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Abstract
A combinatorial sum for the Stirling numbers of the second kind is
generalized. This generalization provides us with a new explicit formula
for the binomial sum 3"p_, k"a*b"*(7), where a,b € R — {0}, n,r €
N. As relevant special cases, simple explicit expressions for both the
binomial sum 3 ;_; k" (%) and the raw moment of order r of the binomial
distribution B (n,p) are given. All these sums are expressed in terms of

generalized r-permutations.
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1 Introduction

The Stirling numbers of the second kind, denoted by { } count the number of ways of
partitioning a set of r (different) elements into n nonempty (indistinguishable) subsets
(n,r € N). Stirling numbers of the second kind (see, e.g., (3,4,5,8,9, 10,11, 15, 17))

clearly satisfy

{3={}=1{]}=0 foran r<n,

obey the recurrence relation

G-t {0

can be defined by their generating function

n

T (r r
(I-2)(1-22)---(1—nz) =§1{n}z’

or, in terms of the falling factorial (z), = z(z ~1)---(z —n+1), as

w=3{ )

n=0

*Corresponding author. Email address: luisglez@dma.ulpgc.es

ARS COMBINATORIA 118(2015), pp. 305-313

(1.1)



and they can be explicitly computed from the binomial sum

X":(—l)“”"k' (',:) = n!{;} (1.2)
k=0

that gives the number of distributions of r different objects into 7 nonempty distin-
guishable cells, i.e., the number of surjective applications from a set of r elements onto
a set of n elements.

In particular, for r = n, Equation (1.2) becomes the well-known additive formula

for the factorial [1, 12
~ n-k;n[T —
Y (=)™ *k (k) =n,

k=0
while, for all 7 < n, we have

- n—k, e[\ _
;(*1) kg (k) =0.

Note that the binomial sum in the left-hand side of Equation (1.2) is a special case
(a =1, b= —1) of the more general binomial sum

=y katbm (:) (1.3)
k=0
where we assume that a,b € R — {0} and n,r are positive integers.

The main goal of this paper is to provide an explicit expression for the binomial
sum S, . Note that for b = —a, using Equation (1.2), we have

ST, = kz;k'ak (=a)"* (Z) =a"kz=o(—1)"'kk' (Z) =a"nl {;} (1.4)

so that we can restrict to the case b # —a.

In Section 2, we give a recursion formula for S;’;. Using this recurrence relation,
in Section 3, we provide an explicit expression for the sum . Next, in Section 4,
we evaluate some special binomial sums of the type The polynomials in n of
degree r involved in the explicit expression for S, lead us to define, in Section 5
the generalized 7-permutations taken from a set of cardmahty n. Then all sums S;y
are expressed in terms of such generalized r-permutations. Finally, in Section 6, we
present our conclusions.

2 A recursion formula for S}

The following lemma states a recurrence relation for the binomial sums S , that will
be used in the next section.
Lemma 2.1 Leta,b € R — {0} end let n,r be positive integers. Then

oy = (SoyTt - bsET, 1)
where we adopt the convention that

St =(a+b)" forall n>1, Sgy=0forall r>1, and Sop=1.

a
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Proof. For n = 1, we have

1
1r _ rokpl-k {1} _
Su_,,—zkab (k)_

(a+b)—b-1=2500—bS2y, if r=1,
a=
k=0

a—b-0=57""—bS7Y, if r>1

For n > 1, we have

:',':- = Z":krakbn—k(;:) = ikra.kbﬂ_k (:)

k=0 k=1

T n— r— n-—k -1
_Zk kb kn(n_ )—nZk lkb (:-1)

_ r—1 n r—1 k n—k n-1
k=1
"r—~lkn-k" r=1gkpn-1-k [T =1
=n[¥lk b () bZk b (k)]
n[(a+b)" — b ~b(a+b)""* +5"] =n(s¢;¢, —bs;'_;"") ifr=1,
n(sppt—bsptY), if r>1
and the proof is concluded. O

3 An explicit formula for S}

The following is the main result of this work.

Theorem 3.1 Leta,be R — {0}, b —a and let n,r be positive integers. Then

Sy =ala+ b ‘Z(a+b) i) (ni) (o),

= {0, ir-1) € 237 Jio =0, ix ~ ko1 € (0,1} VE=1,...,7 - 1}.

Proof. We proceed by induction on r. For r = 1, we have
C!'={io € Z§ |io=0} = {0},

and then
=t
a+b
so that the result holds for r = 1 and for all n € N. Indeed, using Equation (2.1), we
can confirm that, foralln € N

Sap =n (800 - 680" =n((a+b)" ~ba+b) ") =a-n-(a+5)"".
Assume that Equation (3.1) is true for a certain r > 1 and for all n € N. We must

prove that for all n € N

Syt =ala+ )"t Y ( = ) (n—io) (n~ 1) (n = i),

o a+b

0
S:b—a(a+b)n-l( ) (n_0)=a'n-(a+b)"_l,
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crt = {(10, i) € ZE ™ i =0, ik — iy € {0,1} VE = 1,...,r}.
Using Equation (2.1) and the induction hypothesis, we have

STt = n (ST — bSIFY) =nShy —n-b- STV
—n-a(a+b)"" IZ(H,,)M (n—i0) -+ (n—ir-1)
—n-b-a(at+b)" -2Z(a+b)i'_l (R=1=i0)-++(n—1=ir1)
=n-a(a+b)"'lz(a‘+b
+n-a(a+b)"” ‘Z(

)'r_l (n—io): - (n—ir-1)

i1+l
) (n=1—i0)---(n—1—ir1)

—a(at b ( = do)(n =)+ (m = o)
C"+l

rortr T () - ) -5
c’+l

=a(a+b)"— Z (a:_bb)r(n—io)(n—il)-..(n.—ir)_
Ccr+1

In the second equality from the bottom, we have made the two following changes
of variable

jo=0 and jx =ik (1 <k <r) for the first sum,
jo=0 and ji =ixr-1+1(1 <k<r) for the second sum.
Note that, in particular, for £k = 1 we have
j1=ip=0, ji=io+1=1
and this led us to consider the following two equal-sized subsets of C™*!
Cs*t* = {(io,..,ir) €C™H! |iy =0}, CT*' = {(io,...,ir) €C™* i1 =1}
and, finally, the last equality follows using the obvious fact that
crt = cptt UC{H' a

Remark 3.1 Let a,b € R — {0} and let n, s be positive integers. Making the change
of indices h = n — k in the following binomial sum, we get

Z(" k) PRI (n) Zhsbh n—h (ﬂ) =
Moreover, using the binomial theorem in the followmg binomial sum, we get

z":k' (n — k)*a*b""* (:) = E (-1)* (;) nTISTy

k=0 q=0

so that the two above binomial sums have been reduced to the type S, computed
by Equations (1.4) or (3.1), if b= —a or b # —a, respectively.
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4 Some special cases

Now, we highlight the following remarkable applications of Theorem 3.1.

Corollary 4.1 Let n,r be positive integers. Then

g (k ;( 2) n—ip (n—i—1

Proof. Using Equation (3.1) for @ = b = 1, the proof is straightforward. O
In particular, using Corollary 4.1 for r = 1,2, 3, we immediately obtain the follow-
ing well-known combinatorial sums [14, 18]

""_n-lnzn_ "_2"311_2 n-3
gk(k)_nz ,gk(k)_n(n+l)2 ,gk (k)_n(n+3)2 .

Corollary 4.2 Let n,r be positive integers. Then

- rok n-k (T . . .
> k2t (-1) (k) =2) (n—io)+(n—ir1).
k=0 cr
Proof. Using Equation (3.1) for a = 2, b= —1, the proof is straightforward. O

Corollary 4.3 Let n,r be positive integers. Then the raw moment (about the origin)
mp,p 1= E[X"] of order r of a binomially distributed random variable X ~ B (n,p) is
given by
My =P (p= 1) (n=i0) - (n = i)
CI‘

Proof. Taking into account that (see, e.g., [16])
= n
mnp =Y kPt (1= p)" ( k) =Sy,
k=0
and using Equation (3.1) for a = p, b= 1 — p, the proof is straightforward. O
Remark 4.1 Regarding the raw binomial moments, in [2] the authors derive the
following recurrence relation for the moments of the distribution B (n,1/2)
r r—1 1 r—1
Mp12=n (""n.x/z - 5"’::—1.1/2) .
This formula is a special case (p = 1/2) of the more general expression
map=n(my - (1-p)mil},), 0<p<l,
which can be immediately obtained here using Equation (2.1) fora =pand b=1-p.

Corollary 4.3 has provided us with a closed expression for the higher-order raw
moments E [X"] of a binomial random variable X. In a recent work [7], the author
presents recursive and closed-form expressions for both raw and central moments of the
binomial distribution; see [7, Theorem 4.1]. For this purpose, the author first obtains
recursive formulae for the raw moments involving the Stirling numbers of the second

309



kind {]}. Then, using the closed expression (1.2) for these numbers and a general-
ization of the well-known formula (1.1) (see {7, Lemma 3.1]), closed-form expressions
for E[X"] (written as polynomials in p and in g = 1 — p) are derived. Regarding the
central (binomial) moments E [(X — p)"] (¢ = np), they can be expressed in terms of
the raw (binomial) moments, using the binomial theorem. More precisely, for an arbi-
trary real parameter u, the 7-th general moment of the random variable X about the
point z (and, in particular, the r-th central moment of X about the mean E [X] = p)
is given by (7, Theorem 2.2]

r

E((X-w)=Y () (~uy E[X]. (4.1)
i=0 t

Indeed, our Remark 3.1 and Corollaries 4.1 & 4.3 are closely related to Theorems 2.2

& 4.1 and Lemma 3.1 in [7].

Closed formulae for the higher-order binomial moments are of relevance in the
analysis of the storage capacity and retrieval error probabilities in neural associative
memory networks -which have been widely applied, for example, in artificial intelli-
gence and for modeling the brain [7]. Recent approaches to this problem can be found,
e.g. in [6]. In synthesis, one of the most efficient models of neural associative memory
for biological modeling and applications is the so-called Willshaw model with binary
neurons and synapses. For an exact analysis of this model, one needs to compute
the Willshaw-Palm probability distribution of the neurons dendritic potentials; see [6]
for more details. Since the Willshaw-Palm distribution is more difficult to formulate,
the analysis of binary neural associative networks of Willshaw type often relies on
a binomial approximation [6, 7). For this reason, in [6, Theorem 4.2] the raw and
central moments of the Willshaw-Palm distribution are computed from the raw and
central moments of the binomial distribution (given in [7, Theorem 4.1]). Further,
in [6] the author analyzes the convergence of the Willshaw-Palm distribution and the
corresponding binomial approximation, by determining asymptotic conditions when
their moments become identical.

In a completely different context, the binomial sums associated to the higher-order
moments of other probability distributions, can also be applied to the portfolio choice
problem in the field of financial economics. For instance, in [13], a recursive formula for
the central moments of the univariate lognormal distribution is presented, and then this
recursive scheme is extended to the multivariate case. For these purposes, as mentioned
above, the author uses the binomial sum (4.1) to reduce the computation of the central
moments to the computation of the raw moments. Finally, the so-obtained recursive
formula for the computation of all central moments of the multivariate lognormal
distribution -up to a given maximum total order- is used to provide an approximate
solution to a multi-asset portfolio choice problem.

5 Generalized r-permutations

The 2"~! polynomials in n of degree r involved in Equation (3.1), lead us to define
the generalized or “mixed” sampling scheme. Here, the term “mixed” means that the
selection of each one of the r elements taken from an n-set can be done either with or
without replacement.

Definition 5.1 Let S be a set of n elements and r a positive integer (r > 2). Let

(u1,...,ur—1) € {0,1}77F s.t. $i2  ui < n. Then a generalized sample of the type
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(u1,...,ur1) of r elements taken from S is an ordered sequence (zi,...,z.) of T
elements of S, selected according to the following criterion: Foralli=1,...,7 =1, if
ui = 0 (u; = 1, respectively) then the i-th selected element z; is (is not, respectively)
replaced to the population S. The so performed sampling scheme is called generalized
or mized sempling of the type (u1,...,ur-1).

Definition 5.1 can be reformulated in terms of r-permutations (arrangements) of
the n-set S, as follows.

Definition 5.2 Let S be a set of n elements and r a positive integer (r > 2). Let
(ur,...,ur—1) € {0,1}"7F s.t. 3721 wi < n. Then a generalized r-permutation of the
type (u1,...,ur-1) of the n-set S is an ordered sequence (zi,...,z.) of r elements of
S, selected according to the following restriction: If u; = 1 for somei=1,...,r — 1,
then the j-th selected element x; is required to be different from the i-th selected element
i forallj=i+1,...,7.

The number of mixed samples of size r (or r-permutations) of the type (u1,...,%r-1)
taken from an n-set S is denoted by , P~ """"~! and it is given by
WPET = (o) (1 = i) (n = i),
(5.1)

tg=0and &t =u1+---+up, 1<k<r-1,
since the first element x, of the sample can be always selected in n different ways from
the n-set S and after selecting the first k elements z1,...,zx (1 < k < r — 1) from the
population 8, its cardinality will be decreased by the sum ix = w1 +- - - +ux, and thus
the number of remaining elements in the n-set S will be n — iy.

Obviously, the number of generalized r-permutations, obtained via this mixed
sampling scheme, is the same irrespective of whether the r-th (last) element is replaced
or not, and that is why the type of the samples of size r is defined by a binary (r — 1)-
tuple and not by an r-tuple.

Remark 5.1 The sampling scheme of the type (ui,...,u,—1) generalizes the usual

sampling both with and without replacement. In other words, the mixed r-permutations
of the type (u1,...,ur-1) generalize the usual r-permutations both with and without

repetitions allowed. That is, the r-permutations of the type (0,...,0) (of the type

(1,...,1), respectively) are just the usual r-permutations with (without, respectively)

repetitions, and using Equation (5.1), we have

AP0 =q" P l=nm-1).(n- (r-1))

Now, we can express the sums Sg, evaluated in Theorem 3.1, in terms of gener-
alized r-permutations, as follows.

Corollary 5.1 Leta,b€ R — {0}, b#* —a and let n,r be positive integers. Then

—b uptedug) Y
s =a(a+ b)»? Z (m) Pt
(u,,....u,._,)e(o,l}r—l

B,y Up_q

nPr =n(n-—uw)(n—(ur+u))(n—(ur+ua+- - +ur1)).

Proof. Using Equations (3.1) and (5.1), the proof is straightforward. O
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Remark 5.2 According to Corollary 5.1 and Equation (1.3), Corollary 4.2 can be

rewritten as
UYlyeerUpra] lsn,r
nir —'2' 2,—1
(u; ,,,,, u,._l)E(O.l}"_l

while it can be proved by induction on r that for alin,r € N

> R L

(ul....,u,._l)E(ovl)'.-l

6 Summary & Conclusions

We have derived both a recurrence relation and an explicit formula for the binomial
sum Sy =30 o kma*b""* () (e,b € R—{0}, n,7 € N). That sum has been expressed
in terms of the generalized r-permutations of the type (u1,...,ur-1) € {0,137
from the n-set S, associated to the mixed sampling scheme of the same type (the

i-th selected element is replaced or not replaced iff u; = 0 or 1, respectively). The
most relevant special case is the so-obtained explicit formula for the binomial sum

51 = Thao k" (3)-
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