate the colors of the K,(,l_?,

to K,(fl, and of Kt(l) to K,(j) for all < and j, 50 ¢ can be extended to an (m + 1)-
edge-coloring of G without a monocolored triangle and a monocolored maximal
star. Hence L(G) has a proper (m+1)-clique-coloring, so x.(L(G)) < m+1. O

3 Line graphs of triangle-free graphs

In this section, we characterize the clique-chromatic numbers of the line
graphs of triangle-free graphs. Given a triangle-free graph G, by Proposition 1,
a maximal clique in L(G) corresponds to a maximal star in G. Thus if f is a
k-edge-coloring of G without a monocolored maximal star, then f corresponds
to a proper k-clique-coloring of L(G).

Theorem 6. If G is a triangle-free graph, then x.(L(G)) < 3.

Proof. Without lost of generality, we may assume that G is connected. Let
x € V(G). Define Ag = {z}, A1 = Ng(z), and A; = Ng(4i-1) \ (Ai—1 U Ai_3)
for all i > 2. We refer to a vertex having distance ¢ from z as a vertex of distance
i. Then A; contains all vertices with distance i. Each edge in G joins either two
vertices of the same distance or vertices of distance i — 1 and %, for some i. If in
the later case, we call such edge a (distance i)-edge. We first label all (distance
1)-edges by color 1 or color 2, at least one edge for each color. (If |[Ng(z)| = 1,
label the unique edge by color 1.) Then for each i** step, i = 2,3,..., label a
(distance i)-edge hy color 1 if it is incident to a (distance i — 1)-edge of color 2,
and by color 2, otherwise. Finally, label all edges joining two vertices of the same
distance by color 3. This process garantees that each vertex is incident to edges
of at least two colors except the end vertices (vertices incident to a (distance
i — 1)-edge but not to any (distance i)-edge). If an end vertex is incident to all
edges of the same color, we can relabel one edge of them by color 3.
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Therefore, we have a 3-edge-coloring of G without a monocolored maximal
star. So the coloring corresponds to a proper 3-clique-coloring of L(G). Hence
x<(L(G)) £ 3.

The upper bound in Theorem 6 is sharp by the odd cycle Cany4a (n > 2)
because Can41 is triangle-free and xc(L(C2n+1)) = 3. In our purpose, a graph
is called trivial if it is the complete graph K or Kj. Note that if a graph G has
a nontrivial component, then x.(L(G)) > 2. Recall that a forest is a disjoint
union of trees. A graph G is bipartite if V(G) is the union of two disjoint
independent sets. Equivalently, a bipartite graph is a graph which contains no
odd cycle.

Lemma 7. If G is a forest having a nontrivial component, then x.(L(G)) = 2.

Proof. Use the same coloring in the proof of Theorem 6. Since G has no cycle,
all end vertices have degree 1 and there is no edge incident to vertices of the same
distance. Thus color 3 is not used in the coloring. Besides G has a nontrivial
component, x.(L(G)) = 2. d

Lemma 8. If G is a bipartite graph having a nontrivial component, then

xe(L(G)) = 2.

Proof. If G contains no cycle, then G is a forest, it is done by Lemma 7. Now,
assume that O; is any cycle of G. Since G is bipartite, O; is an even cycle.
Label edges of O; alternately around the cycle by 1,2,1,2,..., then this is a
2-edge-coloring of O; without a monocolored maximal star. If G — E(O;) has
a cycle, say Oz, then we color edges of O, similarly to O;. Then similarly
consider G — (E(O,) U E(O,)). Continue this process until the resulting graph
contains no cycle. Label this resulting graph by the coloring in Lemma 7.
Therefore, G has a 2-edge-coloring without a monocolored maximal star, and
hence x.(L(G)) =2. ]

The next theorem is the main theorem of this section. It contains a
characterization of the clique-chromatic numbers of the line graphs of triangle-
free graphs.

Theorem 9. Let G be a triangle-free graph with at least one edge. Then

1, if all components of G are trivial
X(L(G)) = ¢ 3, if G has an odd hole component
2, otherwise.

Proof. If all components of G are trivial, then xc(L(G)) = 1. Assume that
G has a nontrivial component. If G has an odd hole component, say O, then
x(L(0)) = 3. Thus x.(L(G)) = 3. By Theorem 6, x.(L(G)) = 3. Assume
that G has no odd hole component. Without lost of generality, assume that
G is connected. Let H be the union of all odd holes of G. Then G — E(H)
is a bipartite graph. By Lemma 8, G — E(H) has a 2-edge-coloring without a
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monocolored maximal star, say f. To label edges of H, we can assume that H
is connected. Otherwise, consider each component. We can write H = JI._; O;
for some n € N where each O; is an odd hole of G, and V(0;)NV/( f__'.'ll 0,)#0
for each 2 < j < n. Claim that G has a 2-edge-coloring (extend from f) without
a monocolored maximal star by induction on n. If n = 1, then H is an odd hole
of G. Since G is connected, there is a vertex z € V(H) having an incident edge
which is colored by f, say color 1. Label two incident edges of z in H by color
2 and label other edges of H alternately around the cycle by 1,2,1,2,.... Since
the number of edges of H is odd, every vertex of H has two incident edges with
different colors. Now, assume that n > 2 and (G ~ E(H)) + E(U?' O;) has a
2-edge-coloring without a monocolored maximal star, say f’. Thus every vertex
of (G- E(H))+ E(U":ll 0;) has two incident edges with different colors by f.
If O, and U;:ll O; have the only one common vertex, say y, then y has two
incident edges in U;:ll O; with different colors. Label edges of O, alternately
around the cycle by 1,2,1,2..... If |0, N U::ll 0O;)| = 2, then consider each
path in O, such that each edge of a path is not contained in U::ll O;. Label
edges of each such path alternately by 1,2,1,2,.... Then every vertex of O, has
two incident edges with different colors. So G has a 2-edge-coloring without a
monocolored maximal star. Hence x.(L(G)) = 2. a
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